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Abstract—Existing machine learning systems are trained to
adapt to a single database and their ability to acquire ad-
ditional information is limited. Catastrophic forgetting occurs
in all deep learning systems when attempting to train them
with additional databases. The information learnt previously is
forgotten and no longer recognized when such a learning systems
is trained using a new database. In this paper, we develop
a new image generation approach defined under the lifelong
learning framework which prevents forgetting. We employ the
mutual information maximization between the latent variable
space and the outputs of the generator network in order to learn
interpretable representations, when learning using the data from
a series of databases sequentially. We also provide the theoretical
framework for the generative replay mechanism, under the
lifelong learning setting. We perform a series of experiments
showing that the proposed approach is able to learn a set of
disjoint data distributions in a sequential manner while also
capturing meaningful data representations across domains.

Index Terms—Lifelong learning, Representation learning, Gen-
erative Adversarial Networks, Mutual information.

I. INTRODUCTION

One inherent advantage of humans and animals is that of
being able to continually acquire new skills, by learning pro-
gressively while aging, without forgetting the previously learnt
knowledge throughout their lifespan [1]. However, artificial
learning systems when learning from the data sampled from
successive databases, have their parameters tuned onto the
probabilistic representation of the latest available database,
while forgetting the previously learnt information. The reason
for this outcome, present in all existing systems requiring
training, is that their objective function is designed to tune
the network parameters by optimizing a match between target
labels and network outputs. Meanwhile, after training for a
new task using backpropagation, the new model would forget
completely the previously learnt knowledge.

Many of the previous approaches, aiming to address catas-
trophic forgetting, often focus on implementing dynamic net-
work systems [2], [3]. Such systems would aim to increase
the number of layers and processing units on each layer
in order to acquire additional information. Other attempts
to address this issue would impose a large penalty in the
objective function that prevents from significantly changing
the network parameters while learning a new task [4]–[7].
However, such approaches are often sensitive to the choice

of data being learnt and lead to significant increases in the
required computational resources. Hanul et al. [8] introduces
a dual architecture consisting of a powerful generator and a
classifier. Adversarial learning is used to train the generator
with the accumulated data produced by the generator after
learning the previously given tasks. Similar works based on
the Generative Adversarial Networks (GAN) [9] framework
are also proposed in [10]–[12]. The inference abilities of
Variational Autoencoders (VAE) have been combined with
the generation capability of GANs in the lifelong VAEGAN
learning [13].

This paper has the following contributions: (1) We propose
a novel GAN based framework for lifelong learning. (2)
We introduce a theoretical probabilistic framework for the
generative replay mechanism used in the context of lifelong
learning. (3) We employ the mutual information maximization
between the latent variables and generator outputs under the
lifelong learning framework, in order to enable a mechanism
for capturing meaningful data representations across domains.
The methodology and theoretical framework for the proposed
lifelong interpretable learning framework is described in Sec-
tion II. Experimental results are provided in Section III and
the conclusions of this study are drawn in Section IV.

II. LIFELONG INTERPRETABLE LEARNING

In this section, we introduce a novel lifelong framework
which besides aiming to generate high quality images also
captures interpretable representations across data domains.
We consider that each data domain characterizes a distinct
database. Let us consider a set of databases, each characterized
by a data distribution, o1 ∼ p(O1),o2 ∼ p(O2), . . . ,oK ∼
p(OK), which are being learnt in a sequential manner. We
consider that oi is an image sampled from the target database
defined by p(Oi), i = 1, . . . ,K. Unlike in the traditional
lifelong learning tasks which aim to make predictions from all
learnt data samples, in this study we seek to define meaningful
data representations that can interpret data characteristics. In
the lifelong learning problem, each data distribution p(O),
where O = {O1,O2, . . . ,OK} is only seen once. The goal of
the proposed algorithm is to learn a model, which is able to
generate all images from the previously seen databases, while
capturing meaningful image representations and characteristics
across domains.978-1-7281-8750-1/20/$31.00 ©2020 IEEE



A. Training the data generator for a single task

After learning a single data distribution, we assess its
generative replay capability. Such generative mechanisms can
be used for learning successively a series of distributions under
the lifelong setting, without the need to see each time the
real data. Let us consider that o represents the observed data
sampled from the target distribution p(O), and {z, c,d} are
three independent random vectors, representing random noise,
continuous latent variables and discrete variables, sampled
from the prior distributions z ∼ N (0, I), c ∼ N (0, I), d ∼
Cat(k, 1/k), where the first two distributions are Gaussian
while the third denotes a categorical distribution which is
specific for discrete variables. We want to train a generator
network G(z, c,d) to approximate the data distribution p(O)
by using adversarial learning. Adversarial learning is defined
by Min-Max optimization:

min
G

max
D∈Φ

[
Eo∼p(O)[D(o)]− Eo′∼pG(O′)[D(o′)]

