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Abstract—Structure from motion is a very popular technique 
for obtaining three-dimensional point cloud-based reconstruc­
tions of objects from unorganised sets of images by analysing the 
correspondences between feature points detected in those images. 
However, the point clouds stemming from usual feature point 
extractors such as SIFT are frequently too sparse for reliable 
surface recovery. In this paper we show that alternate feature 
descriptors such as A-KAZE, which provide denser coverage 
of images, yield better results and more detailed point clouds. 
Unfortunately, the use of a dramatically increased number of 
points per image poses a computational challenge. We propose a 
technique based on epipolar geometry restrictions to significantly 
cut down on processing time and an efficient implementation 
thereof on a GPU. 

Index Terms—Feature matching, GPU, 3D reconstruction, 
point cloud, implementation 

I. INTRODUCTION 

The usual workflow for obtaining a point cloud recon­
struction from an unstructured set of images using Structure-
from-Motion (SfM) techniques begins with the extraction of 
feature/key points in all input images. Then, feature matches 
across all [relevant] pairs of images must be determined (i.e., 
which feature points in several different images depict the 
same 3D point on the original object), so that when all the 
geometric constraints of later stages of the reconstruction 
process are applied, the location of the original 3D points 
relative to the cameras that saw them can be inferred, as well 
as the poses of the cameras themselves. There are numerous 
algorithms for feature detection in the literature, each adapted 
to different needs; in the case of 3D reconstruction, it is 
desirable that the detected features be reasonably invariant 
to changes of scale, rotation and perspective distortion (none 
actually succeeds at the latter, hence the need for a dense 
image coverage of the subject to be reconstructed). It is also 
necessary that the key point associated with the detected 
feature is precisely located at the projection of the point that 
originated the image feature; in other words, feature detectors 
for this task are necessarily very local, whereas in other higher-
level tasks other feature detectors may be more desirable. 
Arguably the most widely used feature detector for many tasks, 
including 3D reconstruction, is Scale-Invariant Feature Trans­
form (SIFT) [1]. Indeed, despite being a patent-encumbered 
algorithm, it is the built-in option for the well-known state-

of-the-art SfM frameworks Bundler [2] and VisualSfM [3]. 
SIFT features are robust, leading to reliable camera pose 
estimations, but not very numerous; therefore the point clouds 
thus obtained frequently present the shortcoming of being 
too sparse for realistic visualisation and, moreover, provide 
insufficient support for a subsequent surface reconstruction. 

In this paper we explore the generation of detailed point 
clouds suitable for surface reconstruction using alternative 
feature point detectors and its associated computational chal­
lenges, including an efficient implementation, both in CPU 
and GPU, of a geometry-driven feature matcher to enable the 
computation of the aforementioned detailed point clouds in 
reasonable time. 

II. DETAILED POINT CLOUDS 

One possible solution to the sparsity of the SIFT-based point 
clouds may be using a patch-based point cloud densification 
algorithm based on photo-consistency constraints such as 
PMVS/CMVS [4] but, apart from being very costly, these 
algorithms still leave many holes in the scene and frequently 
introduce wrong patches in the scene due to photo-consistency 
between non-homologue areas (notably the sky). In addition, it 
may be preferable in many scenarios to obtain standard mesh-
based models, which are easier to process (e.g., simplify for 
mobile devices) and render. In order to reliably obtain a mesh 
using techniques such as Poisson surface reconstruction [5], 
SIFT-based point clouds are usually not dense enough, so 
we have chosen to experiment with Accelerated KAZE (A-
KAZE) [6], [7], a novel multi-scale feature detector that yields 
much denser coverage of the images with feature points. 
This in turn should result in a denser point cloud but, since 
all the feature points must satisfy the geometric restrictions 
of epipolar geometry during the SfM process rather than 
an arguably weaker photo-consistency check, the number of 
outliers should remain low. 

As we expected, the point clouds resulting from the A-
KAZE features were more detailed than those stemming from 
the SIFT features. However, as Fig. 1 shows, the A-KAZE 
feature detector largely failed to extract key points in the 
shaded areas of buildings, resulting in very poor reconstruc­
tions of those portions. Consequently, we decided to try image 
enhancing algorithms prior to the detection of feature points to 



Fig. 1. From left to right: 6133 feature points detected by SIFT; 15025 feature points detected by A-KAZE; image enhanced using MSRCR; 138846 feature 
points detected by A-KAZE on the enhanced image, shown over the original. The A-KAZE detector failed to detect points in shaded areas of the original 
image but worked extremely well on the MSRCR-enhanced one. 

