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Abstract—In the context of data tokenization, we model a token
as a vector of a finite dimensional metric space E and given a
finite subset of E, called the token set, we address the problem
of deciding whether a given token is in a small neighborhood
of an other token. We derive conditions to characterize the
nearest token of a given one and show that these conditions are
fulfilled asymptotically as the dimension of E tends to infinity.
Whereas the classical nearest neighbor search is inefficient to
solve such problem, we propose a new probabilistic algorithm,
which becomes efficient if the dimension of E is large enough.

Index Terms—Tokenization, Big data, Algorithmic probability,
Nearest neighbor search

INTRODUCTION

With the explosion of sensitive data, many standards emerge
to secure information and reduce the number of incidents that
may occur during an inappropriate access to a database [6].
Tokenization consists in associating to a sensitive data an
identifier (called token) that has non-external or exploitable
meaning related to the data that it corresponds. While tok-
enization seems to be a reliable method for data obfuscation,
identifying whether a given token belongs to a token set has
an impact on the performance of the application.

We model the token space as a metric space (E, d) of finite
dimension n and the token set T is a finite subset of E. We
will consider the discrete case where T ⊂ J0, cKn, c ∈ N.
The distance d can be induced by the Euclidean norm ‖ · ‖ =√

(·, ·). This particular case where E is a normed vector space,
instead of general metric space, allows to consider orthogonal
projections. A token τ̃ is considered as a neighbor of a token
τ ∈ T , and we note τ̃ ∼ τ , when d(τ, τ̃) is small enough.
Given T and τ̃ , we would like to find, if it exists, a neighbor
τ ∈ T of τ̃ .

This falls into the problem of similarity query in a metric
space. This problem can be solved by nearest neighbor search
(NNS) algorithms and the main bottleneck remains the so-
called curse of dimensionality [2], [3]. When the dimension n
is large, the curse of dimensionality means, under reasonable
assumptions on the token distribution, that the ratio between
the distance of the nearest and the farthest neighbors is close
to 1 [1]. We exploit this property to compute the nearest

Calculations were performed using HPC resources from DNUM CCUB
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neighbor in T of a given token, which is considered to
be a perturbation of a token in T . We propose a different
approach than NNS based on orthogonal projections filtering.
The complexity of NNS algorithms is characterized by the
number of distance computations and memory limitation. We
will use none of these complexities but rather time complexity
which is more adapted for our case, where we assume to have
enough memory to stock and sort the token database. This
operation is done only one time – at the beginning of the
oracle – and the benefit over other algorithms appears when
the oracle is called quite a number of times.

Section I introduces the model of the token database and
defines a metric to characterize a perturbed token τ̃ of a
given token τ ∈ T . We present a naive NNS to compute
such neighbor τ ∈ T and that will be the benchmark of our
new algorithm presented in Section II. We give mathematical
conditions on the cardinal of T and the dimension of E to
ensure that the probability that our conditions are satisfied is
closed to 1. Section III is devoted to preliminary numerical
results.

I. MATHEMATICAL FORMULATION AND CONCEPTS

a) Notations: Throughout the article, (E, (· | ·)) is an
inner product space over the field of real numbers of finite
dimension n. The induced norm of a vector x ∈ E is denoted
by ‖x‖ =

√
(x | x). E can also be seen as a metric space,

induced by the distance defined by d(x, y) = ‖x − y‖ for
x, y ∈ E. The components of a vector x ∈ E are written in
superscript as x(1), . . . x(n). The `-norm, ` ∈ N, of a vector
x ∈ E is ‖x‖` =

(∑n
i=1 |x(i)|1/`

)`
and the infinity norm

is ‖x‖∞ = maxi=1...n |x(i)|. The distance associated to the
`-norm will be denoted by d`.

b) Model: The tokens x1, . . . , xN are realizations of a
discrete random vector X valued in J0, cKn ⊂ E. This is
equivalent to say that each xi, i = 1 . . . N is a realization of
a random variable Xi, i = 1 . . . N , Xi’s being independent
and identically distributed (i.i.d.) with the same law as each
component of X .

