
Fast feature matching for
detailed point cloud generation

Daniel Berjón, Rafael Pages and Francisco Moran

Abstract—Structure from motion is a very popular technique
for obtaining three-dimensional point cloud-based reconstruc­
tions of objects from unorganised sets of images by analysing the
correspondences between feature points detected in those images.
However, the point clouds stemming from usual feature point
extractors such as SIFT are frequently too sparse for reliable
surface recovery. In this paper we show that alternate feature
descriptors such as A-KAZE, which provide denser coverage
of images, yield better results and more detailed point clouds.
Unfortunately, the use of a dramatically increased number of
points per image poses a computational challenge. We propose a
technique based on epipolar geometry restrictions to significantly
cut down on processing time and an efficient implementation
thereof on a GPU.

Index Terms—Feature matching, GPU, 3D reconstruction,
point cloud, implementation

I. INTRODUCTION

The usual workflow for obtaining a point cloud recon­
struction from an unstructured set of images using Structure-
from-Motion (SfM) techniques begins with the extraction of
feature/key points in all input images. Then, feature matches
across all [relevant] pairs of images must be determined (i.e.,
which feature points in several different images depict the
same 3D point on the original object), so that when all the
geometric constraints of later stages of the reconstruction
process are applied, the location of the original 3D points
relative to the cameras that saw them can be inferred, as well
as the poses of the cameras themselves. There are numerous
algorithms for feature detection in the literature, each adapted
to different needs; in the case of 3D reconstruction, it is
desirable that the detected features be reasonably invariant
to changes of scale, rotation and perspective distortion (none
actually succeeds at the latter, hence the need for a dense
image coverage of the subject to be reconstructed). It is also
necessary that the key point associated with the detected
feature is precisely located at the projection of the point that
originated the image feature; in other words, feature detectors
for this task are necessarily very local, whereas in other higher-
level tasks other feature detectors may be more desirable.
Arguably the most widely used feature detector for many tasks,
including 3D reconstruction, is Scale-Invariant Feature Trans­
form (SIFT) [1]. Indeed, despite being a patent-encumbered
algorithm, it is the built-in option for the well-known state-

of-the-art SfM frameworks Bundler [2] and VisualSfM [3].
SIFT features are robust, leading to reliable camera pose
estimations, but not very numerous; therefore the point clouds
thus obtained frequently present the shortcoming of being
too sparse for realistic visualisation and, moreover, provide
insufficient support for a subsequent surface reconstruction.

In this paper we explore the generation of detailed point
clouds suitable for surface reconstruction using alternative
feature point detectors and its associated computational chal­
lenges, including an efficient implementation, both in CPU
and GPU, of a geometry-driven feature matcher to enable the
computation of the aforementioned detailed point clouds in
reasonable time.

II. DETAILED POINT CLOUDS

One possible solution to the sparsity of the SIFT-based point
clouds may be using a patch-based point cloud densification
algorithm based on photo-consistency constraints such as
PMVS/CMVS [4] but, apart from being very costly, these
algorithms still leave many holes in the scene and frequently
introduce wrong patches in the scene due to photo-consistency
between non-homologue areas (notably the sky). In addition, it
may be preferable in many scenarios to obtain standard mesh-
based models, which are easier to process (e.g., simplify for
mobile devices) and render. In order to reliably obtain a mesh
using techniques such as Poisson surface reconstruction [5],
SIFT-based point clouds are usually not dense enough, so
we have chosen to experiment with Accelerated KAZE (A-
KAZE) [6], [7], a novel multi-scale feature detector that yields
much denser coverage of the images with feature points.
This in turn should result in a denser point cloud but, since
all the feature points must satisfy the geometric restrictions
of epipolar geometry during the SfM process rather than
an arguably weaker photo-consistency check, the number of
outliers should remain low.

As we expected, the point clouds resulting from the A-
KAZE features were more detailed than those stemming from
the SIFT features. However, as Fig. 1 shows, the A-KAZE
feature detector largely failed to extract key points in the
shaded areas of buildings, resulting in very poor reconstruc­
tions of those portions. Consequently, we decided to try image
enhancing algorithms prior to the detection of feature points to

Fig. 1. From left to right: 6133 feature points detected by SIFT; 15025 feature points detected by A-KAZE; image enhanced using MSRCR; 138846 feature
points detected by A-KAZE on the enhanced image, shown over the original. The A-KAZE detector failed to detect points in shaded areas of the original
image but worked extremely well on the MSRCR-enhanced one.