Fig. 2. Point-cloud- and mesh-based reconstructions of Arco de Trionfo at Parco del Valentino, Turin, Italy. The dataset has 333 pictures. Left: SIFT-based 
point cloud (88147 vertices) and its associated Poisson surface reconstruction; right: point cloud (1742247 vertices) and Poisson surface reconstruction obtained 
using A-KAZE feature extractor on MSRCR-enhanced images. 

improve local contrast in all areas of the image. Firstly we tried 
contrast-limited adaptive histogram equalisation [8], a simple 
and inexpensive technique that improved results somehow, but 
still exhibited obvious differences between sunlit and shaded 
areas. Then we tried multi-scale retinex with colour restoration 
(MSRCR) [9], configured to boost dark areas rather than 
obtaining an aesthetically pleasing result and the detection 
improved markedly, as depicted in Fig. 1. The final results 
of such pipeline can be seen in Fig. 2, where the increase in 
detail and precision is apparent compared to the SIFT-based 
models. 

I I I . REDUCTION OF COMPUTATIONAL COST 

In addition to balancing the results between sunlit and 
shaded areas, the enhancement of source images produced the 
side effect of dramatically increasing the number of detected 
feature points. As a rough approximation, we have found 
photos of buildings to yield around 5K feature points using 

SIFT and around 25K-30K feature points using A-KAZE 
on original images (the exact figures vary depending on the 
texture and shape of the subject), and over 125K feature 
points using A-KAZE on MSRCR-enhanced images (no such 
effect was observed using SIFT). While this is most welcome 
in terms of results, because the resulting point clouds are 
more detailed, it constitutes a very significant increase in 
computational demands because exhaustive pairwise matching 
between two sets of feature points takes quadratic time on 
the number of feature points. In addition, the number of 
possible pairs of images in a set also grows quadratically 
on the number of images. Therefore, we have focussed on 
performance optimisation to alleviate the problem and cut 
down on processing time, both trying to reduce the number of 
pairs of images to be matched and the per-pair computational 
cost. 



A. Prioritisation of pairs of images 

In the absence of any previous information, feature points 
should be extracted on every input image and matches sought 
between all possible pairs of images, resulting in 0(N2), N 
being the number of images. However, in practice many pairs 
of images wil l have no overlap (i.e., they do not depict the 
same portion of the object) and therefore not only feature 
matches between them wil l be irrelevant but also their compu­
tation time wil l be wasted, so the aim would be not to compute 
them. This problem is also present when using SIFT, but it is 
much less severe because each image has significantly fewer 
points. Even so, there are proposals in the literature such as 
vocabulary trees [10] or preemptive feature matching [3] to 
aggressively prune the number of image pairs to compute. 

SfM algorithms jointly estimate camera poses and positions 
of points in the cloud to minimise the global error. However, 
i f camera poses are known, estimating just the position of 
points in the cloud from their projections (i.e., feature points) 
is a considerably easier problem. The key observation here is 
that, even though SIFT-based point clouds are too sparse to 
mesh, camera poses are well estimated. Therefore, it makes 
sense to first obtain, relatively cheaply, a sparse point cloud 
using any SIFT-based SfM framework to get camera poses and 
only then compute high-density feature points with A-KAZE 
to obtain the detailed cloud using the known camera poses. 

Additionally, we can indirectly piggyback onto whatever 
strategy the SfM engine has used to prune the image pairs 
to cut down on the number of image pairs we wil l have to 
compute. The results of a SfM module typically include the 
camera parameters, the 3D points and, crucially, their projec­
tions onto the appropriate source images or, more precisely, 
the 2D feature points that originated each 3D point, so we 
can use it as a statistical sample of sorts to decide what image 
pairs are relevant and should be computed with A-KAZE to 
contribute to the detailed point cloud. 

Thus, we can estimate the amount of overlap between two 
images simply by counting the number of points that project 
onto those two images. I f a given pair of images shares no 3D 
points, we can safely discard it because they wil l have no or 
very little overlap. For each image, we count the number of 
points it shares with each of the other images and sort them 
in decreasing order, so that we can compute matches against 
the images with the most significant overlap first and possibly 
discard pairs with negligible overlap. 

