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Abstract—According to the World Health Organization, falling
of the elderly is a major health problem that causes many injuries
and thousands of deaths every year. This increases pressure on
health authorities to provide daily health care, reliable medical
assistance, reduce fall damages and improve the elderly quality of
life. For that, it is a priority to detect or predict falls accurately.
In this paper, we present a fall detection approach based on
human body geometry inferred from video sequence frames. We
calculate the angular information between the vector formed by
the head centroid of the identified facial image and the center
hip of the body and the vector aligned with the horizontal axis of
the center hip. Similarly, we calculate the distance between the
vector formed by the head and the body center hip and the vector
formed on its horizontal axis; we then construct distinctive image
features. These angles and distances are then used to train a two-
class SVM classifier and a Long Short-Term Memory network
(LSTM) on the calculated angle sequences to classify falls and no-
falls activities. We perform experiments on the Le2i fall detection
dataset. The results demonstrate the effectiveness and efficiency
of the developed approach.

Index Terms—TFall Detection, Elderly assistance, SVM classifi-
cation, Deep Learning, LSTM, Pretrained models.

I. INTRODUCTION

Nowadays, the elderly population of over 65 years old has
witnessed a steady increase, where a substantial proportion
live on their own. Daily life tasks can become challenging for
many of them and could be influenced by many factors, such as
age-related biological changes, neuropsychological disorders,
and environmental conditions. In addition to these factors,
sudden loss of balance, stability, and dizziness during daily
life movements are common reasons for abrupt fall that can
cause damage [1]. Strictly speaking, falling is an abnormal
human activity that occurs infrequently and unpredictably. It
is defined by [2] as an event that results in a person coming to
rest inadvertently on the ground, the floor, or any other lower
level. It is acknowledged that fall is one of the major public
health problems in the world that should be carefully addressed
and appears to be the second leading cause of accidental or
unintentional injury deaths [2]. Therefore, Fall detection and
Fall prediction are recognized as important research directions
in the study of falls and are among the hottest topics in

healthcare policies. Indeed, the availability of efficient meth-
ods to identify and possibly predict fall occurrence can have
a huge public impact since it may significantly minimize
damages, enable efficient medical assistance, and provide daily
health care for vulnerable population. Moreover, falling has
an obvious effect on individual autonomy, independence, and
life quality. [3] attests that experiencing fall may lead to
Basophobia, also called fear of falling. This syndrome can
cause many other disorders such as lack of mobility, loss of the
ability to live independently, and social isolation. On the other
hand, reducing the interval between falling and rescuing is
essential to minimize falls’ negative consequences. Motivated
by the importance of fall detection and the observation that
the vector formed by the head and the center hip of the body
is aligned horizontally and in parallel to the ground during a
falling posture, while it is perpendicular to the ground axis
in a sitting or standing posture, as illustrated in Fig. 1 (a),
Fig. 1 (b), we present a novel machine learning like approach
for Fall Detection. Besides, sitting slumped to one side leads to
forming an angle of around 45° or 120° between the mentioned
vector and the horizontal axis, as shown in Fig. 1 (d) and
Fig. 1 (c). The angle value depends on the degree of slump
sitting. However, the posture is considered lying or falling
when this value is close to 0° or 180°, as shown in Fig. 1 (e).
Our approach relies on calculating the angle and the distance
between the vector formed by the head and the body center
hip and the vector formed on its horizontal axis. For each
video sequence, we calculate the angle mentioned above and
distance among all the frames. The computed angles and
distances form the new feature set that characterizes the video
sequences. Furthermore, we construct new images using these
angle and distance sequences so that each video sequence is
represented with one image of its corresponding angles and
distances. Then, an LSTM network trained on our features and
a two-class SVM is trained on these images to detect fall and
no-fall activities. We use the Le2i dataset [4] to evaluate the
performance of our method. The experimental results indicate
that our approach is practical and achieves good accuracy in
detecting falls. The rest of this paper is organized as follows.
We briefly provide previous research related to vision-based
Fall detection (FD) in Section II. Section III outlines our

approach. Then, we describe and discuss in Section IV the
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Fig. 1.

Samples from the Le2i fall detection dataset representing the angle « in (a) sitting, (b) standing, (c) bending to the left, (d) bending to the right and

(e) falling postures. The value of « is around 90°, 90°, 120°, 45° and 180° respectively.

experimental results of our proposal on the Le2i publicly
available dataset. Finally, we conclude our paper and set future
directions for fall detection in Section V.

