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Abstract— The automatic recognition of spontaneous facial
micro-expressions becomes prevalent as it reveals the actual
emotion of humans. However, handcrafted features employed for
recognizing micro-expressions are designed for general applica-
tions and thus cannot well capture the subtle facial deformations
of micro-expressions. To address this problem, we propose an
end-to-end deep learning framework to suit the particular needs
of micro-expression recognition (MER). In the deep model, re-
current convolutional networks are utilized to learn the represen-
tation of subtle changes from image sequences. To guarantee the
learning of deep model, we present a temporal jittering procedure
to greatly enrich the training samples. Through performing the
experiments on three spontaneous micro-expression datasets, i.e.,
SMIC, CASME, and CASME2, we verify the effectiveness of our
proposed MER approach.
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I. INTRODUCTION

Micro-expressions are repressed and involuntary facial ex-
pressions which appear in the facial regions of humans. Com-
pared to normal facial expressions (i.e., macro-expressions),
micro-expressions usually have short duration, i.e., less than
0.2 second, and low intensity [1], [2]. Although the macro-
expressions can reflect the emotion of humans and have a
wide application [3], the people still can pretend the genuine
emotions. In contrast, the micro-expressions can reveal the
genuine emotions of humans and help understand humans’
deceitful behaviors. Thus, it is potential to apply the micro-
expressions in diverse fields, such as lie detection, police case
diagnosis, business negotiation, and psychoanalyzing. Where-
as, short duration and subtle changes of micro-expressions
make it difficult for untrained people to detect and ana-
lyze micro-expressions. Even trained by professional micro-
expression training tool [4], humans still manually detect and
recognize micro-expressions from videos with low accuracy.
Consequently, the automatic analysis of micro-expressions will
be very valuable to promote the performance of analyzing
large amounts of video sequences.

Earlier studies focused on the posed micro-expression anal-
ysis differing greatly from the spontaneous ones as they are
controlled by different motor pathways [5], [6]. As sponta-
neous micro-expressions can be observed frequently in real
life and reveal more affective information of humans, many
works have been devoted to spontaneous micro-expressions
recently. The task of spontaneous micro-expression analysis
contains two subtasks: detection and recognition. The detec-

tion task is fundamental to subsequent recognition based on
well-segmented video sequences containing micro-expressions
while the recognition task aims to distinguish small differences
between various kinds of micro-expressions. For the detection
task, the geometric features [7], [8], local textures [9] and
main directional maximal difference [10] have been proposed
to capture micro-expression frames from videos. To tackle
the recognition task, several handcrafted features have been
presented to model subtle changes of micro-expressions. The
local binary patterns on three orthogonal planes (LBP-TOP)
[11] widely used to describe dynamic textures is applied to
recognize micro-expressions. Although LBP-TOP has shown
the capacity of discriminability and efficiency, it still suffers
the sensitivity problem of global changes. So the spatiotem-
poral completed local quantization patterns (STCLQP) [12],
directional mean optical-flow (MDMO) [13], spatiotempo-
ral local binary pattern [14] and hierarchical spatiotemporal
descriptors[15] are proposed to improve the robustness of
representation. These handcrafted features are designed to
capture temporal differences of micro-expression sequences
and achieve the accuracy rate of more than 50%.

However, it is still challenging to extract useful information
from subtle changes and achieve high-quality descriptions as
handcrafted features cannot well capture the subtle defor-
mations of micro-expressions. Recently, deep convolutional
neural networks (CNNs) have shown the great power in the
task of MER [16], [17]. However, CNNs are used directly
on each frame of micro-expression videos without modeling
temporal changes. Thus, in this paper, we propose an end-
to-end deep framework to automatically recognize micro-
expressions by leveraging the temporal changes. In the deep
model, the convolutional layers with recurrent connections
(i.e., recurrent convolutional neural networks, shorted as R-
CNN [18]) are utilized to learn the representation of subtle
changes and the last classificatory layer is used to recognize
micro-expressions. To guarantee the learning of deep model,
we propose a temporal jittering procedure to greatly enrich
the training samples for learning deep model. Additionally,
before feeding the sequence into the deep network, the motion
magnification technique is employed to the entire sequence for
enhancing the subtle changes of micro-expressions.