Fig. 2. Point-cloud- and mesh-based reconstructions of Arco de Trionfo at Parco del Valentino, Turin, Italy. The dataset has 333 pictures. Left: SIFT-based
point cloud (88147 vertices) and its associated Poisson surface reconstruction; right: point cloud (1742247 vertices) and Poisson surface reconstruction obtained
using A-KAZE feature extractor on MSRCR-enhanced images.

improve local contrast in all areas of the image. Firstly we tried
contrast-limited adaptive histogram equalisation [8], a simple
and inexpensive technique that improved results somehow, but
still exhibited obvious differences between sunlit and shaded
areas. Then we tried multi-scale retinex with colour restoration
(MSRCR) [9], configured to boost dark areas rather than
obtaining an aesthetically pleasing result and the detection
improved markedly, as depicted in Fig. 1. The final results
of such pipeline can be seen in Fig. 2, where the increase in
detail and precision is apparent compared to the SIFT-based
models.

I I I . REDUCTION OF COMPUTATIONAL COST

In addition to balancing the results between sunlit and
shaded areas, the enhancement of source images produced the
side effect of dramatically increasing the number of detected
feature points. As a rough approximation, we have found
photos of buildings to yield around 5K feature points using

SIFT and around 25K-30K feature points using A-KAZE
on original images (the exact figures vary depending on the
texture and shape of the subject), and over 125K feature
points using A-KAZE on MSRCR-enhanced images (no such
effect was observed using SIFT). While this is most welcome
in terms of results, because the resulting point clouds are
more detailed, it constitutes a very significant increase in
computational demands because exhaustive pairwise matching
between two sets of feature points takes quadratic time on
the number of feature points. In addition, the number of
possible pairs of images in a set also grows quadratically
on the number of images. Therefore, we have focussed on
performance optimisation to alleviate the problem and cut
down on processing time, both trying to reduce the number of
pairs of images to be matched and the per-pair computational
cost.

A. Prioritisation of pairs of images

In the absence of any previous information, feature points
should be extracted on every input image and matches sought
between all possible pairs of images, resulting in 0(N2), N
being the number of images. However, in practice many pairs
of images wil l have no overlap (i.e., they do not depict the
same portion of the object) and therefore not only feature
matches between them wil l be irrelevant but also their compu­
tation time wil l be wasted, so the aim would be not to compute
them. This problem is also present when using SIFT, but it is
much less severe because each image has significantly fewer
points. Even so, there are proposals in the literature such as
vocabulary trees [10] or preemptive feature matching [3] to
aggressively prune the number of image pairs to compute.

SfM algorithms jointly estimate camera poses and positions
of points in the cloud to minimise the global error. However,
i f camera poses are known, estimating just the position of
points in the cloud from their projections (i.e., feature points)
is a considerably easier problem. The key observation here is
that, even though SIFT-based point clouds are too sparse to
mesh, camera poses are well estimated. Therefore, it makes
sense to first obtain, relatively cheaply, a sparse point cloud
using any SIFT-based SfM framework to get camera poses and
only then compute high-density feature points with A-KAZE
to obtain the detailed cloud using the known camera poses.

Additionally, we can indirectly piggyback onto whatever
strategy the SfM engine has used to prune the image pairs
to cut down on the number of image pairs we wil l have to
compute. The results of a SfM module typically include the
camera parameters, the 3D points and, crucially, their projec­
tions onto the appropriate source images or, more precisely,
the 2D feature points that originated each 3D point, so we
can use it as a statistical sample of sorts to decide what image
pairs are relevant and should be computed with A-KAZE to
contribute to the detailed point cloud.

Thus, we can estimate the amount of overlap between two
images simply by counting the number of points that project
onto those two images. I f a given pair of images shares no 3D
points, we can safely discard it because they wil l have no or
very little overlap. For each image, we count the number of
points it shares with each of the other images and sort them
in decreasing order, so that we can compute matches against
the images with the most significant overlap first and possibly
discard pairs with negligible overlap.

