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Abstract—Face presentation attacks (PA), also known as spoof-
ing attacks, pose a substantial threat to biometric systems
that rely on facial recognition systems, such as access control
systems, mobile payments, and identity verification systems. To
mitigate the spoofing risk, several video-based methods have been
presented in the literature that analyze facial motion in successive
video frames. However, estimating the motion between adjacent
frames is a challenging task and requires high computational cost.
In this paper, we rephrase the face anti-spoofing task as a motion
prediction problem and introduce a deep ensemble learning
model with a frame skipping mechanism. In particular, the
proposed frame skipping adopts a uniform sampling approach
by dividing the original video into video clips of fixed size. By
doing so, every nth frame of the clip is selected to ensure that the
temporal patterns can easily be perceived during the training of
three different recurrent neural networks (RNNs). Motivated by
the performance of individual RNNs, a meta-model is developed
to improve the overall detection performance by combining
the prediction of individual RNNs. Extensive experiments were
performed on four datasets, and state-of-the-art performance is
reported on MSU-MFSD (3.12%), Replay-Attack (11.19%), and
OULU-NPU (12.23%) databases by using half total error rates
(HTERs) in the most challenging cross-dataset testing scenario.

Index Terms—Face Presentation Attack Detection, Ensemble
Learning, Frame Skipping, Recurrent Neural Network, Deep
Learning

I. INTRODUCTION

Face recognition technology has been used in various fields,
such as automated teller machines (ATMs), retail and market-
ing, automatic border control, security and law enforcement
[1]. However, there are various physical and digital attacks,
such as 3D mask attacks [2], deep fake face swapping [3],
face morphing [4], face adversarial attacks [5], and so on,
that can limit the applications of facial recognition technology.
Therefore, developing robust countermeasures to detect face
representation attacks is critical to improving the security of
biometric systems and ensuring the widespread adoption of
this technology.

The main issue for face PAD is to identify and ana-
lyze the unique visual and behavioral characteristics of both
live and spoofed facial images because both classes contain
spatiotemporal information. Recent studies show that video-
based methods [8, 9, 10] can potentially be more effective
than image-based methods [11, 12, 13]. This is due to the
fact that video provides additional information and context
that can help discriminate real and fake faces. For instance,
a real face not only exhibits the appearance of the face but
also small and subtle movements, such as eye blinks and

Fig. 1: Illustration of the necessity of using the frame skipping
mechanism. The top four rows show sequence [6] and clip
prediction [7]. In this work, we exploit temporal coherence in
videos by proposing a frame skipping mechanism that requires
a single frame in a video clip. In this way, the natural motion
of the object along the time axis provides rich information
to recurrent neural networks for temporal cue prediction and
improves presentation attack detection.

facial expressions, which can reveal important cues about the
authenticity of the face [14]. Moreover, temporal cues (i.e., the
temporal consistency of the face over time) provide additional
information, whereas a fake face may appear rigid and static.
Despite the success of video-based methods, domain gener-
alization is one of the main challenges that still need to be
addressed in the face anti-spoofing domain. In our work, we
define generalizability as the extent to which a model is trained
and tuned on one or multiple databases and then applied to
out-of-sample unseen data.

There are many generalization-related research topics such
as ensemble learning, data augmentation, transfer learning,
meta-learning, and so on. In particular, domain generalization
is important in face anti-spoofing because new datasets are
expensive and time-consuming to collect and annotate in real-
world scenarios. Moreover, testing data can come from differ-
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Fig. 2: Flowchart of our proposed method. First, a video X is divided into non-overlapping segments of smaller length x to
perform uniform frame sampling. Then, every nth frame of the segment is selected for training the model. As the remaining
frames of the segment are skipped, we train multiple recurrent neural networks to predict the temporal cues and form a
meta-model to improve generalization of PAD.

ent illumination conditions or environments than the training
data. Therefore, in order to improve the generalization, vari-
ous methods, such as adversarial learning [15], meta pattern
learning [16], generative domain adaptation [17], hypothesis
verification [18], or cross-adversarial learning [19], have been
proposed that train the model on multiple datasets, but the
detection performance remains limited due to a substantial
distribution difference among source domains.

