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Abstract—In this paper we propose a data augmentation
method for instance segmentation in fisheye images. A lot of
progress has been made on the task of instance segmentation
in the last few years, particularly for rectilinear images. In
fisheye images, detection tasks have mostly been explored as
a semantic segmentation task. Instance segmentation in fisheye
images is challenging and has not yet been fully explored.
There is also much interest in the development of deep neural
networks that can handle both rectilinear and fisheye images.
Indeed, this can be interesting to have control on computing
resource requirements, of paramount importance for real-time
systems e.g., in transportation systems. This paper aims to explore
these two challenges using Mask R-CNN trained with a data
augmentation method designed to provide good performance on
both rectilinear and fisheye images. We show that performance
on fisheye augmented images can be increased by 9% while only
decreasing performance on rectilinear images by 2%, and that
performance on wide angle fisheye cameras can be increased by
18.4% compared to the reference, which provides more benefits
than a simple vertical flip augmentation.

Index Terms—fisheye images, instance segmentation, deep
learning, data augmentation

I. INTRODUCTION

Instance segmentation is a particularly useful detection task

in computer vision. The fine-grained localization of objects

allows for a vast range of applications but it can also be seen

as a useful first step for bounding box object detection.

In transportation environments, and more particularly for

trains, detecting and tracking persons is of particular interest

for surveillance and safety purposes. Detecting intrusions,

crowds, agitation, violence, faintings: these are some of the

potential uses of a human detection and tracking system. In

this context, human instance segmentation is a first essential

step to these different detection and tracking tasks.

Both rectilinear and fisheye cameras are helpful for surveil-

lance tasks in transportation contexts. Depending on the loca-

tion, one kind of camera would be better suited than the other.

Since rectilinear and fisheye images are very different, it is

natural to develop dedicated systems for each. However, for

limited computing reasons, it might be more interesting to have

a single detection system that can handle both kinds of images.

To achieve this goal, we apply a data augmentation method

which transforms rectilinear images into fisheye effect (FE)

images. Experimenting this method for the task of instance

segmentation is the main contribution of this paper.

This paper is organized as follows. Related works of the

literature are presented in Section II. The considered methods

are detailed in Section III. Experiment results are reported and

discussed in section IV. Finally, section V concludes.

II. RELATED WORKS

Within the last few years, several algorithms stood out for

the task of instance segmentation such as Mask R-CNN [1]

and YOLACT [2].

Mask R-CNN is an algorithm derived from Faster R-CNN

[3]. Mask R-CNN is currently the most widely used reference

work for the task of instance segmentation and it provides

state-of-the-art performance.

YOLACT is a recent Fully Convolutional model that can

perform real-time instance segmentation thanks to its efficient

architecture. Indeed, it does not relies on the heavy ”feature

localization” step present in the Mask R-CNN architecture.

Progress in the task of instance segmentation has also been

enabled thanks to the release of important instance segmenta-

tion datasets. The most commonly used instance segmentation

datasets are MS COCO [4] and CityScape [5].

Fisheye images are not well represented in these large scale

datasets. This lack of suitable training data presents a chal-

lenge for training Convolutional Neural Network (CNN) and

performing well on fisheye images. Creating such a dataset us-

ing manual annotation is a tedious and delicate task that is very

expensive and time consuming. CNN that have been trained

on classical rectilinear images learn to recognize objects in

rectilinear settings and consequently offer lower performances

when used on fisheye images. This is particularly the case

near the image borders, where the fisheye distortions are the

highest. Recently, the WoodScape dataset [6] was proposed

but it remains relatively small as compared to the MS COCO

dataset used for training state-of-the-art instance segmentation

algorithms. Approaches to the aforementioned problem can

be broadly separated into two categories: The first category

consists in correcting the fisheye distortions from the images

so that existing algorithms can be used. However fisheye

dewarping can also lead to artifacts on the border of the image.