Finally, pairwise matches can be computed in either depth-
first order (i.e., for each of the images we compute matches
with all its significant pairs) or breadth-first order (i.e., we
compute the most significant pairs for every image first,
then the second most significant and so on). Best results are
obtained i f all significant pairs are computed, but if the user
cannot afford to wait, breadth-first order gives the best results
for an allotted time. I f the users are not satisfied with the
results, they can resume the computation where it was left off
to refine the cloud.

B. Reduction of per-pair computational cost

Once a pair of images has been selected, the standard
procedure to compute feature matches between both images
is to exhaustively try to find the best (significant) match
between all feature points from image h and all feature points
from image I2, which results in quadratic complexity, then
estimate a geometric model to reject outliers (estimation of
the fundamental matrix F [11] with RANSAC [12]). The bulk
of the procedure (pairwise feature matching) is completely
regular and hence amenable to efficient parallelisation, which
we have implemented both on CPU and GPU. However, its
inherent time-complexity is excessive, therefore algorithmic
optimisation is required in order to further reduce processing
time.

As previously stated, while point clouds derived from SIFT
feature detection and matching are too sparse for reliable
meshing, camera pose estimation and intrinsic parameters are
essentially correct, which means that we can obtain [13] the
fundamental matrix F, which enables us to perform smarter
matching as we wil l see next, for any pair of cameras:

F=[P2C1]yP2P+, (1)

where Pi and P2 are the projection matrices of the cameras,
Px+ is the Moore-Penrose pseudo-inverse of Px and C i is the
centre of the first camera.

Fig. 3. Epipolar geometry helps rule out incompatible projections. The idea
is that only projections that lie on the plane determined by the centres of both
cameras and the projection whose match is to be determined are geometrically
possible. Thus, j i is geometrically compatible with j2, k2 and m2, but never
with l2.

Since we now have the F matrix, we do not need to compute
all potential point-wise matches, we can first check whether
the locations of the candidate feature points are viable, as
illustrated in Fig. 3, and only if they are we proceed to
compute the distance between their descriptors. Of course, the
situation pictured in Fig. 3 is ideal but in real cases 3D points
do not necessarily project exactly onto their corresponding
2D features. Specifically, for each pair of potential matching
points x i and x2 we compute their epipolar distances

d2 = d(x 2 ,Pxi) = x ^ P x i (\\ +f4)~1/2 (2)

d1 = d(X l , P
T x 2) = x í > x 2 (X¡ + ay1'2, (3)

where Pxx = {\uliuVl) and P T x 2 = (\2l¡i2lv2). Note
that in general d (x 2 , P X l) ^ d (X l , P T x 2) , so we consider

plausible a match between pairs of points for which both |d1 |
and |d2 | , pictured in Fig. 4, are sufficiently small.

c

Fig. 4. Epipolar distances between (potentially matching) points x 1 and x 2 .

This approach results in more than a tenfold speed increase
in the CPU, despite the fact that we are now factoring in the
locations of the points in the point-wise comparison. Strictly
speaking, this procedure still has quadratic time complexity,
but we have exchanged (for most points) a data- and compute-
intensive computation (comparing descriptors) for a lighter one
(vector product to compute epipolar distance). As a bonus,
we do not need to apply RANSAC to estimate F and filter
outliers afterwards because we have eliminated them from the
beginning.

In the CPU, this can be parallelised reasonably well by
mapping one execution thread to each feature point in image
I 1 and iterating through all the points in image I 2 so that
there are no possible race conditions. Unfortunately, such naive
mapping does not work so well on a GPU because execution
threads are scheduled together in groups (also called warps,
typically 32 threads) that must execute the same instructions
synchronously and, for maximum efficiency, reuse or coalesce
memory transactions. In our particular case, this means that
all the threads in the same warp iterate synchronously over the
points in image I 2 but each thread finds different points to be
compatible with its own reference point from image I 1 . Since
all threads in a warp must execute synchronously, they must
all wait for the thread that does want to compare its reference
descriptor to the one all threads are currently iterating over,
thereby decreasing the parallelism drastically.

Fig. 5. All feature points in the orange tile can only find their matches
roughly around the corresponding epipolar line in the right image, i.e., within
the green tiles. All feature points outside the green tiles are ignored altogether.