Finally, pairwise matches can be computed in either depth-
first order (i.e., for each of the images we compute matches 
with all its significant pairs) or breadth-first order (i.e., we 
compute the most significant pairs for every image first, 
then the second most significant and so on). Best results are 
obtained i f all significant pairs are computed, but if the user 
cannot afford to wait, breadth-first order gives the best results 
for an allotted time. I f the users are not satisfied with the 
results, they can resume the computation where it was left off 
to refine the cloud. 

B. Reduction of per-pair computational cost 

Once a pair of images has been selected, the standard 
procedure to compute feature matches between both images 
is to exhaustively try to find the best (significant) match 
between all feature points from image h and all feature points 
from image I2, which results in quadratic complexity, then 
estimate a geometric model to reject outliers (estimation of 
the fundamental matrix F [11] with RANSAC [12]). The bulk 
of the procedure (pairwise feature matching) is completely 
regular and hence amenable to efficient parallelisation, which 
we have implemented both on CPU and GPU. However, its 
inherent time-complexity is excessive, therefore algorithmic 
optimisation is required in order to further reduce processing 
time. 

As previously stated, while point clouds derived from SIFT 
feature detection and matching are too sparse for reliable 
meshing, camera pose estimation and intrinsic parameters are 
essentially correct, which means that we can obtain [13] the 
fundamental matrix F, which enables us to perform smarter 
matching as we wil l see next, for any pair of cameras: 

F=[P2C1]yP2P+, (1) 

where Pi and P2 are the projection matrices of the cameras, 
Px+ is the Moore-Penrose pseudo-inverse of Px and C i is the 
centre of the first camera. 

Fig. 3. Epipolar geometry helps rule out incompatible projections. The idea 
is that only projections that lie on the plane determined by the centres of both 
cameras and the projection whose match is to be determined are geometrically 
possible. Thus, j i is geometrically compatible with j2, k2 and m2, but never 
with l2. 

Since we now have the F matrix, we do not need to compute 
all potential point-wise matches, we can first check whether 
the locations of the candidate feature points are viable, as 
illustrated in Fig. 3, and only if they are we proceed to 
compute the distance between their descriptors. Of course, the 
situation pictured in Fig. 3 is ideal but in real cases 3D points 
do not necessarily project exactly onto their corresponding 
2D features. Specifically, for each pair of potential matching 
points x i and x2 we compute their epipolar distances 

d2 = d(x 2 ,Pxi) = x ^ P x i (\\ +f4)~1/2 (2) 

d1 = d(X l , P
T x 2 ) = x í > x 2 (X¡ + ay1'2, (3) 

where Pxx = {\uliuVl) and P T x 2 = (\2l¡i2lv2). Note 
that in general d ( x 2 , P X l ) ^ d ( X l , P T x 2 ) , so we consider 



plausible a match between pairs of points for which both |d1 | 
and |d2 | , pictured in Fig. 4, are sufficiently small. 

c 

Fig. 4. Epipolar distances between (potentially matching) points x 1 and x 2 . 

This approach results in more than a tenfold speed increase 
in the CPU, despite the fact that we are now factoring in the 
locations of the points in the point-wise comparison. Strictly 
speaking, this procedure still has quadratic time complexity, 
but we have exchanged (for most points) a data- and compute-
intensive computation (comparing descriptors) for a lighter one 
(vector product to compute epipolar distance). As a bonus, 
we do not need to apply RANSAC to estimate F and filter 
outliers afterwards because we have eliminated them from the 
beginning. 

In the CPU, this can be parallelised reasonably well by 
mapping one execution thread to each feature point in image 
I 1 and iterating through all the points in image I 2 so that 
there are no possible race conditions. Unfortunately, such naive 
mapping does not work so well on a GPU because execution 
threads are scheduled together in groups (also called warps, 
typically 32 threads) that must execute the same instructions 
synchronously and, for maximum efficiency, reuse or coalesce 
memory transactions. In our particular case, this means that 
all the threads in the same warp iterate synchronously over the 
points in image I 2 but each thread finds different points to be 
compatible with its own reference point from image I 1 . Since 
all threads in a warp must execute synchronously, they must 
all wait for the thread that does want to compare its reference 
descriptor to the one all threads are currently iterating over, 
thereby decreasing the parallelism drastically. 

Fig. 5. All feature points in the orange tile can only find their matches 
roughly around the corresponding epipolar line in the right image, i.e., within 
the green tiles. All feature points outside the green tiles are ignored altogether. 

