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Abstract— Fatigue has adverse effects in both physical and cog­
nitive abilities. Hence, automatically detecting exercise-induced 
fatigue is of importance, especially in order to assist in the 
planning of effort and resting during exercise sessions. Thermal 
imaging and facial analysis provide a mean to detect changes 
in the human body unobtrusively and in variant conditions of 
pose and illumination. In this context, this paper proposes the 
automatic detection of exercise-induced fatigue using thermal 
cameras and facial images, analyzing them using deep convolu-
tional neural networks. Our results indicate that classification 
of fatigued individuals is possible, obtaining an accuracy that 
reaches over 80% when utilizing single thermal images. 
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I. INTRODUCTION 

Fatigue is often defined as an impairment of performance 
that includes both an increase in the perceived effort necessary 
to exert a desired force and an eventual inability to produce this 
force [1] [2] [3]. Exercise-induced fatigue is a type of fatigue 
induced by physical activity usually planned structured and 
repetitive for the purpose of conditioning. Although exercise 
is commonly used to improve health, maintain fitness and as a 
means of physical rehabilitation, several studies performed in 
healthy adults have shown that exercise-induced local fatigue 
can temporally and adversely affect physical skills, such as 
balance, postural control, strength or hydration capability and 
cognitive skills (e.g. decision making or attention). Hence, to 
properly assess the practice and planning of further exercise or 
a period of resting, fatigue monitoring is of great importance, 
and has applicability in numerous scenarios. 

Computer vision techniques and facial image analysis can 
provide an unobtrusive way of detecting and measuring fatigue 
from a distance, without the need of complementary wearable 
sensors. However, this is a very challenging problem that needs 
to deal with images and sequences taken in various conditions 
of pose and illumination. Moreover, many times, subjects 
only show subtle changes in expression during the acquisition 
process, making the inference of the fatigue condition even 
more complex. 

Automatic fatigue detection from visual information, has 
mostly been related to the detection of drowsiness, blinking 
and yawning of drivers [4] [5]. The most common approaches 
rely on the extraction of facial expression cues that model a 
possible state of tiredness. However, these models are based 
on effects mostly due to psychological states and they are 

unable to detect physical or muscular exercise-induced fatigue. 
Although the assessment of muscular fatigue is of increasing 
interest, it is usually performed using bio-signals or clinical 
tests [6] [7], while its assessment from visual data is still 
mostly unexplored. 

This might be due to the fact that research on face anal­
ysis has mainly been focusing on analyzing color images 
obtained from regular cameras and visible light. Hence, ig­
noring information at other wavelengths that can be useful 
for discriminating characteristics that show in the face. While 
there exist facial analysis methods that have shown promising 
results on individual data sets for different health-related tasks 
[8], the generalization capabilities of these methods for other 
applications, such as fatigue detection, have been questionable. 

In this context, if we take a look at facial images related to 
resting and fatigued individuals at typical wavelengths, such as 
visual or near-infrared (NIR), (Figure 1), it is basically impos­
sible to explicitly name any textural differences between them. 
However, when facial images are obtained from a thermal 
camera at mid-infrared wavelength, this textural differences 
become very apparent. 

Fig. 1: RGB, near infrared and thermal images of a resting 
(up) and fatigued (down) face. In the thermal images, darker 
pixels corresponds to colder and lighter to hotter. 



Inspired by the aforementioned observations, we propose 
the use of thermal cameras to detect and recognize fatigue 
in variable conditions. Thermal imaging is a non-contact and 
non-invasive imaging method which provides information on 
human body temperature by assessing the infrared spectrum of 
the subject. In this imaging method, thermal cameras are able 
to detect radiation in the infrared range of the electromagnetic 
spectrum, usually from 5 to 20 μm (mid-infrared bands), 
converting the amount of radiation into visible images. Since 
infrared radiation is emitted by all objects, thermal images 
make it possible to see objects even without visible illumina­
tion. Thermographies obtained from facial images have been 
used for several applications related to health monitoring and 
diagnosis. Since the amount of radiation emitted by an object 
is directly proportional to its temperature, the nature of the 
information provided by this method makes it highly relevant 
for applications related to clinical medicine [9]. Indeed, not 
only the thermal-print provides information on the shape of 
the face [10], but also multiple contributing thermal factors can 
be assessed from the body (e.g., blood flow, cell metabolism, 
sweat gland activation) as they would cause local changes 
in superficial skin temperature. More specifically, different 
reasons such as inflammatory processes [11] or fever [12] can 
be responsible for changes in the skin temperature. Due to 
the increase of thermal camera accuracy and resolution [13], 
increasing research has been performed lately to evaluate how 
much information the distribution of heat in the face can 
provide. For example, various applications related to mass-
screening have been using thermal imaging as a fever or 
respiratory problem detection [14]. 