In a typical PAD video, not all the frames are equally
important, and processing every frame is computationally
expensive [1]. Thus, frame selection approaches have been
often used to reduce the computational cost. For instance,
Usman et al. [20] proposed to convert the video sequences
into a single RGB frame based on the Gaussian weighting
function. The authors claimed that frame aggregation can
amplify motion cues, such as head movements, and surface
edges. Another approach to frame selection is to identify
key frames that capture important moments or events in the
video sequence [21]. In particular, the optical flow has been
used for motion analysis and to identify significant changes
between two adjacent frames [22]. It provides a set of motion
vectors that represent the motion between frames. Moreover,
the global motion was found to be critical in face anti-
spoofing that discriminates camera motion and natural motion
of the objects along the time axis [23]. The frame selection
methods that rely on clip order prediction [7] or a sequence
sorting task [6] in self-supervised learning enable the model
to learn meaningful representations from unlabeled video data.
However, these approaches extract features from all the frames
of the video. We argue that a frame selection approach that
involves motion estimation [22, 23, 1] between the frames can
be costly to train and may lead to potential stability issues.
Thus, effective handling of such spatiotemporal variations is
pivotal to improving the performance of face anti-spoofing
systems.

As mentioned above, most of the motion estimation methods

are designed to satisfy the PAD performance, while compu-
tational cost is mostly ignored. In an attempt to fill this gap,
we propose to use a subset of frames by selecting a uniform
sampling that does not require estimating the motion between
adjacent frames and assumes that selected frames convey
relevant information about human faces. Fig. 1 illustrates our
approach. In particular, we attempt to make an alternative way
of predicting the temporal changes through training different
recurrent neural networks (RNNs) that model the sequential
information across the video frames. Motivated by this, we
also address the domain generalization issue by combining
the predictions of each RNN and then develop a meta-model
based on the idea of stacking-based ensemble learning [24].
Intuitively, this idea has at least three main advantages. First,
using 4 to 7 frames is sufficient, since it does not require any
additional analysis or processing of the video frames. Second,
the computational cost is significantly reduced because only a
few images will be enough for subsequent analysis, instead of
all frames during both training and test phases. Third, we can
easily control the number of frames selected from the video
sequence by adjusting the sampling rate.

The rest of this paper is organized as follows. Section II
explains all the steps of the proposed method. Section III
discusses the details of experimental results with state-of-the-
art performance comparison. Finally, Section IV summarizes
the main outcomes with conclusive statements and perspective
works.

II. METHODOLOGY

Our work focuses on predicting the temporal dynamics
across video frames. Since the 2D CNNs are well-suited for
capturing spatial information (i.e., edges, corners, and tex-
tures), we use different variants of recurrent neural networks
for capturing temporal dependencies across video frames.
Firstly, frame skipping is applied to select only a subset of the
frames, which can help to reduce the need of computational



resources and improve the efficiency of the analysis. Secondly,
a CNN is utilized to extract spatial information. Then, several
RNN-based models are trained on the same dataset, and their
predictions are combined into a single meta-model. Each of
the above steps is explained in the following sub-sections.

A. Frame Skipping Mechanism

Selecting important frames for face anti-spoofing is a rel-
atively new area. A fundamental yet challenging problem
in detecting real and attack videos is dealing with temporal
variations. Since there is no fixed duration of real and attack
videos in most of the PAD datasets, this boils down to
the question of how many frames in the video contribute
to face anti-spoofing. Moreover, the high computational cost
associated with the optical flow method makes it impractical
for real-time applications or large-scale video processing tasks.
Conventionally, motion estimation is performed between every
two adjacent frames in a video clip. However, in the context of
face anti-spoofing, the frames that show changes in facial ex-
pression or movement between two adjacent frames also vary.
Thus, computing the motion between every pair of frames
in a video clip can be computationally expensive, especially
when two adjacent frames are highly similar. Motivated by
the aforementioned observations and the emergence of new
methods for focusing on the most relevant frames only [20],
we propose the integration of a frame skipping mechanism to
show that 4 to 7 frames are sufficient for state-of-the-art face
presentation attack detection. In particular, we adopt a uniform
frame sampling method that selects a subset of frames from
a video sequence to improve the efficiency of the detection
process. More specifically, to generate a subset of frames, a
video is equally divided into non-overlapping segments where
the total number of frames in the video are represented as T ,
and each segment consists of thirty frames. Let’s assume that
n segments are generated, and only the last frame of each
segment is saved. Thus, we can use the following equation:

L = min(T, n · 30) (1)

where L represents the last frame saved, T is the total number
of frames in the video, n is the number of segments, and
we take the minimum between T and n · 30 to ensure that
we only select and save one frame from each segment while
considering the available frames in the video.