We decompose a vector x ∈ E into p parts as follows.
Choose n1, . . . , np ∈ N such that n = n1 + · · · + np and
define for j = 1 . . . p, the projections πj : E → Rnj by
πj(xi) = (x

(sj+1)
i , . . . , x

(sj+1)
i ) and sj =

∑j−1
k=1 nk (with the



convention s1 = 0). Hence, the components of a vector x ∈ E
in the canonical basis are the components of the concatenation
of the vectors πj(x), j = 1 . . . p.

c) Necessary conditions: Assume that for all n > 0 and
1 ≤ p ≤ n, there exists ε > 0 such that

(A1) ‖x1 − x0‖ < ε,
(A2) for all k ∈ {2, . . . , N}, there exists j ∈ {1, . . . , p} such

that |‖πj(xk)‖ − ‖πj(x0)‖| ≥ ε.
A quick look at these conditions gives that the nearest neighbor
of x0 in the token space {x1 . . . xN} is x1. Indeed, we have
d(x0, x1) < ε and for k ∈ {2, . . . , N} and j ∈ {1, . . . , p},
d(x0, xk) ≥ d(πj(x0), πj(xk)) ≥ ε.

Our new algorithm is based on the following theorem.

Theorem 1. If (A1), (A2) hold, then we have

argmin
k∈{1,...,N}

max
jk∈{1,...,p}

|‖πjk(xk)‖ − ‖πjk(x0)‖| = 1. (1)

Proof. Let e1, . . . , en be an orthogonal basis of (E, (· | ·)). For
x ∈ E, the vector πj(x) denotes the orthogonal projection of a
vector x on Ej = span(esj+1, . . . , esj+1

). From (A1), we get
‖πj(x0−x1)‖ < ε, ∀j = 1 . . . p. For each k ∈ {1, . . . , N}, we
compute jk ∈ {1, . . . , p} such that |‖πjk(xk)‖ − ‖πjk(x0)‖|
is maximal. Once we have such projection πjk , suppose that
m ∈ {2 . . . N} satisfies

|‖πjm(xm)‖− ‖πjm(x0)‖| = min
1≤k≤N

|‖πjk(xk)‖− ‖πjk(x0)‖|.

Then, we have

|‖πjm(xm)‖ − ‖πjm(x0)‖| ≤ |‖πj1(x1)‖ − ‖πj1(x0)‖|
≤ ‖πj1(x1 − x0)‖
< ε,

and, for all ` ∈ {1 . . . p},

|‖π`(xm)‖ − ‖π`(x0)‖| ≤ |‖πjm(xm)‖ − ‖πjm(x0)‖|.

Hence, we deduce

|‖π`(xm)‖ − ‖π`(x0)‖| < ε, ∀` ∈ {1 . . . p},

which contradicts the assumption (A2). Therefore the min-
imum in (1) is attained at k = 1 and this concludes the
proof.

II. A NEW APPROACH FOR FINDING A PERTURBED TOKEN
IN A TOKEN SET

A. A variant of the nearest neighbor search

We cannot implement directly the optimization problem
given in Theorem 1 because it would require for a given token
x0 to compute the quantities |‖πj(xk)‖ − ‖πj(x0)‖| for all
k = 1 . . . N and j = 1 . . . p and it offers no benefit over a
naive NNS.

We propose in Algorithm 1 a new method to decide whether
a given token x0 is a neighbor of a token of T . The main point
is not to break the dimensionality but to construct a reduced

Input:
• The dimension n of E,
• a token set T = {x1, . . . , xN} and a token x0 ∈ E
• the number p of projections πj ,
• the sorted N -tuples Pj , j = 1 . . . p composed of the

numbers ‖πj(xk)‖, k = 1 . . . N ,
• the permutations σj , j = 1 . . . p obtained from the

sort of Pj (σj(k) is the position of ‖πj(xk)‖ in Pj),
• an integer η

Output: Return the nearest token of x0 in T provided
η is well chosen.

for j = 1 . . . p do
insert ‖πj(x0)‖ at the right place in Pj ;
update (σj(k))k=1...N ;

end
I = ∩pj=1{ σ−1j (max(σj(0)− η, 0)), . . . ,

σ−1j (min(σj(0) + η,N))} \ {x0}
;

return The nearest token of x0 taken in I;
Algorithm 1: Nearest token search with projective dis-
crimination.

set of tokens satyfying the conditions (A1)− (A2) using the
functions x→ ‖πj(x)‖, j = 1 . . . p.

We have the following proposition.