This requires to find a compromise between camera field-of-

view, dewarping artifacts, and computation time. The second978-1-7281-8750-1/20/$31.00 ©2020 IEEE



category consists in adapting the algorithm in order to directly

process fisheye images. This second category is particularly

interesting because such an algorithm could potentially be used

for both rectilinear and fisheye images. Another advantage is

that this approach doesn’t require additional processing on top

of the instance segmentation algorithm.

A common way of dealing with the lack of specific fisheye

dataset is to create synthetic training data from an existing

segmentation dataset. This strategy consists in applying a

transformation to the rectilinear images so that the result

harbors the challenging properties (distortions) of fisheye

images. In [7], real-time semantic segmentation in the context

of autonomous driving is achieved using a customized neural

network architecture combined with a FE data augmentation

strategy. In [8], barrel and pillow distortions are used as

part of a data augmentation strategy to robustify the training

of a semantic segmentation algorithm in order to improve

performance on panoramic images.

In [9], a FE data augmentation method based on a fisheye

camera model is proposed and evaluated on a fisheye dataset

for the task of semantic segmentation. The authors show that

the FE augmentation improves the performances on fisheye

dataset as compared to those obtained with classical rectilinear

augmentations (such as translation, flipping and rotation).

In this paper, we follow a similar data augmentation strategy

in order to obtain satisfactory segmentation results on both

rectilinear and fisheye images acquired in transportation envi-

ronments.

III. METHOD

The proposed approach uses an existing instance segmen-

tation algorithm, Mask R-CNN [1], as a baseline. We seek to

improve it in order to be able to deal with both rectilinear

images and fisheye images. The fisheye domain adaptation

approach consists in training Mask R-CNN on the COCO2017

dataset, using FE data augmentation. The data augmentation

strategy uses the same transformation model used in [9], and

originally presented in [10]. This projection model works by

projecting the image on a unit sphere, changing the reference

frame, and projecting the points on the normalized image

plane. At this stage, the radial and tangential distortions are

added according to the model introduced by Brown [11], and

finally, the projection is done using the camera’s parameters.

This projection model is used to create a set of transfor-

mations that can be applied efficiently for data augmentation

dedicated to training. In our study, two sets of transformations

were conceived in order to study the effect of the transforma-

tion diversity. The first set contains 35 different complex FE

transformations (as shown in Figure 1a). And the second one

contains 8 different simple rotated transformations (as shown

in Figure 1b). The first set has the following transformation

properties: translations in the range [0;0.5] in normalized scale,

arbitrary rotations on the z axis of unconstrained magnitude,

scaling in the range [50%;120%], radial distortions in the

range [-0.5;-1.0], and ξ factor in the range [0;1]. The second

set has the following transformation properties: no translation,

8 different rotations with a step of
π

4
, no scaling, no distortion,

ξ factor of 1.

(a) Set of 35 transformations

(b) Set of 8 transformations

Fig. 1: Two transformation sets

The FE data augmentation is carried out as follows: an

augmentation ratio is defined to apply fisheye augmentation

to a portion of training examples. When an image is picked to

be fisheye augmented, a specific transformation is randomly

picked from the precomputed augmentation set and applied

to the image. This data augmentation method was chosen in

order to optimize the speed of the transformation and therefore

the speed of the training phase.
Mask R-CNN training is done using the default parameters

of the Detectron framework [12], with adjustments, such as a

higher batch size per gpu, and a smaller number of training

steps, in order to get good performance on our hardware (one

Nvidia V100 GPU). Two different training schedules are used:

a long one for the large resnet101 architecture, and a short one

for the small resnet50 architecture. The long schedule is used

to obtain the maximum detection performance, while the short

one is used to execute more training runs for comparison of

FE augmentation settings. The long schedule consists of 90k

steps and a base learning rate of 0.02 which is divided by 10

at steps 50k and 70k. The short schedule consists of 40k steps

and a base learning rate of 0.02 which is divided by 10 at

steps 20k and 30k.

