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Abstract— Knowledge of vertebra location, shape and orienta-
tion is crucial in many medical applications such as orthopedics
or interventional procedures. The wide range of shapes, joint
alterations and pathological cases encountered in an aging
population makes automatic segmentation sometimes challenging.
This paper presents a new automated vertebra segmentation
method for 3D CT data which tackles these problems. This
method has two consecutive main steps: first a new coarse-
to-fine method produces a coarse shape of the vertebra, then
a Hidden Markov Chain (HMC) segmentation using a specific
volume transformation refine the segmentation. No shape prior is
used thus allowing most frequent non-standard and pathological
cases handling. We experiment this method on a set of standard
vertebrae and on non-standard cases as encountered in daily
practice. After expert validation, we show that our method is
robust to shape and luminance changes, and provides correct
segmentation for pathological cases.

Keywords— Clinical imagery, Automatic vertebra segmenta-
tion, Coarse-to-fine modeling, SLIC Clustering, Hidden Markov
Chains.

I. INTRODUCTION

A precise knowledge of vertebrae location, shape and ori-
entation is essential for various medical application, such as
spine lesions follow-up, multi-modality imaging, preoperative
planning or interventional radiology treatments. Furthermore,
some major concerns for segmentation are the varying neigh-
borhood and shape in a single patient, and the possibility of
pathological cases, affecting shape, size or region intensity.
Hence, most of the published works about vertebra segmenta-
tion seem to be developed and evaluated in a young population
in which vertebra are anatomically well separated (e.g [8], [9]),
with a consequent lack of information about the robustness of
the presented schemes toward daily practice cases.

Medical image segmentation can be divided in three types:
the iconic, the texture-based and the edge-based methods [14].
The vast majority of recent works [8], [9], [10], [11], [13]
on vertebrae segmentation are edge-based, relying mostly on
deformable models to perform an adaptation of prior data to
the vertebrae volume.

Nevertheless, two main key issues limit theses works: (1)
the algorithms use complex shape description, dramatically
increasing global processing time and (2), methods were vali-
dated on a limited set of vertebrae in terms of scope (lumbar,
thoracic or cervical) and healthiness (middle-aged patient,
healthy cases). The proposed method overcomes theses limita-
tions, since it does not rely on prior data nor on complex shape

descriptors. To restrain the computation time, a fast coarse-to-
fine pre-segmentation algorithm dropping voxel clusters from
the data volume is proposed. Then a finer Hidden Markov
Chain (HMC) voxel segmentation is processed, following a
new volume-to-chain spiral transform.

Through this paper, the processed volumes will be obtained
from the Computed Tomography (CT) imaging modality vol-
umes interpolated to obtain isotropic voxels of size (0.98mm)3,
0.98mm being the most common slice thickness encountered
in the tested volumes. We assume in the following that the
vertebral volumes are properly isolated in bounding boxes,
delimited by their inter-vertebral disk and corresponding mean
planes. Many methods of vertebra localization can produce
such delimitation [7], [8], [9]. The first segmentation step is
built on the basis of a statistical testing of coherent voxel
cluster, and is therefore robust to local and global luminance
changes. The second step aims at discriminating the two
classes in the remaining volume within a robust HMC frame-
work and thus performs a consistent voxel-level segmentation.
No shape prior were introduced in the algorithms and thus the
method can deal with any type of standard vertebrae from
lumbar to cervical as well as non-standard cases one can
expect in clinical context.

Sections II and III detail the two main steps of the method.
Section IV explains the experiments and the results, and a
conclusion is given in Section V.

II. COARSE-TO-FINE PRE-SEGMENTATION

In medical imaging, coarse-to-fine methods are mostly used
to perform fast registration (see e.g [10]). Besides, image
clustering [5] is a well-known tool to produce consistent
high-level information. It is desirable to use both approaches
to rapidly ensure a first accurate and consistent anatomical
volume estimation. Thus a new algorithm is introduced to
fulfill these requirements. It processes layer by layer iteratively
in three main steps in a fashion summarized in Fig. 1.

A. Layer Construction

This step isolates the external layer of voxels on which
further processing will be applied. Let V̂j−1 be the binary
partially-segmented volume obtained at the step j − 1, or the
initial volume V0 if the method starts, and let Vj be the layer
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Fig. 1: Flowchart of the pre-segmentation step.

volume at step j. Then Vj is given by :

V1 = V0 − V0 	R(I1)
Vj = Vj−1 ⊕R(Oj)− Vj−1 	R(Ij) ∀j > 1

(1)

V0 is the initial volume boundary, and the operators ⊕ and
	 stand for morphological dilatation and erosion respectively,
with ball structuring elements R(·) of diameter Oj and Ij for
outer and inner thicknesses respectively.

