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Abstract— In this paper, we address the problem of the seg-
mentation of vessels in images of mouse tumors, with an efficient
algorithm that minimizes the user’s intervention. For each vessel,
two points delimiting its extremities have to be selected. Then,
a line inside the vessel is automatically determined based on a
Dijkstra-type algorithm. Finally, an original active contour model
combining both parallel double snakes and region criteria aims
at finding the borders of the vessel. Our segmentation algorithm
provides numerical models of tumor vessels, suitable for the
simulation of blood and contrast agent flow.

Keywords— Image segmentation, Tumor vessels, Active contour
models, Parallel Double Snakes, Region criteria.

I. INTRODUCTION

Functional imaging of tumor microvasculature is a major
challenge in oncology to assess early therapeutic efficacy
of new drugs which target vessel destruction. This imag-
ing method aimed at detecting microcirculation modifications
prior to change of tumor volume. Specifically, it is based on the
study of microvascular enhancement by injection of contrast
agents (CA) for characterizing the microcirculation (mainly
blood volume and blood flow).

The recent introduction of microbubbles as CA has allowed
access to ultrasound functional imaging of tumor microvas-
cularization. This new modality called Dynamic Contrast-
Enhanced Ultrasonography (DCE-US) has been validated by
a multicenter clinical study [11] and is now included in
the European and International guidelines. However, DCE-
US remains a recent functional imaging modality and clinical
research indicates the necessity to master the variability of
the quantification methods of tumor perfusion. To achieve this
task, we propose to characterize these quantification methods
through a numerical modeling of the flow of ultrasound CA
[2]. This requires realistic digital phantoms of vascular net-
works, approximating the tumorous physiological conditions.
Our approach consists in designing these phantoms from
sequences of images of in-vivo vascular networks, acquired
at regular time step and segmented by dedicated image pro-
cessing algorithms.

This paper presents the methods we propose to perform the
segmentation of mouse tumor vessels from images acquired in
macro-fluorescence and confocal microscopy (Fig. 1), in order
to provide realistic 2D+t models.

Many approaches have been proposed for the segmentation
of vessels (retina, coronary artery, etc.) in many imaging
modalities, see for example the review in [13]. They exploit
the panel of tools available in the image processing field and
adapt them to the application specificity: vessel enhancement
based on wavelets [21], morphological filter [24], Hessian-
based filters [1], [22], [14], pixel classification [22], [21],
region growing algorithms [9], [14], [16], tracking procedures
[8], active contour models [15], [12], etc. However, to the
best of our knowledge, very little work has been dedicated
to the analysis of tumor vessels. For example, the authors of
[25], [7], [19]. proposed image processing methods in order
to quantify the tumor angiogenesis, by estimating the vessel
branch density and length, but no accurate segmentation of the
vessel branches is performed.

The tumor vasculature is known to be particularly tortuous
and irregular, including shunts and loops, responsible for the
complexity of the microcirculation mechanisms. A fully auto-
matic process seems to be very difficult to achieve. That is why
we propose a semi-automatic procedure, based on minimal
path techniques combined with active contour models. Indeed,
these tools have proven to be powerful, even for processing
complex images, and are well suited to approaches guided by
user.

Fig. 1. A macro fluorescence (left) and a confocal (right) images.



Active contour techniques are based on the minimization
of an energy functional and were originally introduced by
[10]. The ISEP team has developed recently a new model,
the Parallel Double Snakes, that incorporates a parallelism
constraint in the energy function, allowing the simultaneous
extraction of two almost parallel contours [20]. It has been
succesfully applied for the segmentation of vessels in adaptive
optics [12]. This approach can be coupled with a centerline ex-
traction method [4], [5], in order to initialize the snakes. Data
finally obtained are composed of a centerline combined with
measures of local radii and seem to be perfectly adapted to
the digital model required by the software for flow modeling.

Other active contours method based on region criteria have
been developed [18]. As they do not focus on gradients, they
may better handle images with low contrast.

The two latter approaches appeared useful to us for process-
ing our sequences of images containing very heterogeneous
vessels. Consequently, we focus in this paper on an original
method combining both approaches: after the extraction of the
centerline, we minimize an energy that adds up gradient- and
region-based terms.

In a first part, we present the main features of images
we are dealing with, before exposing the algorithm in detail:
determination of vessel centerlines in a first part, parallel
double snakes with region criteria in a second part. We end
this paper with experimental results including quantitative
evaluation.