The solution is to make use of the fact that in a GPU 
we have some degree of control in thread scheduling. Thus, 

instead of using one flat list of features per image, we divide 
the images into tiles and make one list of features per tile 
(or, equivalently, reorder the list of feature points), effectively 
grouping neighbouring feature points which will roughly sat­
isfy geometric constraints in a per-tile basis instead of per-
point, as illustrated in Fig. 5. This results in two benefits: all 
the feature points located in tiles that do not satisfy geometric 
constraints can be disregarded in a single operation and all 
the feature points located in tiles that do satisfy geometric 
constraints are relevant candidates to all the feature points 
mapped to the same thread block, enabling shared reading 
and making much more efficient use of memory bandwidth. 
Moreover, since the location of each block is implicit, we 
do not need to even read the locations of the feature points, 
just compare the descriptors of pairs of points contained into 
compatible blocks. 

I V . EXPERIMENTS 

To illustrate the benefits of the proposed method, we have 
performed feature matching on several datasets using different 
strategies and measured the execution times. All tests have 
been done on a machine equipped with an Intel Core i7-4790 
processor, which has 4 processing cores (8 virtual cores via 
hyper-threading) clocked at 3.6 GHz, 32 GiB of memory and 
a N V I D I A GeForce G T X 980 Ti G P U , with 6 GiB of onboard 
memory and a peak processing power of 5632 GFLOPs. 
The proposed matching algorithms have been programmed in 
C++11, using OpenMP to exploit the multiple cores in the 
CPU, and C U D A 7.5 to access the GPU. 

Fig. 6 shows a comparison of the point clouds obtained 
using standard SIFT-based SfM (specifically, we have em­
ployed VisualSfM [3]) and using, as proposed, the A - K A Z E 
features extracted from pictures enhanced using MSRCR. This 
combination clearly yields more detailed clouds, while the 
necessary processing times remain reasonable, as reported in 
Table I , using the proposed tile-based matching strategy on 
a G P U . Note that all matching strategies have been applied 
onto the same set of pairs of images, substantially pruned 
with respect to the set of all possible pairs, as explained in 
section I I I - A . 

We can observe that the processing times using the brute 
force matching strategy in the G P U or the epipolar-distance-
based matching strategy in the C P U are roughly proportional 
to the number of computed pairs divided by the square of the 
mean number of points per image in each dataset. However, 
this proportionality is not so clear in the tile-based matching 
strategy. The main reason for this behaviour is that every 
block/tile must have the same number of threads, each mapped 
to one feature point in the reference image, and the minimum 
thread allocation unit is one warp (32 threads). Since it is very 
unlikely that every tile contains the same number of feature 
points, and even more unlikely that all tiles contain a number 
of points that is a multiple of the warp, a fraction of the threads 
allocated to each block is wasted. Thus, the speedup compared 
to the brute force matching strategy varies depending on the 
dataset. The other strategies, on the other hand, achieve nearly 



Fig. 6. Point clouds generated using SIFT and the proposed MSRCR + A-KAZE method. From top to bottom: Baptistery, Pisa, IT (SIFT: 44367 points; 
A-KAZE: 747899 points); Leaning Tower, Pisa, IT (SIFT: 18100 points; A-KAZE: 393436 points); Boccherini statue, Lucca, IT (SIFT: 12307 points; A-KAZE: 
210846 points); San Michele in Borgo church, Lucca, IT (SIFT, 33117 points; A-KAZE: 590465 points); Roman Theatre, Mérida, ES (SIFT: 47684 points, 
A-KAZE: 902346 points). 



T A B L E I 
TOTAL PROCESSING TIMES FOR FEATURE MATCHING COMPUTATION 

Dataset 

Baptistery, Pisa, IT 

Leaning Tower, Pisa, IT 

Boccherini statue, Lucca, IT 
S. Michele church, Lucca, IT 
Roman Theatre, Mérida, ES 

# pics. 

93 

57 

32 
75 
150 

Avg. points 
per pic. 

167769 
127304 

108657 
144149 
187799 

# pairs 

1263 

596 

131 
1285 
6543 

Brute force, 
multi-core CPU 

188453 s 

N/A 

N/A 
N/A 
N/A 

Epipolar 
distance-driven, 
multi-core CPU 

14380 s 

3895 s 

638 s 
10634 s 
89411 s 

Brute force, 
GPU 

5820 s 

1676 s 

273 s 
4478 s 

43835 s 

Tile-based, 
GPU 

288 s 

230 s 

56 s 
446 s 
2906 s 

full utilisation of the processing cores, which explains their 
more regular processing time. 