II. PROPOSED METHOD

In this section, we present our proposed method based on
deep model for micro-expression recognition (MER).
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Fig. 1. The framework of our proposed approach for micro-expression recognition.

A. The Framework

To focus on the problem of spontaneous facial micro-
expressions recognition, we crop and normalize face regions
from image sequences using the preprocessing method pro-
posed in [11]. This method utilizes conventional eye detector
[19] and active shape model (ASM) based algorithm [8] to
crop and align face regions. The eye detector determines the
starting positions of face shapes and then the accurate locations
of face shapes are iteratively fitted by the ASM algorithm.
Consequently, the face regions are cropped and normalized in
terms of the landmark points of ASM.

Based on the cropped faces, our proposed approach contains
several procedures to recognize micro-expressions. The frame-
work of our proposed method is shown in Fig. 1. Firstly, we
utilize the motion magnification technique to enhance subtle
changes of micro-expressions based on the aligned facial
regions. Then, images from an video are resized and flattened
to vectors, and then the sequence is concatenated to form a
tensor. Lastly, the tensor is fed into the deep RCNN model for
recognizing micro-expressions.

B. Motion Magnification

The temporal variations in micro-expression videos are very
small and impossible to see with naked eyes of humans. Sim-
ilarly, it is difficult to automatically learn representations of
these subtle changes from noisy content by machine learning
techniques. In this context, we use the motion magnification
technique to amplify the hidden motion information of adja-
cent frames and then utilize deep RCNNs to learn the motion
information automatically.

To amplify motion deformations and limit magnification dis-
tortions, we choose the Eulerian Video Magnification (EVM)
method [20] to amplify the temporal motion. More specifically,
the Laplacian pyramid method is utilized to decompose the
input facial sequence into different spatial frequency bands.
Then all bands of images are filtered by temporal filters
and achieve the first-order motion information. The magnified
temporal motion can be calculated by

Ĩ(x, t) = f(x) +
∑
k

(1 + αk)δk(t)
∂f(x)

∂x
(1)

where f(x) = I(x, 0), and I(x, t) denotes the image intensity
at position x and time t. δk(t) is a displacement function and
can be obtained by the temporal bandpass filter with respect
to the kth frequency. αk is a frequency-dependent motion
magnification factor. Ĩ(x, t) is the image intensity of tth frame
after magnified. After the temporal filtering, all images of
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Fig. 2. An example of motion-magnified facial regions with micro-
expressions, in which the regions of right eyebrows have more obvious motion
changes as well as impulse noises with larger magnification factor.

each band are amplified with a fixed magnification factor αk.
Finally, all bands of Laplacian pyramid are used to reconstruct
the motion-magnified facial sequences.

In order to obtain the subtle changes of facial sequences, an
infinite impulse response (IIR) filter with cut-off frequencies
of [0.05, 0.4] Hz is chosen as our temporal filter for subse-
quent motion magnification. In other words, we only use one
temporal filter δ(t) as the bandpass filter. This bandpass filter
is more suitable to capture the motion information for MER.
Similarly, we use only one magnification factor α to amplify
the temporal motion changes of micro-expression sequences
for all spatial frequencies.

The motion-magnified facial sequences are shown in Fig.
2. It is noted that the regions of right eyebrows have more
obvious motion changes with larger magnification factor α
while more impulse noises have been induced with larger α.

C. Recurrent CNNs

Compared to the handcrafted features, CNNs have more
powerful ability to describe the subtle changes of micro-
expressions. In this paper, we add recurrent connections (i.e.,
RCNNs [21]) within the feed-forward convolutional layer-
s. The temporal changes of sequences can be captured by
multiple-scale receptive fields.

The architecture of our deep RCNNs is shown in Fig. 3.
It contains one feed-forward convolutional layer and several
recurrent convolutional layers (RCLs). The layer 1 is the only
feed-forward convolutional layer without recurrent connec-
tions and used to compute efficiently. Following the standard
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Fig. 3. The architecture of our deep RCNNs for micro-expression recognition.

convolutional layer 1, four RCLs (RCL2 ∼ 5) are employed
to extract visual features for recognition task. Between each
convolutional layers (feed-forward and recurrent), max pooling
operations are adopted to reduce dimensionality and save
computation. Following the RCLs, a global average pooling
layer is adopted to concatenate all feature maps to a vector. In
the last layer, the Softmax layer is employed to calculate the
recognition probabilities with concatenated feature vector.

