
Managing the functional variability of robotic
perception systems

Davide Brugali
Department of Computer Engineering

University of Bergamo

24044 Dalmine, Italy

Email: brugali@unibg.it

Nico Hochgeschwender
Department of Computer Science

Bonn-Rhein-Sieg University

53757 Sankt Augustin, Germany

Email: nico.hochgeschwender@h-brs.de

Abstract—Control systems for autonomous robots are concur-
rent, distributed, embedded, real-time and data intensive software
systems. A real-world robot control system is composed of tens
of software components. For each component providing robotic
functionality, tens of different implementations may be available.

The difficult challenge in robotic system engineering consists
in selecting a coherent set of components, which provide the
functionality required by the application requirements, tak-
ing into account their mutual dependencies. This challenge is
exacerbated by the fact that robotics system integrators and
application developers are usually not specifically trained in
software engineering.

Current approaches to variability management in complex
software systems consists in explicitly modeling variation points
and variants in software architectures in terms of Feature Models.

The novel contribution of this paper is the description of
the integration of two modeling languages and toolkit, namely
HyperFlex [14] for functional variability modeling and the
Robot Perception Specification Language (RPSL) [17], a Domain-
specific Language (DSL) enabling domain experts to express the
architectural variability of robot perception systems.

I. INTRODUCTION

Robot control systems are typically designed as (logically)

distributed component-based systems (see [9] for a survey).

A real-world robot control system is composed of tens of

software components. For each component providing a robot

functionality, tens of different implementations may be avail-

able. The initial release of the Robot Operating System (ROS)

[1] in year 2010 already contained hundreds of open source

packages (collections of nodes) stored in 15 repositories

around the world.

Clearly, building complex control applications is a matter of

system integration more than of capabilities implementation.

The difficult challenge consists in selecting a coherent set of

components that provide the required functionality taking into

account their mutual dependencies.

System configuration is a crucial phase, which requires

to select, integrate, and fine tune the robot functionalities

(developed by domain experts) according to the available

resources (requiring maintenance by qualified engineers), the

environment conditions (often beyond the control of the appli-

cation engineer), and the task to be performed (often specified

by unskilled users).

Fig. 1. A youBot mobile manipulation robot performing a precision placement
task.

In previous papers [14], [10] we have presented the Hyper-

Flex Model-driven toolchain and approach for the design of

software product lines for autonomous robotic systems.

The key characteristics of HyperFlex are the support to the

design and composition of architectural models of component-

based functional subsystems, the possibility to symbolically

represent the variability of individual functional subsystems

using the Feature Models formalism [22], and the automatic

configuration of functional subsystems according to selected

features. The HyperFlex approach builds on our experience in

developing software architectures for robotic control systems

in the context of the EU FP7 BRICS project [6].

The novel contribution of this paper is the description of

the integration of HyperFlex with the Robot Perception Spec-

ification Language (RPSL) [17], a Domain-specific Language

(DSL) enabling domain experts to express the architectural

and functional variability of robot perception systems.

The integration has two main benefits. At one side, it

specializes the HyperFlex toolkit with a domain specific ar-

chitectual modeling language and demonstrates the flexibility

of the overall approach. At the other side, it enables the

easy composition of perception subsystems, modeld with the

RPSL framework, with other functional subsystems, such as

manipulation, by explicitly modeling functional dependencies.

2017 First IEEE International Conference on Robotic Computing

978-1-5090-6724-4/17 $31.00 © 2017 IEEE

DOI 10.1109/IRC.2017.20

277

Fig. 2. Perception capabilities of the RoboCup@Work scenario.

The paper is structured as follows. Section II illustrates the

case study used to illustrate the proposed approach. Section

III presents the modeling languages supported by the Hy-

perFlex toolkit and exemplifies their use in the context of

the RoboCup@Work scenarios. Section IV presents the RPSL

approach, the integration with HyperFlex, and the architec-

tural modeling of the perception capabilities required in the

RoboCup@Work scenarios. Section V reports on the related

works. The relevant conclusions are presented in Section VI.

II. CASE STUDY

In this section we motivate our approach with the help

of a case study. The case study has been developed in the

context of two recent scientific robot competitions, namely

RoboCup@Work [18] and RoCKIn [4].

In those competitions mobile manipulation robots are ex-

pected to perform a wide range of manipulation, assemby and

logistic tasks in factory-like environments. In our case study,

a youBot mobile manipulation robot (see Fig. 1) is deployed

in an environment which is composed of service areas. Here,

each service area represents a region of the factory having a

specific purpose for a particular task. For example, areas to

pick objects, to insert objects into object-specific cavities (see

Fig. 1), to place objects into containers, to operate machines

and so forth. Those service areas differ also in terms of height,

width and so forth.

Additionally, some environments includes static obstacles

whereas others are free of obstacles or even include dynamic

obstacles such as other robots and human workers. In the

context of this paper we focus on three possible manipulation

tasks, namely a simple table-top pick, placement and precision

placement of a set of predefined objects in object-specific

cavities.

Fig. 3. Manipulation and navigation capabilities of the RoboCup@Work
scenario.