In this work, we propose the detection of exercise-induced 
fatigue using thermal facial images obtained from healthy in­
dividuals in both resting and fatigue conditions. The detection 
approch is based on the utilization of facial analysis and deep 
learning. Our contributions can be summarized as follows: 

We propose for the first time the use of thermal facial 
• 

images to assess the exercise-induced fatigue of healthy 
people. 
We present a new and meaningful data set composed of 

• 

5700 thermal images from 19 subjects. 
We show that classification of fatigue from facial images 

• 
can be performed using pre-trained deep convolutional 
neural networks and support vector machines, obtaining 
an accuracy over 80%. 
In addition, we study the facial regions that contribute 

• 
more to the correct classification, and discuss the limita­
tions of the data set and imaging modality. 

The rest of this paper is organized as follows: Section II 
describes our proposed methodology based on the extraction 
of deep features and classification. Section III depicts the 
experimental setup. Section IV shows the obtained results 
and their analysis. Finally, Section V concludes the paper and 
offers some future directions. 

II. Adopted methodology 

Our fatigue detection system consists of three main steps. 
It starts with detecting, segmenting and aligning the thermal 
facial images based on eye and nose coordinates. The results 
of this step are a set of aligned facial thermal pictures and 
regions of interest (ROIs). The alignment tries to minimize 
possible differences across subjects and images. The second 
step relies on two different large convolutional neural networks 
that extracts fixed-length deep feature vectors from facial 
image or region. These features are then utilized on the third 
and last step, a set of Support Vector Machines (SVMs) which 
determine the state of a subject as fatigued or resting. In this 
section, we describe in detail the design decisions for each 
one of the steps, detailing how their parameters are learned 
and utilized. 

A. Face pre-processing 

To mitigate the influence of inconsistent poses and displace­
ments of the faces across the images included in the database, 
the first step of our approach consists on segmenting the face 
regions from each video sequence. 

For that purpose, we have employed a correlation map 
obtained from the first image of the set belonging to a subject 
and a pre-defined template of a centered face [15]. Based on 
this correlation map, the regions containing frontal faces are 
then cropped from every frame. Finally, the face-regions are 
aligned using the nose tip as the center, and scaled further to 
preserve the interpupillary distance. 

In order to compute features for a region proposal, we must 
first normalize the size of the face related to the image regions 
in order to make it compatible with the input of the CNNs, 
227 x 227 or 224 x 224 pixel sizes. Of the many possible 
transformations of our arbitrary-sized regions, we opt for the 
simplest. Regardless of the size or aspect ratio of the candidate 
region, we warp all pixels in a squared bounding box of the 
required size [16]. 

B. Deep features 

Deep neural networks have been recently outperforming 
the state of the art in various classification tasks. Partic­
ularly, convolutional neural networks (CNNs) demonstrated 
impressive performance in object classification in general and 
face recognition in particular. However, deep neural networks 
require a huge amount of training data to learn efficient 
features. This is not the case for currently available thermal 
imaging data sets [15]. 

To extract meaningful deep features, an alternative to CNNs 
created from scratch is to use a pre-trained network. A number 
of very deep pre-trained architectures has already been made 
available to the research community. In this work, we use 
two well known pre-trained CNNs, Alexnet and VGG (both 
its variants VGG-16 and VGG-19). This approach helps us 
overcoming the lack of enough training data. 