In each RCL layer, several hidden layers are used to expand
the size of receptive fields. As shown in Fig. 3, one RCL layer
can be unfolded into several convolutional layers. The layer
latter in the subnetwork has larger receptive field in the same
RCL layer. R denotes the depth of one RCL layer, i.e., the
number of hidden convolutional layers, and is valued from 1
to N . For every convolutional layer, fixed-size feature maps
are used to obtain the consistent connections.

The input of an unit located at (i, j) on the kth feature map
in an RCL layer can be computed as

zijk(n) = wf
k

T
uij(n) +wr

k
Tvij(n− 1) + bk (2)

where uij(n) and vij(n − 1) represent the feed-forward and
recurrent input, respectively. In the equation, wf

k and wr
k

denote the feed-forward and recurrent weight vectors for kth
feature map. bk is the bias of kth feature map. The output of
an unit located at (i, j) on the kth feature map is given by

vijk(n) = f(zijk(n)) (3)

where n = 0, 1, · · · , N and the initial state vijk(0) = 0. f(·)
represents the normalized activation function.

Finally, the output of deep network uses the Softmax
function to classify feature vectors to C categories and it can
be calculated as

yc =
exp(wT

c v)∑C
c=1 exp(w

T
c v)

(4)

where yc is the predicted probability of cth category, and
v denotes the output feature vector of last pooling layer.
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Fig. 4. The illustration of temporal jittering for enriching training samples.

The parameter learning is performed by minimizing the cross
entropy loss function using the back propagation through time
(BPTT) algorithm [22].

D. Temporal Jittering for Model Training

Currently, the training samples with spontaneous micro-
expressions are not sufficient for learning numerous parame-
ters of deep RCNNs. It is still necessary to train deep RCNNs
with at least thousands of samples even though RCNNs need
less samples than the standard CNNs. However, no more than
200 original samples in spontaneous micro-expression datasets
can be used to train the deep RCNNs. This will cause the
problem of over-fitting and limit the recognition performance.
In order to reduce over-fitting, we propose a temporal jittering
strategy to train our deep model, which is shown in Fig. 4.

Firstly, we randomly select some frames from sequences
with a percentage. Totally, five levels of percentages are adopt-



ed for random selection, i.e., 100%, 90%, 80%, 70%, 60% and
50%. So, with five random selection, the original data can be
augmented by six times while these data contain different-
sized sequences. Secondly, eight resizing methods (down-
sampling or up-sampling) are utilized to generate sequences
with fixed size of 30 frames. In this context, we use eight
sampling approaches, and these methods involve the nearest-
neighbor approach, bilinear approach, bicubic approach and
kernel based approaches (i.e., box-shaped kernel, triangular
kernel, cubic kernel, Lanczos-2 kernel and Lanczos-3 kernel).
So every sample can generate eight similar samples but having
different temporal deformations. Thus, the original data are
augmented by eight times. Performing these two procedures
jointly, namely temporal jittering, the original data can be
augmented by 48 times. These augmented data can make it
sufficient for training deep architecture.

III. EXPERIMENTS

In this section, we present the details of our experiments,
including the implementation details, the datasets we used,
the protocols, the approaches for comparison and experimental
results.

A. Implementation Details

To amplify the motion changes and avoid inducing excessive
noises, the magnification factor is fixed to α = 10 as a
tradeofff between the magnification and noises. Whereas, some
image intensities are not satisfied with the assumptions in Wu’s
method [20]. According to [20], the bound for factor α in any
frame is adopted as follows

αc =
λ

8δ(t)
− 1 (5)

where λ denotes the spatial wavelength and is set to λ = 16 in
this context. Therefore, the magnification factor can be finally
used as α = min(10, αc) for subsequent procedures.