Developing and configuring the robot software for such

an application is a challenging exercise. All the task and

environment requirements need to be considered in the se-

lection and configuration of crucial robot capabilities such as

manipulation, navigation and perception. For example, simple

placement of an object on a service area requires only a

standard plane and free space detection algorithm whereas

for detecting the object-specific cavities more elaborated and

possibly object-specific algorithms are required.

III. VARIABILITY COMPOSITION AND ABSTRACTION WITH

HYPERFLEX

HyperFlex [14] is a Model-driven engineering (MDE)

toolchain [7] that supports the development of flexible and

configurable robotic control systems. It consists in a set of

Eclipse plugins for the definition and manipulation of three

types of software models, which are completely orthogonal,

i.e. they can vary independently:

• Architectural Models represent the structure of control

systems in terms of component interfaces, component

implementations, and component connectors. The Hy-

perFlex approach promotes the design and composition

of domain-specific software architectures for common

robotic functionality (e.g. robot navigation), which cap-

ture the variability in robotic technologies (e.g. various

algorithms for trajectory generation).

• Feature Models symbolically represent the variant fea-

tures [22] of a control system; symbols may indicate indi-

vidual robot functionality (e.g. marker-based localization)

or concepts that are relevant in the application domain,

such as the type of items that the robot has to transport

(e.g. liquid, fragile, etc.), which affect the configuration

of the control system.

278

Fig. 4. Requirements of the RoboCup@Work scenario

• Resolution Models define model-to-model transforma-

tions, which allow to automatically configuring the ar-

chitecture and functionality of a control system based on

selected features. Eventually, the configured architectural

model is used to deploy the control system on a specific

robotic platform.

An interesting challenge that needs to be faced when using

feature models to represent the variability of a software

product line is the definition of an appropriate vocabulary for

naming variation points and variants. The clear separation of

the symbolic representation of the system variability from its

architectural model allows the definition of multiple Features

Models for the same software system that are meaningful for

system integrators with different needs and expertise.

Our aim is to simplify the system configuration phase by

supporting the definition of feature models at multiple levels

of abstraction using specialized vocabularies for each expert

involved in system configuration.

The community of researchers, who keep implementing

new algorithms for common robot functionalities as open

source libraries, need tools that simplify the configuration of

robotic control systems during test trials in various operational

conditions. System integrators, who are expert in specific

application domains, need tools for the configuration of robot

control systems according to specific application requirements.

For this purpose, HyperFlex supports the composition of

Feature Diagrams representing variability at different level

of abstractions. At each level the feature names abstract the

relevant concepts of the specific domain: low-level names rep-

resent functional and technical terms while high level names

are closer to the application requirements. This approach

ensures that the terminology is well known by the system

integrators that operates on a specific level.

During the variability resolution process, the application

domain expert operates only on the highest-level Feature

Model and the selected features trigger the automatic selection

of features in the lower levels Feature Models.

A. Feature Model Composition

Typically, the expert in robotic functionalities is interested

in a representation of the control system variability that

highlights the different algorithms implemented in the robot

control system. For example, in [8] we have analyzed the

variability in software library that implement motion planning

algorithms. In this context, the relevant features are the type

of bounding-box used by the collision-detection algorithm, the

sampling strategy, and the type of kinematic model (e.g. single

chain, multiple end-effectors).

Figures 2 and 3 shows a screenshot of the HyperFlex

Toolkit that represents the Feature Models of the system

capabilities for the RoboCup@Work scenarios. The former

represents the perception capabilities and the latter expresses

the manipulation and navigation capabilities.

The Feature Model is structured as a tree, where each node

represents a system feature. A feature could correspond to

a variation point (e.g. the Local Planner functionality) or a

concrete variant (e.g. the DWA algorithm for local planning).

A black circle on a child node (e.g. Global Planner) indicates

that the Feature is mandatory, while a white circle indicates

that the Feature is optional.

White triangles indicate that the child features are mutually

exclusive, while black triangles indicate the cardinality of the

279

OR containement association. For example, the perception

system can be configured with algorithms that can recognize

only one specific type of object (e.g. Screw, Nut) or a generic

object. Similarly, it can be configured to recognize only one

or both types of Containers.

The application domain expert is interested in a represen-

tation of the system variability that specifies the application

requirements supported by the robot control system more than

its specific functionality.

Figure 4 depicts the Feature Model of the application re-

quirements for the RoboCup@Work scenarios. It is structured

around three main dimensions of variability, namely the type

of task that the robot should perform, the characteristics of

operational environment, and the available equipment.

For example, the perception system could be a Depth Sensor
(e.g. a Kinect) or a Stereo Camera (e.g. a BumbleBee sensor).

According to the operational environment, the robot should

be configured with different algorithms: a slow and complete

motion planner is adequate for moving among static obstacles

in narrow passages; instead, a fast and approximate motion

planner is needed for dynamic environments.

Clearly, the system integrators should focus on the spec-

ification of the application requirements and should not be

concerned with the functionality that implement them.