II. IMAGES WE FOCUS ON

A. Image features

The images we consider in the paper are composed of two
sets, depending on the acquisition device (see Fig. 1).

The first set is composed of macro fluorescence images
with resolution 11.5 µm/pixel (left image of Fig. 1). In this
case, we deal with a great part of the vascular network.
Borders of tumor vessels appear very irregular, as compared
to other segmentation problems of tubular structures, making
their localization very challenging. Noticeably, size, curvature
and contrast of the vessels are very heterogeneous (see also
the left image of Fig. 2, where we zoomed on the tumor on
another macro fluroescence image), which implies to develop
a robust method to address all different configurations.

The second set is made up of the so-called confocal images
with resolution 2.9 µm/pixel (right in Fig. 1). They are
obtained by scanning the tumor zone in depth and by adding up
the acquired slices. They focus on small details of the network
and give complementary information to the macro fluorescence
images. Features of vessels in these images are quite different
from those of macro fluorescence images. Indeed, curvatures
are lower, but vessels are even more irregular, with important
variations in intensity (see the right image of Fig. 2).

Fig. 2. Zoom on the tumor region of a macro fluorescence (left) and a
confocal (right) images.

B. Pretreatments

The first step of the algorithm aims at enhancing the vessels
and improving the signal to noise ratio. We apply a Top-Hat
transform with circular structuring elements. This processing
extract narrow intensity peaks (narrower than the structuring
element). As the diameter of most vessels is comprised be-
tween 1 and 15 pixels, we chose radii in the interval [1, 15]
and average the obtained images.

In the case of confocal imaging, we finish this preprocessing
step by an opening of the image with a circular structuring
element of size 3 in order to reduce the remaining noise.

Figure 3 shows the results of these pretreatments from the
images of Fig. 1.

Fig. 3. Images after preprocessing.

III. DETERMINING THE VESSEL CENTERLINE

At the end of our global algorithm, we aim at obtaining
a suitable representation of the vessel branches, made up of
the discrete representation of their centerline combined with
the measure of the local radius at every point. This mode
is suitable for both segmentation algorithms and numerical
models involved in the simulation of the fluid flow. Thus, the
first step consists in determining a median line lying inside
every vessel branch, the extremities having been previously
pointed by the user.

A. Requirements

We use the classical point of view that considers pixels p
of the image I as vertices of a graph. With this formalism,
determining the centerline of a vessel consists in finding the
minimal path in this graph between the two extremities of the
vessel thanks to Dijkstra’s algorithm [6]. The key point is to
find the adequate cost attached to the edges of the graph.

We want the centerline to fulfill three properties:



• The centerline should stay inside the vessel.
• The centerline should be located as much as possible

in the ”middle” of the vessel, and not be ”glued” to its
boundaries.

• The centerline should be as regular as possible, in other
terms, free of undesirable ”zigzags”.

B. Ponderation of the graph edges

1) First condition: In the Dijkstra’s formalism, the minimal
path in a graph is the one that minimizes the sum of the
edge path costs. Thus, we must encourage the edges that tend
to follow the previous properties and penalize the others. To
illustrate this, let us consider two neighbor pixels p1 and p2 of
our graph, and the cost of the corresponding edge: P (p1, p2).

Let p0 be the source pixel, i.e. one of the two extremities
selected by the user. The intensity inside the vessel is not
constant but nevertheless quite homogeneous and brighter than
the background. It should also be close to the image intensity
at p0. Thus we initially choose:

P (p1, p2) =

[
I(p1) + I(p2)

2
− I(p0)

]2
, (1)

where I(p) is the intensity at pixel p.
2) Second condition: The previous cost is not completely

satisfactory as the resulting centerline often follows one of the
vessel boundaries, as ”glued” on it. To solve this problem, we
filter I by a Gaussian filter (σ = 5) and replace I by Ĩ , the
filtered image, in (1). Indeed, the brightest pixels in Ĩ , which
are also the ones whose values are the closest to I(p0), are
located ”in the middle” of the vessel.

P (p1, p2) =

[
Ĩ(p1) + Ĩ(p2)

2
− I(p0)

]2
. (2)

3) Third condition: Finally, the third of the previous prop-
erties seems to be the most straightforward, and can be
reformulated in these terms: the two other properties being
satisfied, we want the centerline to be as small as possible.
So, we introduce the euclidian distance d(p1, p2), between p1
and p2 as follows:

P (p1, p2) = γ d(p1, p2) + ζ

[
Ĩ(p1) + Ĩ(p2)

2
− I(p0)

]2
, (3)

γ and ζ being weighting parameters. In practice, we choose
γ = 0.01 and ζ = 1.