Before feeding the magnified images into the vector, images
are resized by selecting core region of facial images. The 80%
pixels along the width and height are reserved and remaining
pixels close to boundary are removed. The number of elements
for one channel of color image can be reduced from 3072 to
1966. In the next step, the temporal normalization operations
are performed to obtain fixed-size input tensor. Here, we utilize
different kinds of resizing methods to temporally down-sample
or up-sample the sequences and obtain fixed number of frames.
In this context, we choose 30 frames to feed the deep model.
So the input tensor is with size of 1966× 30× 3.

Since many parameters in our deep architecture may affect
the performance of micro-expression recognition, we fix some
parameters (e.g., filter sizes and stride size) with prior values
in [21], [18]. The detailed configurations are shown in Table
1.

In stochastic gradient decent (SGD) procedure of BPTT for
parameter learning, the momentum is set to 0.9 and weight
decay 0.0005. The stopping criterion for SGD is set to 10−4

for iterations. The learning rate is set to 10−3 in the beginning

Table 1. The detailed configuration of our deep RCNNs.

Layers Configurations
Input Tensor:1966× 30× 3

Width×Height×Channel
Conv1 k : 5× 5, p : 0, s : 1× 1
Pool1 MAX, k : 4× 1, s : 4× 1
RCL2 1 feed-forward: k : 1× 1, p : 0, s : 1× 1

3 recurrents: k : 3× 3, p : 1× 1, s : 1× 1
Pool2 MAX, k : 4× 1, s : 4× 1
RCL3 1 feed-forward: k : 1× 1, p : 0, s : 1× 1

3 recurrents: k : 3× 3, p : 1× 1, s : 1× 1
Pool3 MAX, k : 4× 4, s : 4× 4
RCL4 1 feed-forward: k : 1× 1, p : 0, s : 1× 1

3 recurrents: k : 3× 3, p : 1× 1, s : 1× 1
Pool4 MAX, k : 4× 2, s : 4× 2
RCL5 1 feed-forward: k : 1× 1, p : 0, s : 1× 1

3 recurrents: k : 3× 3, p : 1× 1, s : 1× 1
Pool5 AVG
Output C categories
All the convolutional layers contain M feature maps.
k - filter or pooling size, p - padding size, s - stride size.

and will be multiplied with damping factor 0.5 when all mini-
batches are traversed and re-allocated randomly. To accelerate
the parameter learning, we employ the library MatConvNet
[23] to accomplish our proposed model. The mini-batch size
for training model is set to 64 as it is limited by the memory
of GPUs (One Geforce TiTan X).

B. Micro-expression datasets

Three spontaneous micro-expression datasets are used to
evaluate the performance of our proposed approach in our
experiments: SMIC dataset [24], CASME dataset [25] and
CASME2 dataset [26]. All of them are designed to detect
and recognize micro-expressions, which are constructed by
inducing subjects’ micro-expressions. These three corpora
have following characteristics:

• The SMIC dataset contains 164 spontaneous micro-
expressions from 16 subjects. These participants undergo
high emotional arousal and suppress their facial expres-
sions in an interrogation room setting with a punishment
threat and highly emotional clips. Half data are recorded
by low-speed cameras.

• The CASME dataset has 195 micro-expressions from 19
subjects. It uses similar procedures like SMIC to elicit
micro-expressions from subjects. Because of the creators
with psychological background, these expressions are
obtained from stricter lab situations and labeled more
accurately. More emotions and action units (AUs) are
labeled by psychologists.

• The CASME2 dataset has 256 micro-expressions from
26 subjects. It has higher video quality and image size
compared with CASME. The recording rate of cameras in
CASME2 is 200 fps. Thus the video sequences of micro-
expressions in CASME2 have more frames than other
corpus.

To keep three datasets consistent with each other, we merge
seven categories in CASME and CASME2 into four classes.



Table 2. The recognition accuracy of different methods on three datasets.