Pre-trained convolutional neural networks can be used as 
a feature extractor or as part of a transfer learning strategy. 
For the feature extractor case, an intermediate output of a pre-
trained network is directly the feature vector to be used as 
input in a new classifier. The reasoning after this strategy is 
that the first layers of a CNN contains useful and general 
visual features for image-based classification, while the own 
classification is performed by the last layers. On the other 
hand, for the transfer learning strategy [16], the pre-trained 
network is used as a starting point, which is then fine-tuned 
with new samples of the specific application (in our case, 
infrared face images for the fatigue detection) to adapt the 
network to the new domain application. This approach has the 
advantage of using a much smaller number of training images 
than that of training the network from scratch. In addition, it 
is trained much faster. 

In this work, we have tested both variants. For the feature 
extractor case, we have used the following pre-trained CNNs: 
AlexNet, VGG-16, and VGG-19 (see below a description of 
them). The deep features are obtained for the intermediate 
output called ’fc7’ (the output of a fully connected layer) 
in the previous network architectures, whose dimension is 
4096. These 4096-dimensional features have been used inde­
pendently and jointly along with a Support Vector Machine 
(SVM) classifier, as will be described later. 

For the transfer learning strategy, the last layers of the 
original pre-trained networks, corresponding to fully con­
nected layers, have been substituted for a new set of fully 
connected layers with the purpose to detect two classes (resting 
or fatigue states), instead of the original task performed by 
the AlexNet, VGG-16, and VGG-19 architectures: 1000-class 
image classification. The training of the new network has been 
performed by using a reduced set of samples of such new 
domain (facial thermal images). Stochastic gradient descent 
(SGD) algorithm with momentum has been used to train the 
new CNNs. In addition, the learning rate of the first layers of 
the network has been fixed to 0.001, which is a 1/10th of the 
learning rate of the rest of layers. This is done to preserve the 
learnt features of the original network (corresponding to the 
first layers), while focusing on training the last layers in charge 
of the classification task. In each SGD iteration, we uniformly 
sample 16 faces (over both classes) creating a mini-batch of 
size 32. 

AlexNet features 

AlexNet is a Convolutional Neural Network first proposed 
by Krizhevsky et al. [17]. The original pre-trained network 
utilized over 1.2 million images collected from the web and 
labeled by Amazon Mechanical Turk workers. The feature vec­
tors are computed by forward propagating a mean-subtracted 
227 x 227 RGB image through five convolutional layers 
and two fully connected layers. AlexNet, is based on layer-
inputs provided the previous layer and does not rely on filter 
concatenation. The detailed parameters of the AlexNet CNN 
are provided by Table 1. 

Num 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 

22 23 
24 
25 

Name 
’data’ 
’conv1’ 
’relu1’ 
’norm1’ 
’pool1’ 
’conv2’ 
’relu2’ 
’norm2’ 
’pool2’ 
’conv3’ 
’relu3’ 
’conv4’ 
’relu4’ 
’conv5’ 
’relu5’ 
’pool5’ 
’fc6’ 
’relu6’ 
’drop6’ 

’fc7’ ’relu7’ 
’drop7’ 
’fc8’ 
’prob’ 
’output’ 

Type 
Image Input 
Convolution 
ReLU 
Cross Channel Norm. 
Max Pooling 
Convolution 
ReLU 
Cross Channel Norm. 
Max Pooling 
Convolution 
ReLU 
Convolution 
ReLU 
Convolution 
ReLU 
Max Pooling 
Fully Connected 
ReLU 
Dropout 
Fully Connected 
ReLU 
Dropout 
Fully Connected 
Softmax 
Classification 