IV. EXPERIMENTAL RESULTS

A. Evaluation datasets

The detection results are evaluated qualitatively and quan-

titatively using three datasets: the validation subset of

COCO2017, valBOSS and trainDoor.



For the creation of valBOSS, we sampled 60 frames from

two video sequences from the BOSS dataset [13]. These

frames were then annotated manually using CVAT [14] for

human instance segmentation (i.e. only humans were labelled).

We illustrate this dataset with sample images in Figure 2b.

(a) Sample images from COCO2017 dataset.

(b) Sample images from valBOSS dataset.

(c) Sample images from trainDoor dataset.

Fig. 2: Sample images from COCO2017, valBOSS and train-

Door datasets.

For the creation of the trainDoor dataset, we sampled a

video dataset featuring scenes meant to resemble the passage

of pedestrians through a train door. 121 frames were annotated

for human instance segmentation. We name this evaluation

dataset ”trainDoor” and show sample images in Figure 2c.

To evaluate the performance of our strategy, we use the

official tools of the COCO2017 dataset. We consider the

following metrics: APall (mean average precision over many

different thresholds), AP50 (threshold of 50% confidence),

AP75 (threshold of 75% confidence), APS (mean average pre-

cision for small objects), APM (medium objects), APL (large

objects). Concerning the valBOSS and trainDoor datasets, only

the ”person” label outputed from Mask R-CNN is considered.

The APS metric is not considered, because of the lack of small

objects in these datasets.

B. Importance of COCO2017 pretraining

Mask R-CNN is normally trained starting from a backbone

pretrained on ImageNet [15], and then trained on COCO2017.

Transfer learning from backbones pretrained on ImageNet

provides a significant performance boost on different domains.

However it has not been proven that using an entire Mask

R-CNN neural network pretrained on COCO2017 provides an

advantage over starting only from an imagenet backbone when

it comes to transfer learning on the fisheye domain. In order to

confirm this hypothesis, we trained a Mask R-CNN network

starting from an ImageNet backbone, and another starting

from a complete neural network pretrained on COCO2017.

Table I illustrates the performance comparison between the

two approaches. The result confirms the usefulness of using

Mask R-CNN network pretrained on COCO2017 for transfer

learning on the fisheye domain with a data augmentation

of 35 transformations. This shows clearly that the learned

filters on COCO2017 rectilinear images do constitute a good

initialization for fisheye images. In the rest of the paper, all

Mask R-CNN trainings are done by starting from a Mask R-

CNN network completely pretrained on COCO2017.

TABLE I: Impact of complete COCO pretraining vs starting

from only an ImageNet backbone, evaluated on COCO2017val

augmented with 35 transformations.

APall AP50 AP75 APS APM APL

ImageNet start 0.12 0.22 0.12 0.05 0.15 0.20
COCO2017 start 0.16 0.28 0.16 0.07 0.19 0.27

C. Importance of FE augmentation ratio

The augmentation ratio is an important parameter of our

model. With 100% of the images being transformed to FE

during training, the neural network doesn’t see any rectilin-

ear image anymore, potentially hurting its performance on

rectilinear images. Since we seek a good performance on

both rectilinear and fisheye images, we experimented our

model with augmentation ratios of 0%, 25%, 50%, 75% and

100%. For this experiment, we used the backbone architecture

resnet50 with a short training schedule. Results are illustrated

in Figure 3. From this experiment, one can notice that even

a 25% ratio already provides a huge jump in performance on

FE images. Above 75% of augmentation, the performance on

classical rectilinear images starts degrading significantly. For

the purpose of finding a compromise between performance on

both domain, we consider that a 50% ratio is acceptable. This

ratio leads to a 9% improvement in FE augmented images,

while only decreasing performance by 2% on rectilinear

images.

Fig. 3: Evolution of AP all on rectilinear (Blue) and trans-

formed (Orange) COCO2017val depending on the ratio of FE

augmentation during training.