Proposition 2. Given any token set satisfying the assumptions
(A1)−(A2) and any integer η, Algorithm 1 is exact for p = 1.

a) Discussion: The main drawback is that the algorithm
is not exact if η is too small, except for the case p = 1, where
the algorithm is exact for any η provided (A1) − (A2) are
satisfied. This is illustrated by the following situation where
N = 3, n = p = 2 and x0 = (1, ε), x1 = (0, 0), x2 =
(α2, ε/2), x3 = (2, β2), and α, β ∈ R and ε > 0. If α, β are
large enough, we would like the Algorithm 1 to return x1. We
have P1 = (0, 1, 2, α2), σ1 = (1, 0, 3, 2), P2 = (0, ε/2, ε, β2),
σ2 = (2, 0, 1, 3) and for η = 1 we have I = {3}, which yields
the wrong index.

A naive NNS computes all the distances d(xk, x0), k =
1 . . . N and keep the smallest one. Note that even if we use
an adapted data structure to allocate T (dictionary, Adelson-
Velsky and Landis tree, self-organising binary search tree
. . . ), we would still need to compute all the distances for
a new token x0. Algorithm 1 begins with sorting the lists
(‖πj(xk)‖)k to construct Pj for j = 1 . . . p only once
(assuming the token set T remains unchanged for further
calls). This step is crucial and this memory allocation is an
other drawback of our algorithm.

The idea of Algorithm 1 is to perform a naive NNS in a
set I , which is drastically smaller then the initial token set T ,
provided the parameter η is small. The crucial and difficult
point is to have an estimation of the parameter η, and Section
II tends to start this analysis using probability theory. Time
comparison between Algorithm 1 and a naive NNS are given
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Fig. 1. Illustrative example for the weakness of the assumption (A2) if
p > 1, compared with p = 1, required by Theorem 1. The assumption (A2)
is satisfied for p = 2, but not for p = 1 due to the token x2.

in Section III.
The number of projections p is an interesting parameter. If

p = 1, we do not recover the naive NNS but the algorithm
becomes exact if the assumptions (A1)-(A2) are sastified. The
assumptions (A1) − (A2) for p > 1 are weaker, in terms of
probability, than for p = 1. This is illustrated by Fig. 1 for
the case n = 2: the nearest neighbor of x0 is x1. If p = 1,
the assumption (A2) is satisfied if the tokens xk, k = 2 . . . N
are outside the annulus delimited by the circles C−ε and Cε. If
p > 1, the assumption (A2) is satisfied if the tokens xk, k =
2 . . . N are outside the square centered at x0 of 2ε side –
represented by the white region. For instance, the point x2
satisfies the assumption (A2) for p = 2 but not for p = 1,
while (A2) is satisfied by the point x3 for p = 1 but not for
p = 2. Computations shall be made to precise the relation
between the assumption (A1)− (A2) and the number p.

Another interesting perspective is to consider Pj =
(f(xk))k=1...N , j = 1 . . . p where f is a given function (we
formulated our algorithm for f = ‖ · ‖) to guarantee that the
parameter η is small enough.

b) Complexity: The sort of the lists Pj , j = 1 . . . p can
be done offline, and we do not take it into account in the
complexity analysis. Contrary to NNS, the number of distance
computations of our algorithm is not relevant, we will deal
with time complexity.

If η∗ corresponds to the optimal value of the parameter η
for which the algorithm 1 returns the nearest token x1, the
time complexity of Algorithm 1 is in O(pη∗) since the time

complexity of the intersection between sets of cardinals 2η∗+1
is O(η∗). The crucial point is then to determine in the average
case or worst case an estimate on η∗ for p > 1.

B. Probability computation

We consider i.i.d. scalar-valued discrete random variables
X

(k)
i , k = 1 . . . n, i = 1 . . . N . The distribution of

Xi is defined from the joint probability mass function of
X

(1)
i , . . . , X

(n)
i , that is:

P (Xi = xi) = P (X
(1)
i = x

(1)
i , . . . , X

(n)
i = x

(n)
i ). (2)

Since the random variables X(k)
i , k = 1 . . . n, i = 1 . . . N are

independent, we have

P (X
(1)
i = x

(1)
i , . . . , X

(n)
i = x

(n)
i )

= P (X
(1)
i = x

(1)
i ) . . . P (X

(n)
i = x

(n)
i ).