IV. FINDING THE VESSEL BORDERS: PARALLEL DOUBLE
SNAKES WITH REGION CRITERIA

A. Parallel Double Snakes

Once we have found the centerline of vessels, the next step
is to determine their boundaries. An efficient method has been
developed in [20] for the segmentation of elongated features
such as vessels. It is based on the simultaneous evolution of
two almost parallel lines (snakes) through the minimization of
a gradient-based energy. We now remind the key points of this
method.

Let us denote by V (s), s ∈ [0, 1], the reference line of the
PDS model (in practice, initialized as the centerline found
previously), parameterized by the curvilinear abscissa s. Let
us also introduce two other curves, V1 and V2, defined with
respect to V by: V1,2(s) = V (s) ± b(s)n(s), where n(s) is
the vector normal to V (s) and b(s) the local radius.

The energy to be minimized is defined as follows:

E(V, b) = Eimage(V1, V2) + Eint(V ) +R(V1, V2), (4)

where:

Eimage(V1, V2) = −
∫ 1

0

[
|∇I(V1(s))|2 + |∇I(V2(s))|2

]
ds, (5)

Eint(V ) =
1

2

∫ 1

0
α(s)

∣∣∣∣∂V (s, t)

∂s

∣∣∣∣2 + β(s)

∣∣∣∣∂2V (s, t)

∂s2

∣∣∣∣2 ds, (6)

R(V1, V2) =

∫ 1

0
φ(s)(b′(s))2ds, (7)

α(s), β(s) and φ(s) being weighting parameters.
(4) is composed of three terms: the first two ones (5), (6)

are classical and aim at driving the curves V1 and V2 to the
edges while preventing them to be too much tortuous. The
last one is a coupled energy term, that controls the parallelism
constraint between V1 and V2: the higher it is, the more strict
is the parallelism constraint. This model introduces contextual
information about the shape of the area to be segmented,
making the snakes more robust to noise, lack of contrast and
approximate initialization [20], [12]. It is well suited to our
problem.

In practice, we noticed that the weighting β is not important
as compared to the influence of α, and that φ can be constant
along the snake. So we set β = 0 for all images, φ = 700
(quite strong parallelism constraint) for the macro fluorescence
images and φ = 20 for the confocal images. On the contrary,
it is necessary to make α(s) vary as a function of s since
vessel branches can exhibit both straight and strongly bent
parts. Figure 4 illustrates this point: when α is uniform on the
whole vessel, either the twist is bad captured (case α big) or
the snake is too much tortuous (case α small). That is why
we propose an original method for calculating automatically
this weighting parameter from the centerline features.

Fig. 4. Left: segmentation with α = 10, right: segmentation with α = 1.

B. Determination of α(s)

Consider the left scheme of Fig. 5 where p1, p2 and p3 are
three points of the centerline and d1 and d3 are the distances



between p2 and p1, and p2 and p3, respectively. We want to
determine the value of α at point p2. Our method is based on
an estimation of cos(p̂2), normalized to give a measure c in
the interval [0, 1]:

c =
−−→p2p1 · −−→p2p3 + d1d3

2d1d3
. (8)

c ' 0 for approximately aligned points, while c tends to 1
for sharp angles. The bigger α is, the more the snake is rigid.
Thefore, we compute α(p2) with the following formula (see
the graph at the right-hand side of Fig. 5):

α(p2) = 10(1− c)10. (9)

••

•p1

p2
p3

d1
d3p̂2

V

Fig. 5. Determination of α. Left: notations used; right: plot of the function
c 7→ 10(1− c)10 on [0, 1].

We choose a fast decreasing function as we want the snake
to become rapidly less rigid as p̂2 passes from π to smaller
angles values: α ' 0 when p̂2 < 2π/3,

In practice, we define a fixed step S for all vessels of the
image so that, p1 = Vi, p2 = Vi+S/2 and p3 = Vi+S , where
Vi = V (s = ih) denotes the discretized centerline V (N
points), h = 1 and i ∈ [1, N − S]. We take S = 100, which
allows us to adapt the weighting parameter according to the
significant variation of the vessel curvature. When the size
of the vessel is below S, α remains the same at every point
of the snake. It is computed using the two extremities of the
centerline and the point at the middle of it.