In order to confirm the good performance of the 50% ratio

on classical images, Mask R-CNN is trained using this ratio

with a resnet101 backbone and a long training schedule. Re-

sults are shown in Table II. One can notice that the difference

in terms of performance on classical images is negligible,

which means that the network performs much better on FE

augmented COCO2017 images while not losing performance



on rectilinear images. This first result shows therefore that,

with a careful data augmentation, it is possible to design a

CNN that performs well on both rectilinear and fisheye images.

D. Evaluation on valBOSS and trainDoor

After evaluating the performance on rectilinear images,

we endeavoured to confirm the good performance of the

chosen training settings on FE datasets taken in the context

of transportation systems, but for which it was not trained

onto: valBOSS and trainDoor, as shown in Table III.

Concerning the valBOSS dataset, one can notice a small

improvement, but not enough to conclude on the benefit of

the strategy.

TABLE II: COCO2017 Performance of 50% fisheye aug-

mented resnet101 Mask R-CNN vs Reference.

APall AP50 AP75 APS APM APL

Reference 40.1 61.9 44.0 22.6 43.6 52.6
50% FE aug 39.5 60.7 43.2 22.1 43.5 51.7

TABLE III: Performance of resnet101 Mask R-CNN trained

with 50% FE augmentation vs reference on the valBOSS,

trainDoor and trainDoorAug datasets.

APall AP50 AP75 APM APL

valBOSS
Reference 18.0 43.9 12.1 26.6 10.0

50% FE aug 18.0 46.0 12.8 25.1 15.1

trainDoor
Reference 55.8 78.5 66.3 49.7 59.9

50% FE aug 70.3 90.6 83.6 59.1 77.6

trainDoorAug
Reference 43.5 64.7 50.4 31.5 52.2

50% FE aug 67.0 90.7 79.0 54.7 74.5

TABLE IV: Performance of resnet50 Mask R-CNN trained

with 50% FE augmentation (with two different transformation

sets) vs reference on the valBOSS and trainDoorAug datasets.

APall AP50 AP75 APM APL

valBOSS
Reference 14.6 38.1 9.3 21.5 8.8
halfvflip 12.0 35.2 6.6 19.1 8.5

35FE transformations 13.9 39.7 7.8 20.6 9.2
8FE transformations 22.8 52.8 17.8 29.6 9.5

trainDoorAug
Reference 43.6 67.5 50.5 31.5 51.0
halfvflip 60.6 86.4 69.4 53.9 65.3

35FE transformations 61.0 87.6 71.7 51.2 67.0
8FE transformations 62.0 87.7 74.2 51.4 68.5

For the trainDoor dataset, a large improvement can be

noticed. This dataset presents a lot of persons that do appear

”upside down” (i.e. head down and feet up), and this is

probably the main reason for the large difference in terms

of performance: the reference has been trained on COCO2017

that mainly contains persons displayed upright (i.e. head up

and feet down). The reference has thus not been properly

trained to recognize upside down people, since CNN are not

rotationally invariant [16]. Figure 4 shows some examples of

upside down persons being detected by FE augmented Mask

R-CNN but not by the reference Mask R-CNN. Moreover, the

dataset, as is, has an unbalanced number of upright persons

and upside down persons. This could give an unfair advantage

to one algorithm depending on what each one is best suited

for. In order to fix this, we propose to create an augmented

trainDoor dataset, consisting of the trainDoor dataset concate-

nated with a vertically flipped version of itself. This also has

the advantage of doubling the size of the evaluation dataset,

to 242 images. We name this new dataset trainDoorAug. The

results obtained on trainDoorAug are shown in Table III. The

reference performs a lot worse on this augmented dataset while

our approach obtains similar performance. This confirms that

the vertical orientation of the dataset leads to a huge bias in

the evaluation. With this in mind, in order to better evaluate

the impact of the FE augmentation, our approach should be

evaluated against a reference trained with vertically flipped

images.