For the application, the number of tokens N is fixed and
our aim is to prove that

P (∃i 6= j, d(Xi, Xj) ≤ ε)

is small, where d is a distance on E. We will treat the case
where the distance d is the Euclidean distance, or induced by
the L1 and L∞ norm.

a) Scalar case: The random variables Xi, i = 1 . . . N
are valued in J0, cKn. We recall properties to manipulate
discrete random variables, see [4] for details.

Definition 3. Let U be a discrete random variable valued
in J0, cK. The probability generating function of U is the
polynomial function

GU (z) =

c∑
k=0

P (U = k) zk.

Lemma 4. The probability generating function of the sum
U +V of two independent discrete random variables U , V is
GU+V (z) = GU (z)GV (z).

Lemma 5. Given two i.i.d. random variables U, V valued
in J0, cK, the probability generating function of the variable
|U − V | is G|U−V |(z) =

∑c
k=0 P (|U − V | = k) zk with

P (|U − V | = 0) =

c∑
i=0

p2i (3)

andP (|U − V | = 1)
...

P (|U − V | = c)

 = 2H(p1, . . . , pc)

 p0
...

pc−1

 , (4)



where pk = P (U = k) = P (V = k), k = 0 . . . c
and H(p1, . . . , pc) is the Hankel matrix associated to the
probabilities p1, . . . , pc defined by

H(p1, . . . , pc) =



p1 p2 p3 . . . pc
p2 p3 . . . pc 0
... . .

.
. .
. ...

... . .
.

. .
. ...

pc 0 . . . . . . 0

 .

b) Euclidean norm:

Proposition 6. Let Xi, Xj be two random variables valued
in J0, cKn. Then, for m ∈ J0, . . . , bc

√
ncK, we have

P (‖Xi −Xj‖2 ≤ m) =

m2∑
k=0

[zk]
(
G(U−V )2(z)

)n
, (5)

where [zk]Q(z) denotes the coefficient of the monomial
of degree k of the polynomial Q(z), that is [zk]Q(z) =

k!
dkQ(z)

dzk |z=0
, and U, V are random variables with the same

distribution than the marginal distribution of Xi, Xj .

Proof. Since (X
(k)
i −X

(k)
j )2, k = 1 . . . n are independent and

have the same law as (U−V )2, the distribution of U, V being
the distribution of X(k)

i , X
(k)
j then by Lemma 4 we have for

m ∈ J0, . . . , bc
√
ncK,

P (‖Xi −Xj‖2 ≤ m)

= P

(
n∑
k=0

(
X

(k)
i −X(k)

j

)2
≤ m2

)

=

m2∑
k=0

[zk]
(
G

(X
(1)
i −X

(1)
j )2

(z) . . . G
(X

(n)
i −X(n)

j )2
(z)
)
,

which yields the result.

To compute the polynomial G(U−V )2(z) in Proposition 6,
observe that,

G(U−V )2(z) =

c2∑
k=0

P ((U − V )2 = k) zk

=

c∑
k=0

P (|U − V | = k) zk
2

,

(6)

and P (|U − V | = k), k = 0 . . . c can be found using Lemma
5.

The following proposition characterizes the proximity of
two tokens.

Proposition 7. The probability that among the set of tokens
T = {x1, . . . , xN} with ∀i = 1 . . . N, xi ∈ {0, . . . , c}n and
xi being a realization of a random variables Xi, there exists

at least two tokens in the 2-ball of radius m/2, m ∈ J0, cK,
centered at the origin, is

P (∃i 6= j ∈ {1, . . . , N}, ‖Xi −Xj‖2 ≤ m)

≤ N(N − 1)

m2∑
k=0

[zk]
(
G(U−V )2(z)

)n
,

where G(U−V )2(z) =

c∑
k=0

P (|U − V | = k) zk
2

and the

distribution of U, V is the same as the marginal distribution
of Xi, Xj .

Proof. Computing, we have

P (∃i 6=j ∈ {1, . . . , N}, ‖Xi −Xj‖2 ≤ m)

= P (∪1≤i 6=j≤N , ‖Xi −Xj‖2 ≤ m)

≤
∑

1≤i 6=j≤N

P (‖Xi −Xj‖2 ≤ m)

= N(N − 1)P (‖Xi −Xj‖2 ≤ m),

= N(N − 1)

m2∑
k=0

[zk]
(
G(U−V )2(z)

)n
,

(7)

using Proposition 6.