Layer description 
227x227 images with ’zerocenter’ normalization 
96 11x11x3 convolutions with stride [4 4] and padding [0 0] 
ReLU 
cross channel normalization with 5 channels per element 
3x3 max pooling with stride [2 2] and padding [0 0] 
256 5x5x48 convolutions with stride [1 1] and padding [2 2] 
ReLU 
cross channel normalization with 5 channels per element 
3x3 max pooling with stride [2 2] and padding [0 0] 
384 3x3x256 convolutions with stride [1 1] and padding [1 1] 
ReLU 
384 3x3x192 convolutions with stride [1 1] and padding [1 1] 
ReLU 
256 3x3x192 convolutions with stride [1 1] and padding [1 1] 
ReLU 
3x3 max pooling with stride [2 2] and padding [0 0] 
4096 fully connected layer 
ReLU 
50% dropout 
4096 fully connected layer 
ReLU 
50% dropout 
1000 fully connected layer 
softmax 
crossentropyex with ’fatigue’ and ’resting’ classes 

Table 1: AlexNet CNN architecture. 

VGG features 

VGG-16 and VGG-19 are two related deep convolutional 
network for object recognition developed and trained in Ox­
ford’s Visual Geometry Group. Originally trained on a subset 
of the ImageNet database [18], it was first introduced to 
compete in the ImageNet Large-Scale Visual Recognition 
Challenge (ILSVRC) [19]. VGG is pre-trained on more than 
a million images. 

The detailed parameters of the VGG CNN are provided by 
Table 2. The input of the network is a RGB color image with 
a size of 224 × 224 pixels. The network is composed of 13 
(VGG-16) or 16 (VGG-19) linear convolution layers (conv), 
and two fully connected layers (fc), both outputting a vector 
of size 4096. 

In this context, to extract deep face features for kinship 
verification, we input the facial images one by one to the CNNs 
and collect the feature vector issued by the fully connected 
layer fc7 (all the layers of the CNN except the class predictor 
fc8 layer and the softmax layer are used), using the resulting 
descriptor for further classification. 

C. Classification and Fusion 

After the extraction of features, the next step is the fusion 
of features and classification. In this work, we adopted early 
fusion, fusing features directly after the feature extraction 
process, and directly concatenating the different feature sets 
obtained by the different networks. The fused features are then 
fed to the classifier. 

To estimate the fatigue class of each image, we use a binary 
linear Support Vector Machine (SVM). For fatigue detection, 
the setup was chosen to be a two-class problem, with the first 
class corresponding to a fatigue state and the second one as 
resting state. 

The predictive performance of SVMs depends on parameter 
selection. In order to select the best error penalty parameter 
range (C), we split the training data leaving one subject out, 
and obtain the accuracy of 12 different sets of SVM, which 

Type Layer description Num Name 



Num 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 

22 23 
24 
25 
26 
27 
28 
29 
30 
31 
32 

33 34 
35 
36 
37 
38 
39 
40 
41 

Name 
’input’ 
’conv1-1’ 
’relu1-1’ 
’conv1-2’ 
’relu1-2’ 
’pool1’ 
’conv2-1’ 
’relu2-1’ 
’conv2-2’ 
’relu2-2’ 
’pool2’ 
’conv3-1’ 
’relu3-1’ 
’conv3-2’ 
’relu3-2’ 
’conv3-3’ 
’relu3-3’ 
’pool3’ 
’conv4-1’ 
’relu4-1’ 
’conv4-2’ 
’relu4-2’ 
’conv4-3’ 
’relu4-3’ 
’pool4’ 
’conv5-1’ 
’relu5-1’ 
’conv5-2’ 
’relu5-2’ 
’conv5-3’ 
’relu5-3’ 
’pool5’ 
’fc6’ 
’relu6’ 
’drop6’ 
’fc7’ 
’relu7’ 
’drop7’ 
’fc8’ 
’prob’ 
’output’ 

Type 
Image Input 
Convolution 
ReLU 
Convolution 
ReLU 
Max Pooling 
Convolution 
ReLU 
Convolution 
ReLU 
Max Pooling 
Convolution 
ReLU 
Convolution 
ReLU 
Convolution 
ReLU 
Max Pooling 
Convolution 
ReLU 
Convolution 
ReLU 
Convolution 
ReLU 
Max Pooling 
Convolution 
ReLU 
Convolution 
ReLU 
Convolution 
ReLU 
Max Pooling 
Fully Connected 
ReLU 
Dropout 
Fully Connected 
ReLU 
Dropout 
Fully Connected 
Softmax 
Classification Output 