V. C ONCLUSIONS 

We have presented a strategy for obtaining detailed point 
clouds from unstructured sets of pictures. Instead of the 
commonplace S IFT features, we have found the alternative 
key point detector A - K A Z E to provide much denser coverage 
of pictures, especially when operating on images previously 
enhanced with a multi-scale retinex algorithm. Consequently, 
feeding these feature points to a standard Structure from 
Motion pipeline results in much more detailed point clouds. 

Unfortunately, matching such numerous feature points 
across the set of input images constitutes a significant work­
load. Therefore, we propose a strategy for saving computing 
resources: a first coarse reconstruction is leveraged to decide 
which image pairs should be matched and to obtain the camera 
calibration matrices, which enable us to perform smarter (and 
shorter) pairwise feature matching by applying restrictions 
based on epipolar geometry. We have also proposed a modified 
version of this geometry-driven matching strategy especially 
suitable for G P U implementation. 

To prove the validity of our proposal, we have conducted 
several experiments using each of the proposed matching 
strategies over several datasets, obtaining clearly improved 
results compared to usual point cloud reconstructions and 
reasonable processing times. 

ACKNOWLEDGMENT 

This work was supported in part by the Ministerio de 
Economía y Competitividad of the Spanish Government under 
grant and TEC2013-48453 (project M R - U H D T V ) and by the 
European Commission under grant 610691 (BRIDGET). 

[6] P. F. Alcantarilla, A. Bartoli, and A. J. Davison, “KAZE features,” in 
12th European Conference on Computer Vision Proceedings, Part VI, 
ser. Lecture Notes in Computer Science, vol. 7577. Springer, October 
2012, pp. 214–227. 

[7] P. F. Alcantarilla, J. Nuevo, and A. Bartoli, “Fast explicit diffusion for 
accelerated features in nonlinear scale spaces,” in British Machine Vision 
Conference, 2013. 

[8] S. M. Pizer, E. P. Amburn, J. D. Austin, R. Cromartie, A. Geselowitz, 
T. Greer, B. ter Haar Romeny, J. B. Zimmerman, and K. Zuiderveld, 
“Adaptive histogram equalization and its variations,” Computer Vision, 
Graphics, and Image Processing, vol. 39, no. 3, pp. 355–368, 1987. 

[9] D. J. Jobson, Z. Rahman, and G. A. Woodell, “A multiscale retinex 
for bridging the gap between color images and the human observation 
of scenes,” IEEE Transactions on Image Processing, vol. 6, no. 7, pp. 
965–976, Jul 1997. 

[10] S. Agarwal, N. Snavely, I. Simon, S. M. Seitz, and R. Szeliski, “Building 
rome in a day,” in IEEE International Conference on Computer Vision, 
Sept 2009, pp. 72–79. 

[11] Q.-T. Luong and O. D. Faugeras, “The fundamental matrix: Theory, 
algorithms, and stability analysis,” International Journal of Computer 
Vision, vol. 17, no. 1, pp. 43–75, 1996. 

[12] M. A. Fischler and R. C. Bolles, “Random sample consensus: A 
paradigm for model fitting with applications to image analysis and 
automated cartography,” Communications of the ACM, vol. 24, no. 6, 
pp. 381–395, Jun. 1981. 

[13] R. Hartley and A. Zisserman, Multiple view geometry in computer vision. 
Cambridge university press, 2003. 

REFERENCES 

[1] D . G . Lowe, “Distinctive image features from scale-invariant keypoints,” 
International Journal of Computer Vision, vol. 60, no. 2, pp. 91–110, 
2004. 

[2] N . Snavely, S. M . Seitz, and R. Szeliski, “Photo tourism: Exploring 
photo collections in 3D,” ACM Transactions on Graphics, vol. 25, no. 3, 
pp. 835–846, Jul. 2006. 

[3] C . Wu, “Towards linear-time incremental structure from motion,” in 
International Conference on 3D Vision, June 2013, pp. 127–134. 

[4] Y. Furukawa and J. Ponce, “Accurate, dense, and robust multiview stere-
opsis,” IEEE Transactions on Pattern Analysis and Machine Intelligence, 
vol. 32, no. 8, pp. 1362–1376, Aug 2010. 

[5] M . Kazhdan and H . Hoppe, “Screened Poisson surface reconstruction,” 
ACM Transactions on Graphics, vol. 32, no. 3, pp. 29:1–29:13, Jul. 
2013. 