Approaches Evaluation
SMIC CASME CASME2

LBP-TOP[11] 0.537 0.577 0.592
LBP-SIP [29] 0.445 0.368 0.466

TICS[28] 0.561 0.618 0.623
MDMO [13] 0.640 0.573 0.584

Pre-trained CNNs [30] 0.301 0.376 0.304
CNNs[17] 0.325 0.471 0.491

MER-RCNN (Ours) 0.571 0.632 0.658

Following [27], [13], the happy micro-expressions in CASME
and CASME2 are classified into “Positive” class as they
indicate good emotions of subjects. In contrast, the disgust,
sadness and fear micro-expressions are classified into “Neg-
ative” class as they are usually considered as bad emotions.
Surprise usually occurs when there is a difference between
expectations and reality and can be neutral/moderate, pleasant,
unpleasant, positive, or negative. Tense and repression are
classified into the “Other” class as they indicate the ambiguous
feelings of subjects and require further inference. In SMIC
dataset, the first three classes (i.e., positive, negative and
surprise) are used to annotate the micro-expressions.

C. Experimental Setup and Protocols

In previous works [28], [27], the leave-one-sample-out
protocols are utilized to explore the limited samples of
aforementioned datasets for handcrafted features. However,
it is intractable to test every sample in our experiments as
the training of deep models is time-consuming. Instead of
exhaustive testing of leave-one-sample-out protocols, we use
5-fold evaluation protocol to evaluate our proposed method on
all datasets. In 5-fold protocol, we randomly split the samples
into five parts, in which four of them are used for training and
the rest for testing.

Following [11], [12], [28], we utilize the mean recognition
accuracy to evaluate the performance of our deep Micro-
Expression Recognition algorithm using Recurrent CNNs (ab-
breviated as MER-RCNN). We compare our MER-RCNN
method with the state-of-the-art methods on all datasets, i.e.,
LBP-TOP [11], LBP-SIP [29], TICS [28] and MDMO [13].
To observe the effect of recurrent connections in deep model,
we also compare our proposed method with standard CNNs
for single images [17].

D. Experimental Results

All methods are compared on three datasets and the per-
formances are reported in Table 2. Observed from Table 2,
our proposed method achieves the best accuracies in most
configurations. Compared to the handcrafted features, the deep
features from automatic learning in our proposed method are
competitive even with limited training samples.

We can see that LBP-based features cannot outperform
other methods as they are more suitable for the description
of obvious changes of macro-expressions. The TICS method
[28] can improve the performance of LBP-based features

in new color space while the subtle changes can still not
be well captured. Based on optical flow maps, the MDMO
features [13] can extract subtle changes of micro-expressions
but depend on the accurate partitions of facial regions. And the
MDMO features can easily be influenced by the illuminations
as the optical flow can be affected by lighting changes. Our
proposed method can obtain the descriptions of subtle changes
and outperform these state-of-the-art methods.

It is worth noticing that MDMO features achieve better
results than our proposed method on SMIC datasets. The
SMIC dataset has less subjects and micro-expression samples
than other datasets. Besides, half of data in SMIC dataset are
recorded by using a 25fps camera. These low-speed micro-
expression videos are less apparent to learn the subtle changes
from them compared the high-speed videos in other datasets.
So the insufficient and incomplete samples can limit our
proposed method.

Besides, the architecture of deep model without recurrent
connections are also investigated in Table 2. In the ex-
periments, the prominent architecture of CNNs (i.e., VGG-
Face) used for face recognition [17]is employed to micro-
expression recognition. The CNNs are trained merely with
the augmented data and recognize micro-expressions for single
images. Meanwhile, the pre-trained model based on VGG-Face
is used to leverage the additional data. The pre-trained model
is achieved on a large-scale dataset of facial images [30], i.e.,
982,803 images for 2,622 identities. It is observed that the ar-
chitecture without recurrent connections cannot achieve good
performance on micro-expression recognition as it neglects the
temporal information. Moreover, the supplementary data are
not helpful to learn subtle changes of micro-expressions even
if we use the facial images.

IV. CONCLUSION

In this paper, we proposed an end-to-end framework com-
prised of recurrent convolutional networks to recognize micro-
expressions. In the deep framework, the RCNNs were utilized
to learn the representation of subtle changes and recognize
micro-expressions. For employing the RCNN model, resizing
and vectorization methods were used to transfer one image
into a tensor. Besides, the temporal jittering was utilized to
enrich the training samples to facilitate the learning procedure.
Through performing the experiments on three spontaneous
micro-expression datasets, we verified the effectiveness of our
proposed micro-expression recognition approach.
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