E. Importance of FE augmentation vs vertical flip augmenta-

tion

Given the previous results, we also trained a Mask R-CNN

neural network with a 50% augmentation ratio of vertically

flipped images in order to have a more fair reference. We use

the short training schedule with a small resnet50 architecture

for the sake of speed. The reference and the network trained

with FE augmentations are also using the short schedule

and resnet50 architecture so that the comparison is valid.

The results of this new comparison are shown in Table IV,

under the name ”halfvflip”. The results confirms that a simple

vertical flip augmentation is already interesting to get a large

performance increase on the augmented trainDoor dataset. Yet,

we still notice an improvement of 1.9% APall on valBOSS,

and 1.4% APall on trainDoorAug, when comparing 35FE

augmentation with halfvflip augmentation. This difference

shows the usefulness of FE augmentation, but we can now

consider if the set of transformations can be made simpler.

F. Impact of the size of the transformation set

We now study if the 35 transformations set is overkill for

the task of instance segmentation in FE images. To do so,

we created a smaller transformation set, containing only 8

different rotations with a minimal fisheye effect. We trained

Mask R-CNN with this augmentation, using a 50% transfor-

mation ratio. As before we evaluate this neural network on our

two datasets captured in a transportation context: the valBOSS

and augmented trainDoor datasets. Considering the results pre-

sented in Table IV, one can notice a substantial performance

increase on valBOSS dataset, and a slight performance in-

crease in trainDoorAug dataset. In conclusion, it might not be

necessary to use 35 different highly distorted transformations

for data augmentation, since 8 transformations seem to be

sufficient. These final results are illustrated qualitatively in

Figure 5.



Fig. 4: First two images: results with resnet101 Mask R-CNN reference. Last two images: results with resnet101 Mask R-CNN

with FE augmented training.

Fig. 5: Top line: results with resnet50 Mask R-CNN reference. Second line: results with resnet50 Mask R-CNN with vertical

flip augmentation. Third line: results with resnet50 Mask R-CNN with 35 transformations augmentation. Fourth line: results

with resnet50 Mask R-CNN with 8 transformations augmentation.



In light of all these experimental results, one can observe

that a large part of the challenge associated with FE images

is due to the object rotations that objects are prone to, that

Mask R-CNN is not trained to handle. On the other hand, this

shortcoming is mainly related to the nature of existing large

scale training datasets such as COCO2017. The experiments

we led have shown that it is possible to overcome these short-

comings for fisheye images by using a FE data augmentation

strategy. Moreover, it is possible to do so while not hurting

performance on classical rectilinear images. This opens the

door to the possibility of using the same system to deal with

both rectilinear and fisheye images.

For the two transportation datasets we considered, the large

majority of human instances to segment were in the center

of the images, which means they were not very distorted.

This is probably the main reason why a few image trans-

formations, mainly consisting of rotations, help so much on

these datasets. More annotated fisheye images, in particular

presenting humans near the border, with high distortion, could

be necessary to really know how current algorithms deal with

high distortions in fisheye images.

V. CONCLUSION

In this paper we have proposed a way to train Mask R-

CNN so that it can provide good instance segmentation both

in rectilinear and fisheye images. We have shown that data

augmentation with specific fisheye transformations can render

Mask R-CNN able to deal with both normal and fisheye

images. We studied the impact of the types and magnitude of

the transformations used as well as the augmentation ratio on

both rectilinear and fisheye datasets. In conclusion, a small

set of rotated fisheye transformations is enough to get an

improvement, and a ratio of around 50% of data augmentation

is a good compromise to obtain good performance on both

rectilinear and fisheye images, with the same neural network.

We also have shown this on 2 transportation datasets, the first,

valBOSS, containing 60 images showing high distortion, and

the second, trainDoorAug, made from 121 images taken with

a wide angle fisheye camera. The proposed strategy offers

satisfactory results on these two datasets, improving APall

by 8.2% compared to the reference on valBOSS and 18.4%

compared to the reference on trainDoorAug.
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