B. Layer Clustering

A clustering method related to the SLIC method proposed
in [1] is developed. The authors present a clustering method
for 2D color images, based on a mixed distance-luminance cri-
terion. It is generalized here in the 3D gray-level case and we
refer to it thereafter as ”SLIC-3D”. The spatial and luminance
features are the 3D Euclidean distance and intensity range
expressed in Housfield Units (HU) [15] respectively. A given
voxel i is then represented by its spatial coordinates (xi, yi, zi)
and its luminance li. Given the centroid Ck = [xk, yk, zk, lk]

T

of the k cluster, the mixed distance Dm combines the four
features between Ck and any voxel i:

Dm(Ck, i) =
√

(dc(Ck, i)/m)2 + (ds(Ck, i)/S)2 (2)

where ds is the 3D Euclidean distance ; dc is the luminance
gap between Ck and i; dc(Ck, i) = |lk − li| ; m balances the
spatial and luminance features and S is the number of pixels
a cluster should contain. The SLIC-3D procedure is described
in Algorithm 1.

C. Clusters Selection

A test is developed to assess if the layer clusters are part of
the vertebra. The input of this test is the mean luminance lk of
each cluster k. An adaptive test is developed so as to ensure
robust and consistent acceptance or rejection of clusters, and
to be efficient for non-standard cases. The test is built on
the basis of the Statistical Region Merging proposed in [12].
Whereas the authors process the test for a pixel pair set, here
the clusters are tested with respect to a reference luminance
l0 corresponding to the typical bone tissue luminance in CT
scans. For a given cluster k let the bone merging predicate be:

P0(k) := |lk − l0| ≤ b(k) (3)

b(·) is a merging threshold defined [12] as :

b(k) = g

√
1

Q|k|
ln

(
1

δ

)

where |k| is the number of voxels in k, g is the gray level
range, and δ is the affordable probability of error for the
predicate. Q stands for the expected number of underlying
independent random variables for the current region. An
interiority predicate is added as an alternative so that interior
clusters remains in the result. Let v = (xv, yv, zv) the
remaining volume center, then for a given cluster k and any
of its neighbor k′ :

Pk
I (k
′) := ds(Ck′ , v) ≤ ds(Ck, v) (4)

where Ck and Ck′ are the centroids of k and k′ respectively,
and ds is the 3D Euclidean distance. The two predicates (3)
and (4) are merged in the following vertebral predicate to test
a cluster k:

P(k) := P0(k)

or Pk′

I (k) ∀k′ such as
{
k and k′ are neighbor,
P(k′) is valid.

(5)

D. Model and Parameters

The model requires to calibrate several parameters. They
were evaluated on a first basis of 12 lumbar, thoracic and
cervical vertebrae. Motivations are given below:

• The two first S parameter from SLIC-3D (Alg. 1) values
will be higher than the latter ones, to process from coarse
to fine. The size parameters from Eq. (1) will also be
defined with S.

• The m parameter (Alg. 1) was choosen with decreasing
values of m to exclude first spatially-coherent and then
intensity-coherent clusters.

• The statistical parameters g, Q and δ (Pred. 3) can be
produced automatically with the cluster to proceed.

• The reference intensity l0 (Pred. 3) is the typical intensity
of bones in CT scans, always available in daily practice.

• The number of iterations J is given by J =
⌈
h−S1−S2

Sj

⌉
,

where h is the volume height, d·e is the ceiling operator,
S1, S2 and Sj stands respectively for the two first values
of S and its value for any iteration j > 2.

The model is tolerant to parameter variations, as long as
their order from coarse to fine is preserved. The entire pre-
segmentation method that we called ”carving” is summarized
in Alg. 2 and illustrated in Fig. 2.



Fig. 2: Graphical summary of a pre-segmentation step. Gray regions are not proceeded at this step, orange regions are the
current layer and include the brown vertebrae region. White limits represent cluster boundaries. (a) Whole slice with the
zoom-in region (b) in the dotted limits. (c) Result from the SLIC-3D clustering. (d) Possible outcome of the selection step with
only the bone merging predicate (3) (e) Neighborhood search example for the two light-gray clusters (f) Expected outcome of
the vertebral predicate (5).