Layer description 
224x224 images with ’zerocenter’ normalization 
64 3x3x3 convolutions with stride [1 1] and padding [1 1] 
ReLU 
64 3x3x64 convolutions with stride [1 1] and padding [1 1] 
ReLU 
2x2 max pooling with stride [2 2] and padding [0 0] 
128 3x3x64 convolutions with stride [1 1] and padding [1 1] 
ReLU 
128 3x3x128 convolutions with stride [1 1] and padding [1 1] 
ReLU 
2x2 max pooling with stride [2 2] and padding [0 0] 
256 3x3x128 convolutions with stride [1 1] and padding [1 1] 
ReLU 
256 3x3x256 convolutions with stride [1 1] and padding [1 1] 
ReLU 
256 3x3x256 convolutions with stride [1 1] and padding [1 1] 
ReLU 
2x2 max pooling with stride [2 2] and padding [0 0] 
512 3x3x256 convolutions with stride [1 1] and padding [1 1] 
ReLU 
512 3x3x512 convolutions with stride [1 1] and padding [1 1] 
ReLU 
512 3x3x512 convolutions with stride [1 1] and padding [1 1] 
ReLU 
2x2 max pooling with stride [2 2] and padding [0 0] 
512 3x3x512 convolutions with stride [1 1] and padding [1 1] 
ReLU 
512 3x3x512 convolutions with stride [1 1] and padding [1 1] 
ReLU 
512 3x3x512 convolutions with stride [1 1] and padding [1 1] 
ReLU 
2x2 max pooling with stride [2 2] and padding [0 0] 
4096 fully connected layer 
ReLU 
50% dropout 
4096 fully connected layer 
ReLU 
50% dropout 
1000 fully connected layer 
softmax 
crossentropyex with ’fatigue’ and ’resting’ classes 

Table 2: VGG-16 CNN architecture. 

corresponds to a search range from -6 to 16 with an interval of 
2. The selected model is the one that presents the best accuracy 
on the training data. The final accuracy value is obtained after 
applying a mean pooling strategy over all different data splits. 

III. Experimental setup 

A. Experimental data and capturing protocol 

In order to test the classification of resting and fatigued 
individuals, we collected a new data set containing 5700 
facial images acquired using a thermal camera. The data was 
obtained for 19 individuals (11 male, 8 female), with ages 
ranging from 23 to 37 years old. Nine of the individuals 
were from Chinese ethnicity. Six of them wore glasses, hence, 
from a the thermal wavelength perspective, their faces were 
partially occluded, since glass is opaque to far infrarred 
thermal radiation. 

The images were obtained in two different sessions using 
continuous shooting during approximately 20 seconds, collect­
ing a total number of 150 images per session. The first session 
was recorded in resting state. The participants were asked to 
sit down and rest for several minutes, until their heart rate 
was below 80 beats per minute and their respiratory rate was 
below 12 breaths per minute. 

To record the second session we induced fatigue in the 
subjects by asking them to do intense exercise. The subjects 
were asked to go up and down the floor stairs as fast as they 
could for at least three minutes, or until they felt fatigued. If 
their heart rate reached over 120 beats per minute and their 
respiratory rate reached over 15 breaths per minute, we started 

recording. If not, we asked the subjects to exercise more. 

The facial images were obtained using the Therm-App 
thermal camera mounted on a tripod. The Therm-app camera 
is a 17um thermal detector, equipped with a 19mm lens and 
manual focus. Its resolution is 288x384 pixels in portrait mode, 
obtained at 8.7Hz. The camera can be plugged to a standard 
android device (in our case a Samsung Galaxy Edge 6 mobile 
phone) running a custom made application coded with the 
Therm-App Developer SDK. The application uses continuous 
shooting to save uncompressed images. The thermal data range 
was compressed to 256 levels (grayscale). The temperature 
dynamic range is clipped so that the average temperature of 
the image corresponds to the level 128, the 90% maximum 
temperature and above is set to 256, and the 10% minimum 
or below is set to 0. The facial images were taken at about 1 
meter distance from the subject, a distance that maximizes the 
resolution of the face, with interpupillary distance of at least 
100 pixels. The Therm-App camera is depicted in Figure 2. 