II. RELATED WORK

Fall detection techniques can be categorized into three ma-
jor classes: ambient-based, wearable-based, and vision-based
systems [1]. Ambient-based systems use light, proximity,
motion, and vibration sensors to collect daily life activities
data and detect falls. Wearable-based systems rely on the
sensors embedded in particular devices that the subject should
wear to track his/her motion [3]. Additionally, vision-based
systems use RGB or depth cameras to record the subject’s
activities, in indoor or outdoor environments [3]. The recorded
images or videos are analyzed later to detect falls. Motivated
by robustness, efficiency, ease of use and installation of the last
methods, the approach that we present in this paper relates to
vision-based FD. Thereby, we briefly report here some of the
existing vision-based FD methods. Roughly speaking, Vision-
based FD approaches focus on identifying appropriate fall-
related features extracted from the video frames such as silhou-
ettes, body shape, and skeleton information. These features are
then used as input to some machine learning classifiers such as
SVM, KNN, Hidden Markov Models (HMM), among others,
to train and later automatically detect fall and non-fall cases
[5]. For instance, [6] extracts distinctive features of human sil-
houettes to construct new action representations. The authors
model the actions using a bag-of-words and conduct the clas-
sification using an extreme learning machine (ELM). Authors
in [7] suggest robust features called History Triple Features
using a generalization of the Radon Transform. Furthermore,
SVM based approaches have proven their efficiency for fall
detection tasks in many alternative works see, for instance,
[8]-[10]. In [8], five distinct features are employed (aspect
ratio, change in aspect ratio, fall angle, center speed, and head
speed). Authors in [9] use a normalized motion energy image
to model the silhouette shape deformation features. Likewise,
shape and motion features are tracked to detect falls using a
single camera-based system in [11]. Authors in [12] suggest
a vision-based fall detection system for elderly living alone.
The system relies on the optical flow estimation to evaluate the
speed of motion and to deduce the fall activity accordingly,
while comparing the last positions of the target. With the

advance in Deep Learning (DL) approaches, many researchers
put forward DL based approaches for fall detection tasks.
For instance, [13] proposes a real-time fall detection approach
that allows the capture of RGB video streams, an individual’s
position estimation, and, thereby, fall detection likelihood,
which then generates potential alert messages to caregivers
with registered audio and video. In [14], the authors present
a novel FD method based on Convolutional Neural Networks
(CNN) using optical flow images. Moreover, transfer learning
is widely used to take advantage of pre-trained models by
reusing their network weights or fine-tuning the classification
layers. For instance, [15] was able to detect falls using a
CNN Alexnet architecture efficiently. In [16], the authors
present a two-stream approach based on MobileVGG network.
Similarly, the authors of [16] combine an improved lightweight
VGG network and the motion characteristics of the human
body. Likewise, a 3D CNN-based method combined with Long
Short-Term Memory (LSTM) is also presented in [17]. The 3D
CNN is used to extract motion and spatial features, while the
LSTM-based spatial visual attention scheme is incorporated
to locate the fall in each frame. Authors in [18] present a fall
detection system based on LSTM, using location features from
the group of available joints in the human body.

III. PROPOSED METHOD

The starting point in our developed methodology consists
in identifying relevant features that can genuinely distinguish
fall from non-fall activities. In this respect, to illustrate our
approach mathematically, we refer to the head centroid by the
point H(xp,yr) and to the center hip of the body by the point
B(xb,y_Q) It is also referred to the vector formed by H and B
with U, and to the vector formed between the point B and the
point C(x.,y.) with V The point C is defined such that x. >
xp and y. = y; and the horizontal axis is defined as a straight
line parallel to the X_axis and passing through the center hip.
These notations are used along the paper.

Relying on our observation mentioned aboye, we calculate
for each video, the angle o formed between U and V and the
distance ~ between the head and the center hip of the body
(i.e., the magnitude of the vector U ) for all its frames. Each
Vldeo is therefore characterized by a feature vector containing
the sequence of the computed angles and distances. Fig. 2
outlines the pipeline of our proposed fall detection approach.
It is summarized in four steps as follows.
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Fig. 2. The pipeline of our proposed fall detection approach

A. Down-sampling the videos

The length of the Le2i’s video sequence dataset varies from
30 seconds to 4 minutes, with a frame rate of 25 frames
per second. Indeed, the extraction of video frames can result
in more than 1000 frames, making manual head annotations
very exhausting. Therefore, instead of using all the frames, we
down-sample each video to reduce the intensive computational
processing. We observe that the fall, in general, occurs fast and
can be characterized by a significant motion change among
frames. Hence, we keep frames that represent meaningful
motion change and construct re-sampled videos using these
frames. We use the optical flow (OF) to estimate the motion
in the video sequences using the Horn-Schunck method, which
consists of resolving the constraint: I;.u+I,.v+I; = 0. Where
I, I, I; are the Spatio-temporal image brightness derivatives,
while u# and v correspond to the horizontal and the vertical
optical flow components respectively.