]
(1)

where we use the Earth mover distance optimisation as in
the Wasserstein GAN model [14], [15], instead of the Jensen-
Shannon divergence [9], for measuring the distance between
the true data p(O) and the probability of the generated data
o′ ∼ pG(O′). Φ denotes a set of 1-Lipschitz functions. We
further consider using the gradient penalty proposed in [16]
in order to enforce the Lipschitz constraint, resulting in:

min
G

max
D∈Φ

[
Eo∼p(O)[D(o)]− Eo′∼pG(O)[D(o′)]

]
+ λEõ∼Põ

[
(‖∇õD (õ)‖2 − 1)

2
]
.

(2)

While this objective function is used for learning a single
task, in the following we show how generative replay mecha-
nisms can be used for training the model with multiple tasks,
each learned from data sampled from a different database,
oi ∼ p(Oi), i = 1, . . . , k.

B. The theoretic framework for the generative replay mecha-
nism in the context of lifelong learning

In this section, we provide the theoretic analysis for the
generative replay mechanism used for the lifelong learning in
artificial systems.
Definition 1. Let us consider that p(O) =

∏k
i=1 p(Oi) repre-

sents the true joint data distribution in which each individual
dataset p(Oi) is assumed to be independent from the others.
Definition 2. Let us consider that p(Ôk) represents the output
fake data distribution produced by the generator network
Gωk

(c,d, z), after training with the data corresponding to
the k-th task, where ωk represents the network’s parameters.
During the k-th task learning, we consider that only p(Ok−1)
and p(Ôk−1) are available under the lifelong training setting :

p(Ôk|Ôk−1,Ok) = 1−min(‖W (p(Ôk), p(Ôk−1,Ok))‖, 1)
(3)

where W (·) is the Wasserstein distance, representing the
Earth mover distance optimization [14], [15]. The expression

from (3) represents the probability of Ôk when observing
simultaneously Ôk−1 and Ôk, and :

p(Ôk|Ôk−1,Ok) = 1→W (p(Ôk), p(Ôk−1,Ok)) = 0. (4)

Theorem 1. The information characterizing p(Ôk) depends
on all previously learned distributions.
Proof. From the fact that p(Ôk−1) is independent from
p(Ok), we derive for the marginal probability p(Ôk) through
mathematical induction:

p(Ôk) =

∫ ∫
p(Ôk|Ôk−1,Ok)p(Ôk−1)p(Ok)dÔk−1dOk

=

∫
. . .

∫
p(Ô1)

∏k−2

i=0
p(Ôk−i|Ôk−1−i,Ok−i)∏k−2

i=0
p(Ok−i)dÔk−1 . . . dÔ1dOk . . . dO2

(5)
where this equation is integrated over all the previously learnt
data samples from all databases Oi i = 1, . . . , k.
Lemma 1. If the learnt distribution p(Ôi) is an exact ap-
proximation to the target distribution when learning every
task, then the latest learnt distribution p(Ôi) is an exact
probabilistic approximation to the true joint distribution of data∏k

i=1 p(Oi).
Proof. If we consider that all previously learnt distributions
are exact representations of their target distributions, we have∏k

i=1 p(Ôk−i|Ôk−i−1,Ok−i) = 1 and W (p(Ô1), p(O1)) =
0→ p(Ô1) = p(O1). Then the conditional probability can be
rewritten as :

p(Ôk|
⋃k−1

i=1
Ôi,Ok) = 1→W (p(Ôk),

∏k

i=1
p(Oi)) = 0,

(6)
and the Min-Max optimization becomes :

min
G

max
D∈Φ

[
Eo∼p(Ôk−1,Ok)[D(o)]− Eo′∼PG

[D(o′)]
]

+ λEô∼Pô
[(‖∇ôD(ô)‖2 − 1)2].

(7)

Lemma 2. The necessary and sufficient condition to have a
good representation for all databases is to approximate well
each database during the lifelong learning.
Proof. By considering argumentum ad absurdum rhetoric,
if
∏k−2

i=1 p(Ôk−i|Ôk−i−1,Ok−i) 6= 1, then p(Ôk) may not
be a good approximation to

∏k
i=1 p(Oi). However, from

Definition 2, we have p(Ôk|Ôk−1,Ok) = 1. After learning the
corresponding probabilistic representation p(Ôi), this relies on
the previously learnt distributions p(Ôi−1) while also learning
the new true distribution p(Oi), we have :∏k−2

i=0
p(Ôk−i|Ôk−i−1,Ok−i) = 1 and p(Ô1) = p(O1) (8)

in order to approximate
∏k

i=1 p(Oi) exactly. This contradicts
the initial assumption stated above. Equation (8) indicates that
given

∏k−2
i=0 p(Ôk−i|Ôk−i−1,Ok−i) = 1 we have through

p(Ôk) a probabilistic representation of all given databases.