Of J» 
Fig. 2: Therm-App mobile thermal camera: 19mm lens, 
288x384 resolution, 8.7Hz, 17um wavelength. 

B. Evaluation protocol 

To evaluate the performance of different methods, ensuring 
a proper generalization to unseen subjects, we adopted the 
leave-one-subject-out scheme. For each one of the subjects, 
a SVM classifier was trained using 18 users out of 19. 
Every trained SVM was then tested in the remaining ”unseen” 
subject. Hence, in each experiment, 19 classification tasks 
were conducted and their results averaged, avoiding biased 
results. To ensure a fair comparison between methods, the 
results are reported with the mean accuracy and the standard 
deviation of single subjects. 

C. Run-time analysis 

To perform the training and testing, we have used a desktop 
computer featuring an Intel i7 processor, a Titan Xp GPU 
with 3840 CUDA cores running at 1.5GHz and Matlab 2015. 
In this environment, the extraction and training phase of our 
method lasts about 10 minutes per model on the GPU (about 
1 hour in the CPU). The classification time is about 200ms 
per frame, with more than 90% of the time used in feature 
extraction. These times make our approach suitable for real­
time applications, possibly even in embedded systems. 

Type Layer description Num Name 



IV. Results and analysis 

Table 3 shows the obtained results on the data set com­
paring the performance of three different pre-trained CNNs. 
To explore the complementarity of the networks, we also 
report the results obtained by the combination of features 
obtained from the networks using an early fusion scheme 
(feature level concatenation). From these results we can see 
that although the accuracy levels are comparable, AlexNet 
seems to show a better performance than VGG in both their 
variants. The combination of features does not seem to offer 
any performance advantage showing that all three networks 
compute similar features that do not complement each other 
properly. 

Method 
AlexNet 
VGG-16 
VGG-19 
AlexNet + VGG-16 
AlexNet + VGG-16 +19 

Accuracy (mean %) 
81.51 
70.29 
78.71 
77.43 
77.86 

Std. deviation (% ) 
0.83 
2.56 
18.75 
5.72 
0.84 

Table 3: Classification accuracy (mean) for AlexNet, VGG-16, 
VGG-19 and fused features. 

Figures 3 and 4 show examples of correctly and incorrectly 
classified subjects in all three networks. When observing 
correctly classified individuals, it can be seen that the texture 
of the facial temperature seem to follow marked patterns. For 
fatigued individuals the nose gets comparatively colder than 
the rest of the face, the mouth tends to be either open or colder, 
the eye region gets warmer and different textural patterns 
emerge on the skin, probably due to the blood irrigation and 
irregular sweat. 

For the incorrectly classified subjects, the network seems to 
classify the most of the images belonging to a single individual 
as belonging to one of the classes (either resting or fatigued). 
This is in line with what is observed by visually inspecting 
the data. It is visually very difficult to guess to which class an 
single image belongs to when examples of both classes are not 
available for comparison. This misclassification is an argument 
for the training of ”person-specific models” that could easily 
outperform the general model presented here. 

Fig. 3: Examples of correctly classified subjects. 

Table 4 shows the results derived from the AlexNet CNN: 
those results using AlexNet as feature extractor (using a 

Fig. 4: Examples of incorrectly classified subjects. 

SVM as classifier with different kernels) and those ones using 
AlexNet for transfer learning (changing the last layers and 
using fine-tuning). Linear-SVM seems to marginally improve 
the performance when compared with the original transfer 
learning strategy. 

Method 
AlexNet transfer learning and fine tuning 
AlexNet SVM-Gaussian 
AlexNet Linear-SVM 

Accuracy (mean %) 
80.48 
77.70 
81.51 

Table 4: Classification accuracy (mean) for AlexNet using 
different classifiers 

In order to know which parts of the face contribute more 
to the detection of fatigue, we have classified the data using 
three different facial regions. The eye region is selected to 
cover the eyes, part of the eyebrows and the nasal bridge. The 
nose region covers the central part of the face including the 
complete nose. The mouth region covers the lips and their 
surrounding area. Figure 5 shows examples of the extracted 
facial regions of two individuals, one with glasses and one 
without them, for both resting and fatigue states. 