III. HMC SEGMENTATION

The result from the carving step includes most of the
underlying vertebrae and is smaller than the initial volume.
It is transformed into a region of interest (ROI) built as a 10-
mm-diameter ball morphological dilatation, to allow efficient
statistical separation. The ROI will be processed in the Hidden
Markov Chain (HMC) framework with a specific volume
transformation, and with the Baum-Welch algorithm [2] in
the unsupervised SEM framework [4] for segmentation. This
section explains the specificity of this work, an application
instance of the Baum-Welch and SEM algorithms can be
found in [6]. A common transformation path is the Hilbert
scan, which is known to be successful for transforming 2D
images into chains (see e.g. [3], [6]). However, as it creates
artifacts in segmentations, it does not always ensure a smooth
result. Thus a new volume-to-chain transformation is intro-
duced based on the ROI shape, and is explained in Fig. 3.
The segmentation algorithm first transforms the volume along
the spiral path. The mixture parameters are then estimated
with the SEM algorithm. Its convergence is evaluated through
Maximum Posterior Mode (MPM) estimates computed at each
iteration. The segmented chain is estimated with the final
MPM estimator. Finally the segmented volume is rebuilt along
the initial chain path. Illustrative results are presented in Fig. 4.
The gain of the HMC segmentation step is clear on the
3D interpolations: the results match our expectations of the
vertebral volumes and does not include processing artifacts.
Further extensive and comparative results are presented in the
next section, as well as robustness examples.

IV. RESULTS

In this section, the method performances are evaluated
through a large set of standard cases as well as on specific

Fig. 3: Spiral transform illustration. The shaded regions rep-
resent the ROI sections and the red line follows the chain
path. The spiral covers each slice by concentric perimeters,
alternatively inward and outward. Left: 10 × 10 pixel slice.
Right: 3 consecutive slices.

non-standard and pathological cases.

A. Standard Cases: Quality Assessments

The method was evaluated on a set of 339 vertebral vol-
umes from the whole spine of 15 consecutive patients in
an oncologic tertiary center, excluding patients with bone
tumors or metastatic spine involvement. Patients had a mean
age of 63 and presented degenerative joint alterations and
some osteoporotic changes reflecting most of the situations
encountered in daily practice. Each volume was processed by
the proposed method and a two-class K-means algorithm as a
benchmark. The latter was selected as an instance of non-prior
segmentation algorithm. Since it fails when air is present in
the volume, a sub-sample whithout air has been created for
accurate comparison. The results were visually inspected by
an expert with respect to the following ranking:

- Excellent (100): the vertebrae is exactly delimited inside
its bounding box.



Fig. 4: 3D interpolations of the intermediate and final segmen-
tation results. The first and second rows correspond to lumbar
(L4) and thoracic (T11) vertebrae processing respectively.
The first column represents the result of the Carving method
(Alg.2) and the second column contains the results after
the HMC segmentation (Section III). Note that the observed
granularity corresponds to the voxel size, which is the minimal
size addressed in this work.

- Good (75): most of the anatomical structure is covered,
but some voxels are segmented out.

- Bad (50): the vertebra is recognizable but noticeable part
are missing from the result.

- Poor (25): the vertebra is not recognizable enough.
- Fail (0): the segmentation failed to proceed.

Figure 5 illustrates the results obtained for the two methods
on the same volume and Table 1 summarizes the results.
Considering that good and excellent results both provide suf-
ficient data for vertebrae segmentation and advanced treatment
procedures, our method provides about 78% of successful
results on the subsample in which K-means gives 72% of
successful results, whereas on the full sample the method
yields 67% of successful results (and K-Means returns 38%).
As the sample originates from daily routines and includes
a significant proportion of minor pathologies, these results
are of significant interest for clinical use. The algorithms
were developed and tested using Matlab on an Intel i5 (2.6
GHz) on one core, without specific optimization. The average

Table 1: Results on the subsample without air and on the full
sample. This parting is made to provide accurate comparative
results on the sub-sample. Average scores summarizes the
essential outcomes.

Partial set: 178 volumes Full set: 339 volumes
Score Proposed method K-Means Proposed method

100 75 (42.13%) 46 (25.84%) 98 (28.91%)
75 64 (35.96%) 83 (46.63%) 129 (38.05%)
50 31 (17.42%) 35 (19.66%) 80 (23.60%)
25 6 (3.37%) 9 (5.06%) 29 (8.55%)

0 2 (1.12%) 5 (2.81%) 3 (0.88%)
Average 78.65 71.91 71.39

(a) (b)

Fig. 5: Illustrative comparison between K-means segmentation
(a) and the proposed method (b) for the L3 vertebra in a patient
with marked osteoporosis. K-means segmentation was rated
50, whereas the proposed segmentation was rated 75.

processing time is 36 seconds by vertebra.