B. Deep Ensemble Learning

An illustration of the overall framework is provided in Fig.
2. First, we employed a pre-trained CNN for extracting spatial
information. Our proposed feature extraction part extracts
the deep features from the pooling layer of a CNN model.
In the next stage, instead of training several different CNN
architectures, three different RNNs are trained to get the
benefit of the frame skipping mechanism. To achieve this,
ensemble learning is proposed by combining the strength of
each RNN model to form a single meta-model. The meta-
model takes the predictions from the base models as input
and produces a final detection. Our motivation behind stacking

Algorithm 1: Deep Ensemble Learning

Input: I = {ai, bi}lj=1

Output: Rf

for i← 1 to N do
Learn L1 based on I // L1 is LSTM with

its hyper parameter
end
for i← 1 to N do

Learn L2 based on I // L2 is BiLSTM
with its hyper parameter

end
for i← 1 to N do

Learn L3 based on I // L3 is GRU with
its hyper parameter

end
for i← 1 to N do

R1 = I(L1) // Predict R1 given
data I and model L1

R2 = I(L2) // Predict R2 given
data I and model L2

R3 = I(L3) // Predict R3 given
data I and model L3

end
for n← 1 to l do

Rf = (R1 +R2 +R3)
end

is that by combining the predictions of multiple models, the
overall performance of the system can be improved. Stacking,
also known as a stacked generalization, is a technique used
in ensemble learning, which involves training a meta-model
that learns to combine the predictions of multiple base models
[24]. In our work, three bases models, such as Long short-term
memory (LSTM) [31], Bidirectional long short-term memory
(BiLSTM) [32], and Gated recurrent unit (GRU) [33] are
adopted.

The first base model (LSTM) captures the temporal patterns
and dynamics across frames by processing the CNN features
sequentially. In particular, LSTM analyzes the sequential input,
one by one, maintaining an internal memory that retains
information from previous sequence while considering the
current sequence. Specifically, LSTM contains memory cells,
which enable it to selectively remember or forget information
over time [31]. The second base model (BiLSTM) processes
the sequential features in temporal order, either forward or
backward, allowing it to capture both past and future temporal
dependencies in the video data [32]. The third base model
(GRU) showed that gating is indeed helpful in general and
useful to capture the temporal dependencies of the face over
time [33]. The model processes visual features in a temporal
sequence by updating its hidden state based on the current
input and its previous hidden state.

After training these sub-models, we simply concatenate



TABLE I: Performance evaluation using MSU-MFSD (M), CASIA-MFSD (C), Replay-Attack (I), and OULU-NPU (0)
databases. Comparison results are obtained directly from the corresponding papers in terms of HTER(%) and AUC(%).

O&C&I to M O&M&I to C O&C&M to I I&C&M to O
Method HTER AUC HTER AUC HTER AUC HTER AUC
MADDG [25] 17.69 88.06 24.50 84.51 22.19 84.99 27.89 80.02
DAFL [26] 14.58 92.58 17.41 90.12 15.13 95.76 14.72 93.08
SSDG-R [27] 7.38 97.17 10.44 95.94 11.71 96.59 15.61 91.54
DR-MD [28] 17.02 90.10 19.68 87.43 20.87 86.72 25.02 81.47
MA-Net [29] 20.80 — 25.60 — 24.70 — 26.30 —
RFMetaFAS [8] 13.89 93.98 20.27 88.16 17.30 90.48 16.45 91.16
FAS-DR-BC(MT) [30] 11.67 93.09 18.44 89.67 11.93 94.95 16.23 91.18
ASGS [1] 5.91 99.88 10.21 99.86 45.84 76.09 13.54 99.73
HFN + MP [16] 5.24 97.28 9.11 96.09 15.35 90.67 12.40 94.26
Cross-ADD [19] 11.64 95.27 17.51 89.98 15.08 91.92 14.27 93.04
FG +HV [18] 9.17 96.92 12.47 93.47 16.29 90.11 13.58 93.55
ADL [15] 5.00 97.58 10.00 96.85 12.07 94.68 13.45 94.43
CNN-LSTM 3.65 99.71 18.29 99.81 13.99 88.62 16.00 87.36
CNN-BiLSTM 5.31 99.40 20.74 90.53 12.01 90.50 22.88 85.33
CNN-GRU 4.74 99.02 36.41 99.34 17.41 87.18 17.94 94.93
Meta-Model (Ours) 3.12 99.89 23.71 99.66 11.19 90.95 12.23 97.70

(a) (b) (c) (d)

Fig. 3: The Receiver Operating Characteristics (ROC) curves. (a) O&C&I to M, (b) O&M&I to C, (c) O&C&M to I, and (d)
I&C&M to O illustrates ROC curves for four datasets.

the outcome (predictions) of all the models and then train
another model based on LSTM [31] architecture. We call this
meta-model because it is applied to leverage the strengths of
individual base models by integrating their predictions in a
way that complements the overall predictive power. Pseudo-
code is provided in Algorithm 1.