Fig. 5: Division of the face in regions: eyes (first and second 
row), nose (third row) and mouth (fourth row) for two different 
individuals (left and right columns) 



When visually inspecting obtained images, it can be seen 
that the individuals wearing glasses show a very visible partial 
facial occlusion, due to the fact that glasses are ”colder” 
and the IR radiation at the selected wavelength cannot go 
through them. This occlusion has a noticeable effect in the 
classification accuracy. The results of these experiments can 
be seen in Table 5. 

Method 
AlexNet Linear-SVM whole face 
AlexNet Linear-SVM eye region 
AlexNet Linear-SVM nose region 
AlexNet Linear-SVM mouth region 

glasses 
76.33 
55.83 
54.30 
87.22 

no glasses 
83.89 
71.33 
67.34 
85.36 

whole set 
81.51 
69.69 
63.44 
86.14 

Table 5: Classification accuracy (mean) for AlexNet for dif­
ferent face regions 

As expected, and due to the occlusion caused by the glasses, 
the performance obtained when using only the eye or mouth 
regions is small compared with the one obtained using whole 
face. Moreover, the split between individuals wearing glasses 
shows that no reliable classification can be done for occluded 
regions when looking only at the eye or nose regions. When 
classifying only individuals without glasses, the accuracy is 
noticeably better, but since the model was trained also with 
individuals using glasses, the accuracy it is still not comparable 
to the results using the whole facial region. 

Supporting these observations, the mouth region, not in­
fluenced by occlusions, shows a classification performance 
comparable and even superior to the one obtained using only 
the whole face. Also, the splits between occluded and not oc­
cluded subjects yields comparable results. These experiments 
suggest that for data sets composed of individuals where the 
use of glasses cannot be always avoided, the best strategy is to 
focus in the lower part of the face. This fact could be possibly 
extended to other applications using facial thermal images. 

V. C onclusion 

In this paper we have presented the first system able to 
recognize exercise-induced fatigue in healthy individuals from 
facial images. The use of a mobile thermal camera allows 
overcoming possible performance differences due to variant 
illumination. Deep convolutional neural networks show to 
be an adequate algorithm to perform the classification task, 
and the use of pre-trained and fine-tuned models allows for 
reasonably small training times and real-time classification. 

To evaluate our approach, we have collected a meaningful 
data set composed of 5700 images, showing that classification 
achieves an accuracy over 80%. The shortcomings of the 
imaging method, namely the possible occlusions due to objects 
transparent to visible light, but opaque to thermal radiations 
are overcome by utilizing different facial regions. 

This work has focused only in the detection of fatigue. 
Future work could aim for quantifying this fatigue in a con­
tinuous way, allowing for a better assessment of the exercise 
intensity. Also, a comparison between image modalities could 
address their performance differences and study their possible 
complementarity. 

Acknowledgment 
This work has been partially supported by the Suomen 

Kuulturi Rahasto central fund and the Ministerio de Econom´ıa, 
Industria y Competitividad (AEI/FEDER) of the Spanish Gov­
ernment under projects TEC2013-48453 (MR-UHDTV) and 
TEC2016-75981 (IVME). 

References 
[1] Don B Chaffin. Localized muscle fatigue-definition and measurement. 

Journal of Occupational and Environmental Medicine, 15(4), 1973. 
[2] Roger M Enoka and Douglas G Stuart. Neurobiology of muscle fatigue. 

Journal of applied physiology, 72(5):1631–1648, 1992. 
[3] Gerome C Gauchard, Pierre Gangloff, Alexandre Vouriot, Jean-Pierre 

Mallie, and Philippe P Perrin. Effects of exercise-induced fatigue with 
and without hydration on static postural control in adult human subjects. 
International Journal of Neuroscience, 112(10):1191–1206, 2002. 