C. Region criteria

The previous method provides good results when the con-
trast between the vessels and the background is good. Unluck-
ily, this is not always the case, even after the pretreatments.
For this reason, a region-oriented criterion has been integrated
in the PDS model.

In [17], [18], a model has been developed where zones to
be segmented have to verify a homogeneity criterion. This
method is inspired by the Chan and Vese approach [3], but is
adapted to the segmentation of tubular structures.

Two regions are defined (Fig. 6):

• For the first one, Rin, the authors use the same formalism
as ours in the PDS model: Rin is the region localized
”inside” the curves V1 and V2.

• A second region, Rout is defined by considering two
additional curves forming an outside band with a constant
thickness B.

B
b

Rin

Rout
V

V1

V2

Fig. 6. Regions Rin and Rout considered in the model including a region
criterion.

With this formalism, a region-based energy is defined by:

Eregion(V1, V2) =

∫
Rin

gin(x)dx+

∫
Rout

gout(x)dx, (10)

where region descriptors gin and gout penalize the intensity
heterogeneity in the the two defined bands.

The authors have shown in [18] that minimizing the energy
(10) can be explicitly formalized as a function of V and b,
which enables us to easily combine this approach with the
PDS model.

D. Complete energy computation

We finally define the following complete energy:

E(V, b) = ψEimage(V1, V2) + δEregion(V1, V2)

+ Eint(V ) +R(V1, V2),
(11)

with Eimage(V1, V2), Eint(V ) and R(V1, V2) as in (4),
Eregion(V1, V2) as in (10), and ψ and δ ∈ [0, 1] being
weighting parameters such that ψ + δ = 1.

The minimization is performed by gradient descent, by
alternatively minimizing over V and over b.

The associated Euler-Lagrange equations are:

− α(s)V ′′(s)− α′(s)V ′(s) + βV (4)(s)− ψ[F (V1(s)) + F (V2(s))]

+ δ[(1− κ(s)b(s)) (gin(V1(s))− gout(V1(s)))
− (1 + κ(s)b(s)) (gin(V2(s))− gout(V 2(s)))]n(s) = 0

(12)
for the minimization of E with respect to V , and

− φ b′′(s) + ψ[n(s) · (F (V2(s))− F (V1(s)))]

+ δ[(1− κ(s)b(s)) (gin(V1(s))− gout(V1(s)))
+ (1 + κ(s)b(s)) (gin(V2(s))− gout(V 2(s)))] = 0

(13)

for the minimization of E with respect to b. We have noted
here P = −||∇I||2, F = −∇P (or F is derived from the
Gradient Vector Flow, see [23]), κ(s) the local curvature and
we have chosen gin and gout like in [17] (based on mean
intensity values).

E. Importance of a region criterion for our images

As we mentioned above, we deal with images whose
contrast is not always optimal. In some cases, the algorithm of
PDS without region criterion fails at finding a correct vessel
segmentation in zones where the contrast is low. Figure 7
shows such a case. On the left, where no region criterion
is integrated (ψ = 1 and δ = 0), the segmentation is not
satisfying: the snake even tries to follow another vessel at the
top of the image. On the contrary, we set ψ = 0.7 and δ = 0.3



for the segmentation on the right: the result is far better.
Therefore, the combination of both gradient- and region-based
terms provides a better robustness to the initialization.

Fig. 7. Integrating a region criterion is the algorithm often improves the
quality of the segmentation where the contrast is low.

V. RESULTS

This section is devoted to results obtained with the method
exposed in this paper. For several macro fluorescence and
confocal images, we have selected some interesting vessels to
segment. We present the results obtained with our algorithm
and compare them to manual segmentations made by two
experts of Institut Gustave Roussy. In all cases, the parameter
b is chosen constant equal to 8 at the initialization and we set
B = 20 , ψ = 0.7 and δ = 0.3.

On Fig. 8, we firstly present the results of the segmentation
of two vessels in a macro fluorescence image. It is quite blurry
and vessels have a relatively high curvatures, but they are
quite regular, i.e. without brutal variations of the radius or the
curvature. Our algorithm is able to segment these vessels quite
easily and the results are very good (on the right-hand side, we
put the manual segmentation of an expert, for comparison).

Fig. 8. (Relatively) regular vessels in a macro fluorescence image segmented
by our algorithm (left) and by an expert (right).