Then, we calculate the mean of both horizontal (Vx) and
vertical (Vy) components of the OF, which we call meanVx
and meanVy respectively. Subsequently, the mean squared
normalized error performance (MSE) is computed to estimate
the similarity between the horizontal\vertical components of
the OF of each frame and the mean value of horizontal and
vertical components of the OF respectively (similarityVx and
similarityVy). Equation ((1)) demonstrates how to calculate
the similarities above using the MSE. z refers to either x or y
component. P corresponds to the pixels of the frame, while i
refers to its index and p to a particular pixel of the frame i.

P
1
similarityV z; = Z Vzi(p) — meanVz(p)) (1)
p—1

Frames that have a similarity similarityVx; (resp.
similarityVy;) above or equal their mean similarity meanSimVx
(resp. meanSimVy) are preserved while others are removed
to construct the re-sampled video. Besides, the maintained
frames should respect the conditions given by ((2)).

similarityVx; >= meanSimVx
T ‘ 2
similarityVy; >= meanSimVy

B. Body and head manual annotations

Once the videos are re-sampled, and since our work focuses
on the features extracted from the body geometry, we manually
annotate the individual’s head position in the video frame and
calculate its centroid. More specifically, the annotation of each
frame contains the frame’s index, the localization of the head
presented in terms of the bounding box, and the coordinates
of the head centroid. The head centroid and the center hip of
the body are used later to calculate thelr associated distance y
and the angle o between the vector U and the vector formed
by the horizontal axis corresponding to the x coordinate of the
center hip called V.

For the angle calculus, we can calculate its cosine value and
deduce its corresponding value. The cosine is computed using
the law of cosines (given in ((3))), and the Euiid)ean norm
is used to calculate the magnitude of vectors. HC refers to
the vector between the head centroid and the axis point C and

H?H is the Euclidean norm of the vector X.
I e 153 L 1
2|7 V]

We, therefore, calculate the distance between the head and
the center hip of the body among all the video frames using
the Euclidean norm.

COS

C. Feature extraction

Once these sequences of angles and distances are created
for each video, we discern two scenarios. In the first one, we
construct our feature vectors using angles and distances. These
vectors are then fed to the classifier. In the second scenario, we
use only the angles calculated above to construct the first set of
images. However, we concatenate these angles and distances to
construct the second set of images. Each video is characterized
either by the feature vector V = {ay, as, a3 ... a;}or V={[1,
a1, [2,a0,72], [3,a3,73] .. [i,a,7;]} where i is the index
of the video frame. The angle sequences are used farther to
construct gray-level images (1! set of images) where the angle
values constitute the grey level of the image. Similarly, the
angle and the distance sequences are concatenated to construct
RGB images (the 2™ set of images) where we use the frame’s
index as the first channel, the angle as the second channel



and the distance as the third one. Each image of both sets
characterize one video. We give examples of created gray-
level and RGB images of falls in Fig. 3 (a), Fig. 3 (b) and
no-fall activities in Fig. 3 (c) and Fig. 3 (d).
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Fig. 3. Samples of created images from only angles (a and c) and created
images from angles and distances (b and d). (a) and (b) represent falls while
(c) and (d) represent no-falls.

D. Classification

Feature vectors have different lengths because videos have
a different number of frames. To set all these vectors to the
same length, we apply a padding task at the beginning of each
vector using the first frame features. A bi-LSTM short-term
memory (LSTM) network is then trained using sequences of
angles and distances to detect falls and no-falls in the first
scenario. To detect falls in the second scenario, we extract
distinctive features from our two sets of feature images using a
pre-trained model. The first set consists of images constructed
from angles only, while the second set includes images created
using angle and distance sequences. In our approach, we use
the activation of the Resnet50 network as our features. Then,
we feed them to a two-class SVM classifier to distinguish
between falls and daily life activities.