Fig. 1. The structure of the proposed lilfelong learning through the mutual information maximization model.

C. Learning data representations by mutual information max-
imization

In information theory, mutual information (MI) measures
the amount of information shared by one random variable
when observing another variable. In the proposed approach,
we want to learn simultaneously discrete and continuous
interpretable representations.

Let us consider firstly learning the data representation for
one task from a given database. Let u = (d, c) represent
the joint latent variable for discrete and continuous latent
variables. The learning goal of the proposed approach is to
maximize the mutual information between the joint latent
variables u and the distribution generated by G(c,u). The
mutual information is defined by :

I(u,G(z,u)) = H(u)−H(u|G(z,u)) (9)

where H(u|G(z,u)) is the conditional entropy, which mea-
sures the uncertainty of estimating u when observing G(z,u)
and H(u) represents the entropy of the latent variables. By
maximizing I(u,G(z,u)) we can reduce this uncertainty and
therefore preserve the latent information during the generation
process. Similar MI objectives have been adopted in the
research studies from [17]–[20]. However, it is challenging to
optimize the mutual information directly, given that it depends
on inferring the true posterior p(u|o). In order to address
this challenge, we define an auxiliary distribution S(u|o) to
approximate the true posterior p(u|o), and then we derive a
lower bound on the mutual information, called LMI :

I(u,G(z,u)) =

∫ ∫
G(z,u)p(u|o) log

p(u|o)

S(u|o)
dodu+∫ ∫

G(z,u)p(u|o) logS(u|o)dodu +H(u) =

= Eo∼G(z,u)[DKL[p(u|o)||S(u|o)]]+

Eo∼G(z,u)[Eu∼p(u,o)[logS(u|o)]] +H(u) >

> Eo∼G(z,u)[Eu∼p(u,o) [logS(u|o)]] +H(u) = LMI

(10)

where we consider that the KL divergence is positive or at
least equal to 0. In this study, we treat H(u) as a constant for
simplicity. The auxiliary distribution S(u|o) is implemented
by using a neural network with two output layers, one for
producing continuous variables and the other for calculating
discrete variables.
Theorem 2. The inference model S(u|o) can be used in
the context of the generative reply mechanism for learning
representations from multiple domains.
Lemma 3. If the generator approximates exactly its target dis-
tribution after learning every task, the inference model S(u|o)
can learn from the data associated with the corresponding
modes from all previously learnt probabilistic representations
of the given data distributions.
Proof. From Lemma 1, we know that p(Ôk) =

∏k
i=1 p(Oi).

Considering from Definition 2 that p(Ôk) characterizes the
distribution of the output of Gωk

(c,d, z), where ωk represents
the network parameters, the inference model actually learns
the probabilistic data representations from

∏k
i=1 p(Oi) by

using the mutual information maximization, during the lifelong
learning process.

The diagram for the proposed lifelong learning through mu-
tual information maximization model is presented in Figure 1.

III. EXPERIMENTAL RESULTS

In the following we provide the experiments showing how
the proposed model can learn interpretable representations
across the domains of several databases, under the lifelong
learning setting. We implement the generator, discriminator,
and inference by using deep convolution neural networks
(CNN). We use Tensorflow and learning through stochastic
optimization using Adam [21] with a learning rate of 0.0001
for all models.

A. The lifelong learning from MNIST to MNIST-Fashion

In this section, we evaluate the performance of the proposed
approach when firstly learning MNIST database [22], contain-
ing images of handwritten digits, and then MNIST-Fashion



(a) Proposed lifelong learning approach.

(b) Conventional training without any generative reply.

Fig. 2. Generation results when firstly learning MNIST database followed by
the MNIST-Fashion.

database [23], which contains images of clothing items. These
two databases, contain only greylevel images and have the
same number of classes and data samples, while displaying
completely different information. The generated images fol-
lowing the lifelong MNIST to MNIST-Fashion learning are
presented in Figure 2a, while the images generated without
the generative reply are shown in Figure 2b. We observe that
the proposed lifelong learning approach can generate images
characteristic to both data domains, unlike in the classical
approach, where we do not have a generative reply mechanism.