The solution is to make use of the fact that in a GPU
we have some degree of control in thread scheduling. Thus,

instead of using one flat list of features per image, we divide
the images into tiles and make one list of features per tile
(or, equivalently, reorder the list of feature points), effectively
grouping neighbouring feature points which will roughly sat­
isfy geometric constraints in a per-tile basis instead of per-
point, as illustrated in Fig. 5. This results in two benefits: all
the feature points located in tiles that do not satisfy geometric
constraints can be disregarded in a single operation and all
the feature points located in tiles that do satisfy geometric
constraints are relevant candidates to all the feature points
mapped to the same thread block, enabling shared reading
and making much more efficient use of memory bandwidth.
Moreover, since the location of each block is implicit, we
do not need to even read the locations of the feature points,
just compare the descriptors of pairs of points contained into
compatible blocks.

I V . EXPERIMENTS

To illustrate the benefits of the proposed method, we have
performed feature matching on several datasets using different
strategies and measured the execution times. All tests have
been done on a machine equipped with an Intel Core i7-4790
processor, which has 4 processing cores (8 virtual cores via
hyper-threading) clocked at 3.6 GHz, 32 GiB of memory and
a N V I D I A GeForce G T X 980 Ti G P U , with 6 GiB of onboard
memory and a peak processing power of 5632 GFLOPs.
The proposed matching algorithms have been programmed in
C++11, using OpenMP to exploit the multiple cores in the
CPU, and C U D A 7.5 to access the GPU.

Fig. 6 shows a comparison of the point clouds obtained
using standard SIFT-based SfM (specifically, we have em­
ployed VisualSfM [3]) and using, as proposed, the A - K A Z E
features extracted from pictures enhanced using MSRCR. This
combination clearly yields more detailed clouds, while the
necessary processing times remain reasonable, as reported in
Table I , using the proposed tile-based matching strategy on
a G P U . Note that all matching strategies have been applied
onto the same set of pairs of images, substantially pruned
with respect to the set of all possible pairs, as explained in
section I I I - A .

We can observe that the processing times using the brute
force matching strategy in the G P U or the epipolar-distance-
based matching strategy in the C P U are roughly proportional
to the number of computed pairs divided by the square of the
mean number of points per image in each dataset. However,
this proportionality is not so clear in the tile-based matching
strategy. The main reason for this behaviour is that every
block/tile must have the same number of threads, each mapped
to one feature point in the reference image, and the minimum
thread allocation unit is one warp (32 threads). Since it is very
unlikely that every tile contains the same number of feature
points, and even more unlikely that all tiles contain a number
of points that is a multiple of the warp, a fraction of the threads
allocated to each block is wasted. Thus, the speedup compared
to the brute force matching strategy varies depending on the
dataset. The other strategies, on the other hand, achieve nearly

Fig. 6. Point clouds generated using SIFT and the proposed MSRCR + A-KAZE method. From top to bottom: Baptistery, Pisa, IT (SIFT: 44367 points;
A-KAZE: 747899 points); Leaning Tower, Pisa, IT (SIFT: 18100 points; A-KAZE: 393436 points); Boccherini statue, Lucca, IT (SIFT: 12307 points; A-KAZE:
210846 points); San Michele in Borgo church, Lucca, IT (SIFT, 33117 points; A-KAZE: 590465 points); Roman Theatre, Mérida, ES (SIFT: 47684 points,
A-KAZE: 902346 points).

T A B L E I
TOTAL PROCESSING TIMES FOR FEATURE MATCHING COMPUTATION

Dataset

Baptistery, Pisa, IT

Leaning Tower, Pisa, IT

Boccherini statue, Lucca, IT
S. Michele church, Lucca, IT
Roman Theatre, Mérida, ES

pics.

93

57

32
75
150

Avg. points
per pic.

167769
127304

108657
144149
187799

pairs

1263

596

131
1285
6543

Brute force,
multi-core CPU

188453 s

N/A

N/A
N/A
N/A

Epipolar
distance-driven,
multi-core CPU

14380 s

3895 s

638 s
10634 s
89411 s

Brute force,
GPU

5820 s

1676 s

273 s
4478 s

43835 s

Tile-based,
GPU

288 s

230 s

56 s
446 s
2906 s

full utilisation of the processing cores, which explains their
more regular processing time.