[4] Xiao Fan, Yanfeng Sun, Baocai Yin, and Xiuming Guo. Gabor-based 
dynamic representation for human fatigue monitoring in facial image 
sequences. Pattern Recognition Letters, 31(3):234–243, 2010. 

[5] Haisong Gu and Qiang Ji. An automated face reader for fatigue 
detection. In Sixth IEEE International Conference on Automatic Face 
and Gesture Recognition, 2004. Proceedings., pages 111–116, 2004. 

[6] Robert S Foote, Justin D Pearlman, Alan H Siegel, and Kiang-Teck J 
Yeo. Detection of exercise-induced ischemia by changes in b-type 
natriuretic peptides. Journal of the American College of Cardiology, 
44(10):1980–1987, 2004. 

[7] Romualdo Belardinelli, Francesca Lacalaprice, Flavia Carle, Adelaide 
Minnucci, Giovanni Cianci, GianPiero Perna, and Giuseppe D’Eusanio. 
Exercise-induced myocardial ischaemia detected by cardiopulmonary 
exercise testing. European heart journal, 24(14):1304–1313, 2003. 

[8] Jerome Thevenot, Miguel Bordallo Lo´pez, and Abdenour Hadid. A 
survey on computer vision for assistive medical diagnosis from faces. 
IEEE Journal of Biomedical and Health Informatics, PP(99):1–14, 2017. 

[9] LJ Jiang, EYK Ng, ACB Yeo, S Wu, F Pan, WY Yau, JH Chen, and 
Y Yang. A perspective on medical infrared imaging. Journal of medical 
engineering & technology, 29(6):257–267, 2005. 

[10] Yufeng Zhao, Dong Zhang, and Yaxiang Wang. Automatic location of 
facial acupuncture-point based on content of infrared thermal image. 
In Computer Science and Education (ICCSE), 2010 5th International 
Conference on, pages 65–68. IEEE, 2010. 

[11] G Varju, CF Pieper, JB Renner, and VB Kraus. Assessment of 
hand osteoarthritis: correlation between thermographic and radiographic 
methods. Rheumatology, 43(7):915–919, 2004. 

[12] WT Chiu, PW Lin, HY Chiou, WS Lee, CN Lee, YY Yang, HM Lee, 
MS Hsieh, CJ Hu, YS Ho, et al. Infrared thermography to mass-screen 
suspected sars patients with fever. Asia Pacific Journal of Public Health, 
17(1):26–28, 2005. 

[13] EFJ Ring and K Ammer. Infrared thermal imaging in medicine. 
Physiological measurement, 33(3):R33, 2012. 

[14] Eddie Y-k Ng and Rajendra U Acharya. Remote-sensing infrared 
thermography. IEEE Engineering in Medicine and Biology Magazine, 
28(1):76–83, 2009. 

[15] Ramin Irani, Kamal Nasrollahi, Abhinav Dhall, Thomas B Moeslund, 
and Tom Gedeon. Thermal super-pixels for bimodal stress recognition. 
In Image Processing Theory Tools and Applications (IPTA), 2016 6th 
International Conference on, pages 1–6. IEEE, 2016. 

[16] Ross Girshick, Jeff Donahue, Trevor Darrell, and Jitendra Malik. Rich 
feature hierarchies for accurate object detection and semantic segmen­
tation. In Proceedings of the IEEE conference on computer vision and 
pattern recognition, pages 580–587, 2014. 

[17] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet 
classification with deep convolutional neural networks. In Advances 
in neural information processing systems, pages 1097–1105, 2012. 

[18] K. Simonyan and A. Zisserman. Very deep convolutional networks for 
large-scale image recognition. CoRR, abs/1409.1556, 2014. 

[19] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev 
Satheesh, Sean Ma, Zhiheng Huang, Andrej Karpathy, Aditya Khosla, 
Michael Bernstein, Alexander C. Berg, and Li Fei-Fei. ImageNet Large 
Scale Visual Recognition Challenge. International Journal of Computer 
Vision (IJCV), 115(3):211–252, 2015. 