It is clear that limn→∞ P (‖Xi−Xj‖ ≤ m) = 0. To have an
estimate on the convergence rate, we apply a central limit theo-
rem as follows. For each couple (Xi, Xj), 1 ≤ i < j ≤ N , we
associate n scalar random variables Aijk, k = 1 . . . n defined
by Aijk = (X

(k)
i −X(k)

j )2 and their probability law is given
by (6). We denote by µ and σ2 6= 0 the expectation and the
variance of Aijk respectively. The central limit theorem asserts
that 1/n

∑
k Aijk converges in probability to N (µ, σ2/n),

hence we get for m ∈ J0, c
√
nK:

lim
n→+∞

P

(
‖Xi −Xj‖2√

n
≤ m

)
= lim
n→+∞

P

(∑n
k=1Aijk
n

≤ m2

)
=

∫ m2

−∞

1√
2πσ/

√
n

exp

(
−1

2

(
x− µ
σ/
√
n

)2
)

dx

=
1

2

(
1 + erf

(
ζn(m2)

))
,

(8)

where ζn(x) = x−µ√
2σ/
√
n

and erf is the Gauss error function

defined by erf(x) =
2√
π

∫ x

0

exp(−t2) dt. We have shown the

following theorem, illustrated in Fig.2, which represents the
probability P (‖Xi − Xj‖22 ≤ m2), m = 0 . . .

√
nc, where

Xi, Xj follow a uniform distribution on J0, cKn (c = 9, n =
256).
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Fig. 2. (dashed line) Probability P (‖Xi − Xj‖2 ≤ m) where Xi, Xj

are uniform random variables valued in J0, cKn, n = 256, c = 9 computed
using (3)-(4) form = 0, . . . , n c. µ corresponds to the expectation of (X(k)

i −
X

(k)
j )2. (continuous line) Limit case where n → +∞ computed using (8)

(see Theorem 8).

Theorem 8. Consider two random variables Xi, Xj valued
in {0, . . . , c}n. The marginal distributions of their components
are the same and we note the expectation µ. Then, we have

lim
n→+∞

P

(
‖Xi −Xj‖2√

n
≤ m

)
=

 1 if m2 > µ
1
2 if m2 = µ
0 if m2 < µ

.

Theorem 8 answers the question raised at the beginning of
Section II-B: for any fixed N , m and c, we can find n such
that the probability that the assumptions of Theorem 1 are
satisfied is arbitrary close to 1.

Remark 9. The random variables Aijk, k = 1 . . . n may not
follow the same probability law. In that case, we shall use a
more generalized version, namely the Lindeberg central limit
theorem [5].

Remark 10. The rate of convergence of
limn→+∞ P

(
‖Xi−Xj‖2√

n
≤ m

)
can be precised using

the asymptotic development of the Gauss error function as
n→ +∞ which is

erf (ζn(m2)) =

 −1 +O
(√

n exp(−nk2)
k
√
π

)
if m2 < µ

1 +O
(√

n exp(−nk2)
k
√
π

)
if m2 > µ,

(9)
where k = m2−µ√

2π
. We obtain

P

(
‖Xi −Xj‖2√

n
≤ m

)
= O

(√
n e−nk

2
)

if m2 < µ.

We illustrate this convergence in Figure 2.

c) Generalization for other distances: Theorem 8 can
be adapted for the d-norm, 1 ≤ d < +∞, since ‖x‖dd =∑n
k=0 |xk|d is a sum of n scalar. Next, we present other

methods to derive Theorem 8 for the 1-norm and the infinity
norm in the uniform case.

1-norm , Xi, Xj uniform. Even if we can adapt the method
presented above for the 2-norm, we propose another method
to compute the probability P (‖Xi −Xj‖1 ≤ m). Denote by
C∗n,m the number of tuples (xi, xj) ∈ (J0, cKn)2 such that
‖xi − xj‖1 ∗ m, where ∗ ∈ {=,≤}. Enumerating the c + 1
cases where the vector xi − xj has its last component equal
to 0, 1, . . . , c, we get the following recurrence relation

C=
n,m =

c∑
k=0

C=
n−1,m−k δ

=
k , (10)

where δ=m is the cardinal of the set {(a, b) ∈ {0, . . . , c}2, |a−
b| = m} for m ∈ {0, . . . , c} and is equal to

δ=m =

{
c+ 1 if m = 0
2(c−m+ 1) if m > 0

.