V. C ONCLUSIONS

We have presented a strategy for obtaining detailed point
clouds from unstructured sets of pictures. Instead of the
commonplace S IFT features, we have found the alternative
key point detector A - K A Z E to provide much denser coverage
of pictures, especially when operating on images previously
enhanced with a multi-scale retinex algorithm. Consequently,
feeding these feature points to a standard Structure from
Motion pipeline results in much more detailed point clouds.

Unfortunately, matching such numerous feature points
across the set of input images constitutes a significant work­
load. Therefore, we propose a strategy for saving computing
resources: a first coarse reconstruction is leveraged to decide
which image pairs should be matched and to obtain the camera
calibration matrices, which enable us to perform smarter (and
shorter) pairwise feature matching by applying restrictions
based on epipolar geometry. We have also proposed a modified
version of this geometry-driven matching strategy especially
suitable for G P U implementation.

To prove the validity of our proposal, we have conducted
several experiments using each of the proposed matching
strategies over several datasets, obtaining clearly improved
results compared to usual point cloud reconstructions and
reasonable processing times.

ACKNOWLEDGMENT

This work was supported in part by the Ministerio de
Economía y Competitividad of the Spanish Government under
grant and TEC2013-48453 (project M R - U H D T V) and by the
European Commission under grant 610691 (BRIDGET).

[6] P. F. Alcantarilla, A. Bartoli, and A. J. Davison, “KAZE features,” in
12th European Conference on Computer Vision Proceedings, Part VI,
ser. Lecture Notes in Computer Science, vol. 7577. Springer, October
2012, pp. 214–227.

[7] P. F. Alcantarilla, J. Nuevo, and A. Bartoli, “Fast explicit diffusion for
accelerated features in nonlinear scale spaces,” in British Machine Vision
Conference, 2013.

[8] S. M. Pizer, E. P. Amburn, J. D. Austin, R. Cromartie, A. Geselowitz,
T. Greer, B. ter Haar Romeny, J. B. Zimmerman, and K. Zuiderveld,
“Adaptive histogram equalization and its variations,” Computer Vision,
Graphics, and Image Processing, vol. 39, no. 3, pp. 355–368, 1987.

[9] D. J. Jobson, Z. Rahman, and G. A. Woodell, “A multiscale retinex
for bridging the gap between color images and the human observation
of scenes,” IEEE Transactions on Image Processing, vol. 6, no. 7, pp.
965–976, Jul 1997.

[10] S. Agarwal, N. Snavely, I. Simon, S. M. Seitz, and R. Szeliski, “Building
rome in a day,” in IEEE International Conference on Computer Vision,
Sept 2009, pp. 72–79.

[11] Q.-T. Luong and O. D. Faugeras, “The fundamental matrix: Theory,
algorithms, and stability analysis,” International Journal of Computer
Vision, vol. 17, no. 1, pp. 43–75, 1996.

[12] M. A. Fischler and R. C. Bolles, “Random sample consensus: A
paradigm for model fitting with applications to image analysis and
automated cartography,” Communications of the ACM, vol. 24, no. 6,
pp. 381–395, Jun. 1981.

[13] R. Hartley and A. Zisserman, Multiple view geometry in computer vision.
Cambridge university press, 2003.

REFERENCES

[1] D . G . Lowe, “Distinctive image features from scale-invariant keypoints,”
International Journal of Computer Vision, vol. 60, no. 2, pp. 91–110,
2004.

[2] N . Snavely, S. M . Seitz, and R. Szeliski, “Photo tourism: Exploring
photo collections in 3D,” ACM Transactions on Graphics, vol. 25, no. 3,
pp. 835–846, Jul. 2006.

[3] C . Wu, “Towards linear-time incremental structure from motion,” in
International Conference on 3D Vision, June 2013, pp. 127–134.

[4] Y. Furukawa and J. Ponce, “Accurate, dense, and robust multiview stere-
opsis,” IEEE Transactions on Pattern Analysis and Machine Intelligence,
vol. 32, no. 8, pp. 1362–1376, Aug 2010.

[5] M . Kazhdan and H . Hoppe, “Screened Poisson surface reconstruction,”
ACM Transactions on Graphics, vol. 32, no. 3, pp. 29:1–29:13, Jul.
2013.