Fig. 3. Generated results when varying the discrete variable d along columns
and the continuous variables c along rows.

(a) c1 in MNIST-Fashion (b) c1 in MNIST

(c) c2 in MNIST (d) c2 in MNIST

Fig. 4. Exploring the latent space for MNIST and Fashion and databases,
under the MNIST to Fashion lifelong learning, where we change a single
latent variables from -1.0 to 1.0 while fixing the others.

(a) The proposed lifelong approach.

(b) Classical approach.

Fig. 5. Generation results after the lifelong learning from CelebA to 3D-
Chairs databases.

(a) Gender

(b) Makeup

(c) Face orientation

Fig. 6. Results when manipulating characteristics in images of faces from
the CelebA dataset, under the CelebA to 3D-chairs lifelong learning.

B. Disentangled representations under the lifelong learning
using the mutual information maximization

In the following we examine the disentanglement ability of
the proposed lifelong learning using the mutual information
maximization within the latent space of the generated images.
We fix the continuous latent variables and change the discrete
variable from 0 to 9. The generated images are shown in
Figure 3, where each column is produced considering the same
discrete variable while the images from each row correspond to
a different continuous variable. We observe that this model is
able to capture the discriminating attributes from both MNIST
and MNIST-Fashion databases without any mixing between
the data from the two databases. We then fix other variables
and change two continuous latent variables, c1 and c2 from
-1 to 1 and the results are shown in Figures 4a-d. From these
results we can observe that the proposed approach can capture
independently various clothing styles from MNIST-Fashion
and the writing styles of the digits from MNIST. Meanwhile,
when changing one of the continuous variable, the resulting
images would interpolate between a digit and a shoe, as it can



(a) Chair backrest

(b) Materials

(c) Orientation by changing the azimuth

Fig. 7. Results when manipulating characteristics in the 3D-chairs images
under the CelebA to 3D-chairs lifelong.

be observed from Figures 4c and 4d.

C. The lifelong learning from CelebA to 3D-chairs databases

In this section, we evaluate the performance of the proposed
approach on CelebA [24], and 3D-chairs [25] databases,
containing face images of well known persons (celebrities)
and 3-D chairs, respectively. We train the proposed model
under the CelebA to 3D-chairs lifelong learning based on the
mutual information maximization. The results are presented
in Figure 5a, where it is shown that the proposed approach
can generate images from the domains of both databases. In
Figure 5b, we show the results when considering the classical
approach without using the generative replay mechanism.
From these images it can be observed that this model forgets
quickly the images from the previously learned tasks, such as
the images of faces characteristic to CelebA database.

In another experiment we modify a single continuous latent
variable between -1 and 1, while fixing all others during
the generation process. The results for the face images from
CelebA, shown in Figures 6a, 6b and 6c, demonstrate that
the proposed lifelong learning approach is able to discover
disentangled representations characteristic of gender, makeup
change and face orientation change, respectively. Meanwhile,
the results for the 3D-chairs are shown in Figures 7a, 7b
and 7c where we show how the proposed model learns
disentangled representations characteristic of chair backrest,
material type and for changing the azimuth in the chairs’
orientation, respectively.

D. Numerical evaluations

In this section, we use the Fréchet Inception Distance (FID)
[26] in order to evaluate the quality of the generated image

results under the lifelong learning. We train the proposed life-
long learning model under the CelebA to 3D-Chair learning.
FID is evaluated on both CelebA and 3D-Chair images, and the
numerical results are provided in the bar-plot from Figure 8,
where we compare the proposed model with other lifelong
learning approaches, such as LGAN [27] and LGM [28]. These
results indicate that the proposed model generates images of
similar quality when compared to those generated by LGAN.
Moreover, unlike LGAN, the proposed model is able to learn
disentangled representation across domains under the lifelong
learning. Meanwhile, the proposed model is able to produce
higher-quality generative replay images than LGM.

The proposed LGAN LGM
Methods
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Evaluation results

Fig. 8. FID results for the generated images after the CelebA to 3D-chair
lifelong learning.

IV. CONCLUSIONS

We propose a new approach for lifelong learning
interpretable representations across data domains using the
mutual information maximization criterion. In this approach
we employ the generative replay mechanism in order to
prevent forgetting the previously learnt knowledge. In order
to learn interpretable representations, we maximize the
mutual information between the latent representation and the
generator’s outputs. The theoretical analysis shows that by
using a powerful generator for the data replay, the inference
model can learn data representations across multiple domains.
The experiments performed achieve data interpolations across
different data domains. In further research work we are
considering expanding the lifelong learning model to learning
multiple databases while also improving the quality of the
generated images.
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