B. Pathological Cases: Evaluating Robustness

In a clinical implementation perspective, robustness to the
most frequent non-standard cases is mandatory. The two main
key points are changes in shape and in intensity of the ob-
ject to segment. They correspond to anatomical deformations
and structural, respectively. Structural changes are related to
alterations of bone and medullar matrix, with consequent
modification of density and signal intensity in the CT vol-
ume. Changes of shape and density can be related to aging
alterations. In particular, arthrosis is responsible of spine
alterations in a general population, and we selected it as the
first specific case (see Fig. 6b). The frequency and intensity
of these modifications is in close relationship with age. After
40 years, hernia, osteophytes, and degenerative joint diseases
are commonly encountered. We also selected a hernia case
as an instance of common low-intensity structural alteration
(see Fig. 6d). On the other hand, many pathologic conditions
can lead to bone density variations. For instance, osteoblastic
cancerous tumors will increase bone density. On the other
side, osteolytic tumoral involvement is associated with bone
destruction and is therefore seen as areas of decreased bone
density. Finally, treatments - general treatments as chemother-
apy or interventional treatments as cementoplasy - can induce
bone density alterations. In particular, cementoplasty, which
can be described as the interventional introduction of artificial
high-density material inside the vertebral body, represents an
extreme case of overdensity and was also retained (see Fig. 6f).

Fig. 6c, 6e and 6g provide the method outcomes on the
three selected cases as well as the corresponding discussions.
The results presented here show that the proposed method is
robust to some of the most frequent particular cases met in
clinical context. Furthermore, as it provides a correct result
for a challenging case, one can expect it to be robust to most
of the lower-intensity specificities.



(a) Segmentation result for a standard L3 vertebra. The three sectionnal views are the volume sagittal, axial and coronal middle slices, the
result is represented by its red superimposition. The segmentation clearly delimits the vertebra. Due to its high similarity to the external
neighborhood, the inner vertebral body is segmented out.

(b) Arthrosis in a L3 vertebra. (c) The changes induced by arthrosis cleraly do not impede the segmentation result, which is similar to
the result presented in Fig. 6a. Some errors appears from the 3D interpolation, however they are minor
given the overall result.

(d) Hernia in a L4 vertebra. (e) The hernia region is segmented out by the method since it differs from the bone in intensity, while
the surrounding regions are included due to relative over-densities. The method yet performs correctly.
Note also that some calcification were also segmented since they are close spatially and in intensity to
the vertebra.

(f) Cementoplasty in a T12
vertebra.

(g) The result does not cover the full vertebra volume but does represent most of the underlying vertebra.
It also shows that natural over-densities of lower range can be handled by our method, the cementoplasty
being one of the most extreme case.

Fig. 6: Segmentation results in standard and pathological cases.



V. CONCLUSION

Vertebrae segmentation remains a complex task, partly due
to the variety of shape, aging-related modifications, and patho-
logic alterations. Nevertheless, the proposed method fulfills
the requirements of a non-prior segmentation, which can be
integrated into a spine processing procedure. This method
could be more generally used for bone segmentation. It could
also benefit from an automatic vertebra separation tool.
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Algorithm 1: SLIC - 3D

Require: Bounding box V obtained from a previous pro-
cessing, parameters m and S from Eq. (2), iteration num-
ber nItr

Ensure: Label map L, pixel-centroid distance map D
1. INITIALIZATION

Place the cluster centroids Ck on a cubic grid of sample
size S.
For each voxel vi: L(i)← −1 and D(i)←∞.

2. ITERATIVE PROCESSING
for Itr = 1 : nItr do

for each cluster centroid Ck do
for each voxel i in a (2S)3 cube centered on

(xk, yk, zk) do
Compute Dm(Ck, i) (2).
if Dm(Ck, i) ≤ D(i) then

L(i) = k
D(i) = Dm(Ck, i)

end if
end for

end for
Update the cluster centroids.

end for
Algorithm 2: Carving

Require: Initial volume V0
Ensure: Binary pre-segmentation of V0

Compute the number of iterations J .
for each iteration j do

Build Vj : (1) with Oj and Ij .
Update g, Q and δ with the current values.
Cluster Vt: Alg. 1 with Sj and mj .
for each cluster k do

Test P(k): (5) with g, Q, δ, l0.
if P(k) is false then

Exclude the voxels corresponding to k from the
volume.

end if
end for

end for
Parameters: Ij = Sj ∀j, O1 = 0, Oj = (Sj−1+Sj)/2 ∀j > 1,
m1 = 100, linearly decreasing until mJ = 70, S1 = 23mm,
S2 = 17mm, Sj = 11mm ∀j > 2, g is set to the intensity
range in the current Vt, Q = 0.4×g, l0 = 1300 HU,δ = 1/|Vt|