IV. EXPERIMENTAL RESULTS AND DISCUSSION
A. Dataset

The Le2i fall detection dataset [4] contains 221 videos of
131 falls, and 90 daily life activities (ADL) recorded using
a single fixed camera with a frame rate of 25 frames/s and
a resolution of 320x240 pixels. Several actors simulate all
the activities gathered at four locations: Home, Office, Coffee
room, and Lecture room. The manual annotations of 191
videos were given, with extra information representing the
ground-truth of the fall position and the localization of the
body in the image sequence.

TABLE I
PERFORMANCE RESULTS FOR OUR FD APPROACH ON THE LE21 SUBSET
USING A RESNET50 MODELS FOR FEATURE EXTRACTION

[ Features [[ Accuracy [ Precision | Recall ]
Grey-level images + Resnet50 + SVM || 0.80 0.84 0.90
RGB images + Resnet50 + SVM 0.85 0.90 0.90
Angle + LSTM 0.77 0.77 1,00
Angle + Distance + LSTM 0.85 0.89 0.89

B. Experiment results

We use the first protocol of evaluation P1 given in [4]
to evaluate the performance of our approach. P1 consists of
building the training and the test subsets from the locations
”Coffee room” and “"Home.” Hence, the subset of the Le2i
dataset, defined by P1, consists of 130 videos. It contains
99 falls and 31 no-falls activities. We apply k-fold cross-
validation to our LSTM and SVM models with k=10, where
the Le2i subset was randomly split into k equal size subsets. At
each iteration of the nine iterations, we compose the training
and test sets with nine subsets and one set.

We first evaluate the results obtained from our LSTM model
that is trained on two configurations of features. The first
feature set is composed of angles only while the second set is
composed of angles and distances. Fall detection is a binary
classification problem in which the classifier should specify
the existence or absence of a fall in the video. Sensitivity and
specificity are most accurate to evaluate the performance of the
system. We achieve a sensitivity of 100% for the first set and
89% for the second set of features. Secondly, we evaluate the
results obtained from images constructed using (1) angles and
(2) angles and distances, which are then trained on Resnet50
model.

Different performance metrics are, therefore calculated:
Accuracy, Precision, and Recall. Table I illustrates the results
obtained for both sets of images (constructed from angles
only features versus angles + distances features) using the
activations of the Resnet50 model as well as the results of
LSTM training on the feature set. We can see from this table
that the results obtained from the images constructed from
the angles and the distances (RGB images) are more accurate
than the results obtained from images created from angles
only when using Resnet50. Similarly, the results obtained
from LSTM trained on angle and distance features are more
accurate than the results obtained from angle features only.
Table II compares our findings to the state-of-the-art methods
on the Le2i dataset. Clearly, this indicates that our results are
comparable to state-of-the-art results in the field. Although, we
acknowledge the lack of large scale datasets and competition in
the area that would enable wide-scale state-of-art comparison
of methods and foster the development of new technology for
fall detection from video sequences.

V. CONCLUSION AND FUTURE DIRECTIONS

We present in this paper an effective vision-based approach
for fall detection based on angles calculation. Our approach
allows us to construct gray-scale images of calculated angles



TABLE II
COMPARISON BETWEEN PERFORMANCE RESULTS OF OUR FD APPROACH WITH OTHER EXISTING APPROACHES ON THE LE21 SUBSET

[ Approaches [[ Accuracy [ Precision [ Recall [ F_score |
Gradient boosting classifier [19] 79.31% 79.41% 83.47% 0.81
GMM + PCA [20] 86.21% 89.13% 93.00% 0.91
OF + von Mises distribution [21] 69.23% 69.84% 94.56 % 0.79
OF + CNN [14] 97.00% - 99.00% -
ours: Angle + Distance + Resnet50 + SVM 84.60% 90.00% 90.00% 0.90
ours: Angle + Distance + LSTM 84.60% 89.00% 89.00% 0.89

between the head, the center hip of the target subjects, and
the horizontal axis passing through it. Another set of images
is constructed using angles and distances between the head and
the center hip of the body as well. These constructed sets of
images constitute our distinctive features for the fall detection
task. Next, an SVM classifier is used along with a pre-trained
LSTM model to classify the created images into falls and daily
life activities. We compare in this paper, the features extracted
using the Resnet50 model. We use the Le2i dataset to evaluate
our approach’s performance in terms of accuracy, precision,
and recall metrics. Experimental results show that the results
of our proposed approach are comparable to the state-of-
the-art fall detection methods but still need improvements to
distinguish between lying and falling postures. In the future,
we would like to automatically annotate the head and the body
of the subjects and enhance the images we construct to get
higher accuracy.
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