On Fig. 9, we focus on the zoom of a macro fluorescence
image, the one we presented on Fig. 2. Once again, the image
is blurry, and this time the vessel on the right of the image is
furthermore very irregular and tortuous. Despite this fact, the
segmentation obtained with our algorithm is satisfactory. We
once again show the importance of the automatic adaptation
of the parameter α: the top of the vessel requires to have a
very small α while the vertical part can be segmented with
greater values. Nevertheless, we notice that the top-right of
the vessel is not exactly segmented: a very brutal variation of
the local curvature (pointed by the arrow) was not captured,
which implies that improvements on the costs of Dijkstra’s

graph edges or on the active contour parameters can still be
done.

Fig. 9. Two vessels from the macro fluorescence image of Fig. 2, segmented
by our algorithm (left) and by an expert (right).

On Fig. 10, we show segmentations of vessels in two
confocal images. As we already mentioned, characteristics of
these images are different from those of macro fluorescence
images: vessels have lower curvatures but have more small
irregularities. As a consequence, we chose φ smaller for these
images (see above), which allows the local radius to vary more.
All small details are not exactly captured in these cases, but
the segmentations obtained are once again satisfactory.

Fig. 10. Vessels in two confocal images segmented by our algorithm.

We now present a table that summarizes mean square
errors (MSE) obtained in three cases: the first two are our
segmentation compared with the manual one performed by an
expert 1, and with the one made by another expert 2. To put in
perspective the mean square errors values, we also compared
the two manual segmentations in order to evaluate the inter-
experts variability. We selected 8 macro fluorescence images
(denoted by ”M” in the table), each of them containing two
vessels to segment (denoted by ”V”). Means and standard
deviations for the three cases are also given.

The same work is performed for two confocal images,
denoted by ”C” in the following table.

In overall, our segmentations are closer to those of expert
2 than to those of expert 1. The auto/experts errors are in
the same order of magnitude as the inter-experts ones. These
latter are quite high, which confirms the fact that both macro
fluorescence and confocal images are quite blurry and hard to
interpret. We also notice that some very tortuous vessels are
hard to segment (even for the experts): for instance, the image
C2 in the table corresponds to the image on the right-hand side
of Fig. 10. On the contrary, a very good accordance is obtained
between the semi-automatic and the manual segmentation for
more regular vessels.



Table 1. MSE for eight macro fluorescence images, in pixel unit.

Mean Square Errors
auto/expert 1 auto/expert 2 expert 1/expert 2

M1V1 1.86 0.87 1.81
M1V2 1.94 1.11 1.64
M2V1 2.09 0.92 1.93
M2V2 2.36 1.05 2.88
M3V1 5.69 1.65 5.21
M3V2 6.13 1.90 4.19
M4V1 1.57 1.11 1.79
M4V2 2.68 2.39 3.57
M5V1 2.05 1.27 1.96
M5V2 3.54 1.66 2.44
M6V1 1.54 0.74 1.82
M6V2 2.41 1.30 2.34
M7V1 2.12 1.64 1.61
M7V2 2.21 1.40 1.11
M8V1 2.16 1.41 1.83
M8V2 2.66 0.99 2.57
Mean 2.69 1.34 2.42
SD 1.35 0.43 1.08

Table 2. MSE for two confocal images, in pixel unit.

Mean Square Errors
auto/expert 1 auto/expert 2 expert 1/expert 2

C1V1 2.22 1.80 2.55
C1V2 1.77 0.84 1.96
C1V3 2.07 1.78 2.03
C2V1 6.19 2.31 4.24
C2V2 2.05 1.23 2.12
Mean 2.86 1.59 2.58
SD 1.87 0.57 0.95

VI. CONCLUSION

We have developed an original method for the semi-
automatic segmentation of mouse tumor vessels. The al-
gorithm requires little intervention of the operator and is
composed of two main parts: firstly, the search for vessel
centerlines thanks to a Dijkstra’s algorithm with adequate edge
costs; secondly, parallel double snakes with region criteria that
evolve by minimizing an energy based on both gradient and
region informations.

The segmentation results enable the physicists of Institut
Gustave Roussy to develop simple fluid flow models. It is
worth noting that it is unnecessary to get a complete segmen-
tation of the vessel network, since modeling fluid flows is
a very complex task: dealing with some (interesting) vessels
already provides useful informations for physicists.

Besides improvements of the existing algorithms, we en-
visage to enhance quality of the images: for instance, work
is currently ongoing to optimize dorsal skinfold chambers
applied on mice to get the images. This will enable us to deal
with images with better quality and thus, to get more complete
and more precise segmentations. We also plan to integrate the
time dimension in our studies, as it will be possible to segment
a given zone at different times.
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