We can then use dynamic programming to compute C=
n,m

efficiently and from the equality C≤n,m =

m∑
i=0

C=
n,i, we can

compute the probability P (‖U − V ‖1 ≤ m).

Infinity norm, Xi, Xj uniform. In this case, we can easily
derive an analytical expression for P (‖Xi−Xj‖∞ ≤ m). For
m ∈ {0, . . . , c}, let ∆≤n,m be the cardinal of the set {(u, v) ∈
({0, . . . , c}n)2, ‖u − v‖∞ ≤ m}. The cardinals δ∗m, ∗ ∈
{=,≤}, of the sets {(a, b) ∈ {0, . . . , c}2, |a − b| ∗ m} for
m ∈ {0, . . . , c} are

δ=m =

{
c+ 1 if m = 0
2(c−m+ 1) if m > 0

and

δ≤m =

m∑
i=0

δ=i = (c+ 1)(2m+ 1)−m(m+ 1).

(11)

Hence, using the relation ∆≤n,m = (δ≤m)n, we obtain

P (‖Xi −Xj‖∞ ≤ m) =
∆≤n,m

(c+ 1)2n
= (1− zm)

n
,

where zm = (c−m)(c+ 1−m)/(c+ 1)2.
Following the proof of Proposition 7, we deduce the proposi-
tion:

Proposition 11. The probability that, among the set of tokens
T = {x1, . . . , xN}, where ∀i = 1 . . . N, xi ∈ J0, cKN , there
exists at least two tokens in a ball of radius m/2, m ∈ J0, cK
for the infinity norm is

P (∃i 6= j ∈ {1, . . . , N}, ‖Xi −Xj‖∞ ≤ m)

≤ N(N − 1)

2
(1− zm)n,

(12)

where zm = (c−m)(c+1−m)/(c+1)2. Moreover for every
m < c and N fixed, this probability tends to 0 as n→ +∞.

III. NUMERICAL RESULTS

We present in this section numerical results of the imple-
mentation of Algorithm 1 and a naive NSS algorithm using the
Python v3.8 and the Numpy computing package and executed



Fig. 3. Optimal value for the parameter η∗ in Algorithm 1 for different values
of N (hundred calls of Algorithm 1 were executed and the value of η∗ is
averaged). The parameter η∗ is related to the size of the set I where the NNS
is performed at the end of Algorithm 1, while N is the number of tokens and
corresponds to the size of the set where the NNS is performed for the naive
approach.

on the High Performance Computing cluster from Burgundy
University1.

The token set is generated from a discrete uniform distri-
bution. We have N = 106 tokens of dimension n = 256
generated by a discrete uniform distribution valued in J0, cK,
c = 9. We denote the running times t1 and tn for Algorithm 1
and the naive NSS respectively. Recall the naive NSS consists
in computing the minimal distance among d(xk, x0), k =
1 . . . N , hence its complexity is usually characterized by the
number of calls of the distance function d. For algorithm 1, we
choose η = N/(n/p), which is an empirical value – different
from the optimal value – and is incremented if x1 is not the
returned token. For p = 1, the average ratio tn/t1 over a
hundred calls is more than 60 and the average optimal value
η∗ is represented in Fig.3 for several values of N .

IV. CONCLUSION

We present an algorithm based on projective filtering to
compute the nearest neighbor of a token under some geometric
assumptions considering different distances. We analyze the
assumptions in terms of probability and show that, we need
to choose high dimensional token (the dimension of a token
being its number of digits) to satisfy the assumptions.

Other filtering functions can be used and an interesting
perspective is to characterize them in terms of regularity and
probability computation.

The proposed algorithm is exact if the parameter η is large
enough, and this parameter can be estimated with respect to
some refine conditions. In this direction, a scalability study
shall be investigated together with average-case complexity
for the presented algorithm.

1https://ccub.u-bourgogne.fr/dnum-ccub/
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TABLE I
NOMENCLATURE OF PARAMETERS FOR ALGORITHM 1

Variable Description Order of magnitude

N the number of token in the database 107

n the dimension of a token space 100

c the maximum value of a component of a token 10

p the number of projections the number of tuples ≤ n

η
half of the size of the projected sets

N/(n/p)that are intersected to select potential neighbors