III. EXPERIMENTAL SETUP

To evaluate the performance of the proposed ensemble
learning, OULU-NPU database [34] (denoted as O), MSU
Mobile Face Spoofing database [12] (denoted as M), Idiap
Replay-Attack database [35] (denoted as I), and CASIA Face
Anti-Spoofing database (denoted as C) are used in our work.
The Half Total Error Rate (HTER) is reported by taking
the average of the false acceptance rate (FAR) and the false
rejection rate (FRR).

A. Implementation details

The Densely Connected Convolutional Networks
(DenseNet-201) [36] architecture is employed and all
the frames are resized to 224 × 224 to extract deep features.
In particular, 1920-dimensional features from the last pooling
layer are extracted without fine-tuning the model. For the
ensemble learning, the LSTM is trained by using the Adam
optimizer with the hidden layer dimension of 1000, validation
frequency 30, and mini-batch size of 32. The He initializer

[37] is utilized as weight initialization technique and the
learning rate is adjusted to 0.0001. Since no fixed size epochs
were used, an early stopping function [38] was utilized to
prevent overfitting and improve the generalization of the
model. For training the BiLSTM model, we keep the same
parameters as used for training the LSTM except for the size
of the hidden layer dimension which is set to 500. Finally, the
third model, GRU, also follows the same tuning parameters
and only the hidden layer size was decreased to 20. To
develop our meta-model, we train the LSTM model based on
the hidden layer dimension 20, epochs size (i.e., 100), and by
following the same parameters used to train the sub-models.

B. Comparison against the state-of-the-art methods

In Table I, we report the performance of the proposed
method against state-of-the-art deep learning methods. In
particular, various domain generalization methods train the
model on three source databases and test it on a completely
unseen database using the leave-one-out (LOO) strategy. To
make a fair comparison with them, we first compute the equal
error rate (EER) on the testing set of source databases and
then HTER is calculated directly on the target (unseen) dataset.
One can see that the proposed meta-model achieves the best
performance on three protocols of O&C&I to M, O&C&M to
I, and I&C&M to O. We also use another evaluation metric



such as area under the ROC Curve (AUC) to measures the
overall performance of a classifier by measuring the trade-off
between the true positive rate (sensitivity) and false positive
rate (1 – specificity). It can be observed that deep ensemble
learning achieves more than 90% AUC on all the datasets. In
comparison to AUC, HTER shows decreased performance than
AUC because HTER focuses on the equal error rate threshold
and may not be the most relevant or representative measure of
overall performance. Moreover, we also visualize ROC curves
in Fig. 3. The meta-model (ensemble learning) indicates a
better discrimination capability with a higher curve (closer to
the upper left corner).

In comparison to other domain generalization-related meth-
ods, such as adversarial learning [15], disentangled repre-
sentation learning [28], and meta-learning [8, 16, 30], the
proposed ensemble learning demonstrates that predicting the
motion across video frames can lead to a better generalization
capability. Furthermore, since the motion is not computed
between adjacent frames, we do not compare the computa-
tional time with any other motion estimation method such as
optical flow. Thus, the proposed skipping mechanism reduces
the amount of data to process, allowing for faster analysis and
only sacrificing the performance on one dataset (i.e., CASIA)
in comparison to state-of-the-art methods.

IV. CONCLUSIONS

In this paper, we addressed the domain generalization
issue based on ensemble learning and the frame skipping
mechanism. In particular, the skipping mechanism provides
an alternative way of predicting the temporal changes through
training different recurrent neural networks rather than propos-
ing a motion estimation method between the adjacent frames.
Since only certain frames were involved during training, this
approach reduces the computational load and can be imple-
mented in a scenario where real-time performance is crucial.
Moreover, we show that the performance of LSTM, BiLSTM
and GRU remains limited without using the meta-model.
Thus, we conclude that the proposed ensemble learning can
compensate the weaknesses of multiple sub-models and reduce
the overall error rate. Based on the experimental results on four
benchmark datasets, the proposed method exhibits state-of-
the-art performance on three datasets. However, our approach
may not be suitable for applications that require precise frame-
by-frame analysis or rely heavily on temporal information.
Thus, our future work will focus on the development of deep
learning-based methods that can estimate the motion directly
between the frames in end-to-end learning.
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