HyperFlex provides a tool that allows to link the Feature

Model of the application requirements and the Feature Model

of the system capabilities. For example, the system designer

can specify that the feature Precision Placement in the Re-
quirements Feature Model is linked to the feature Dynamic
Constraints in the Capabilities Feature Model. Similarly, the

feature Static obstacles is linked to feature DWA local planner.

B. Feature Refinement Models

HyperFlex allows the composition of Feature Models and

the automatic generation of their instances according to the

composition strategies described in the previous sections.

The proposed appraoch consists in defining a new transfor-

mation model (called Feature Refinement Model) that specifies

links between the features of a parent Feature Model and

the features of its child Feature Models. Figure 5 shows an

example, where FM A is a parent Feature Model and FM B
and FM C are child Feature Models.

When a new instance of the parent Feature Model is created,

the instances of the child Feature Models should be empty, i.e.

none of the features is selected. This condition allows to create

instances of the child feature models incrementally.

When a feature of the parent FM is selected, all the linked

features should be included in the instance of the child FM.

A feature of the parent FM (e.g. feature a5 in Fig. 5) can be

linked to several features of different child FMs (e.g. features

b4 and c3). Similarly, several features of the parent FM (e.g.

features a2 and a5 in Fig. 5) can be linked to the same feature

of a child FM (e.g. feature b4).

It should be noted that some features of the parent FM (e.g.

feature a6 in Fig. 5) might not be linked to any feature of the

child FMs and vice versa (e.g. feature b3).

Fig. 5. A generalized visualization of the different feature model composition
approaches available in HyperFlex. In the context of the case study Feature
Model FM A represents the requirements Feature Model (see Fig. 4) and
FM B and FM C expresses the perception Feature Model (see Fig. 2)
respectively the manipulation Feature Model (see Fig. 3).

The former case corresponds to the situation where the

parent FM is used to configure directly some properties of

a functional subsystem. For example, the selection of feature

Depth Camera could be associated to a set of parameters that

configure the perception system.

The latter case requires manual selection of some features

of the child FM (e.g. feature Cavity Recognition).

Feature Models can include constraints that limit the set

of possible combinations of selected features. For examples,

features c3 and c4 in Figure 5 are mutually exclusive. It is

not necessary to replicate the constraint in the parent Feature

Model (i.e. FM A), because the HyperFlex tool is able to

report constraint violations in child FM to the user with the

indication of the selected features in the parent FM that caused

them.

The Feature Refinement Model defines a tree structure

between a parent Feature Model and a set of child Feature

Models. Starting from a manual selection of features in the

parent FM, the HyperFlex tool generates instances of the child

Feature Models automatically. This structure can be extended

to trees with an arbitrary number of levels by connecting

Feature Refinement Models hierarchically. Here, the hierarchy

imposes an order according to which the Feature Refinement

Models are processed in order to create an instance of each

intermediate and leaf Feature Model.

The HyperFlex toolchain includes an Eclipse Wizard that

supports the model designer in defining the Feature Refine-

ment models by means of a set of intuitive Eclipse Forms.

280

IV. RPSL: ROBOT PERCEPTION SPECIFICATION

LANGUAGE

The Robot Perception Specification Language (RPSL) [17]

is a Domain-specific Language (DSL), implemented as an

internal, textual DSL in Ruby, which provides suitable ab-

stractions enabling domain experts to express the architectural

variability of robot perception systems.

The RPSL enables a domain expert to model multi-stage

perception systems by composing sensing and processing

components in a perception graph which yields a directed,

acyclic graph (DAG) where sensor and processing components

are nodes. Here, sensing components represent sensors such

as cameras and laser scanners and processing components

encapsulate perception-related functions (e.g. filters, feature

descriptors, and so forth). The sensing components solely

produce data whereas processing components produce and

consume data in a flow-oriented manner.

In our previous work [13] the abstract syntax (metamodel)

and structural constraints of RPSL have been formalized using

the Alloy formal modeling language. The Ruby-based RPSL

implementation conforms to this formalization and ensures

that all the specified constraints are satisfied which in turn

yields well-formed RPSL domain models. To this end, checks

are implemented to (a) ensure that the perception graph is a

DAG, (b) connected ports have the same type, (c) input ports

are connected, and so forth.

The applicability of feature models in the domain of robot

perception [13] strengthened our vision to employ HyperFlex

not only as a method, but also as a tool to model, configure and

compose a robotic system based on several sub-functionalities

which in turn are modeled by domain-specific approaches such

as RPSL. In order to conceptually and technically integrate

HyperFlex with RPSL the following ingredients are required:

• Architectural Models are specified in RPSL in order to

emphasize the domain-specific, architectural aspects.

• Feature Models are specified in HyperFlex in order to

encode the variant features of robot perception system.

• Resolution Models are defined in order to enable a model-

to-model transformation, which allows to automatically

configure the RPSL architecture based on the selected

features in the aforementioned feature model. Such a

configuration eventually requires to modify parameters of

components or even to replace components from existing

perception graphs.

In the context of the case study (see Sec. II) a different

selection of task, environment and platform requirements

significantly effects the perception architecture itself. Let us

consider, for example, two applications with varying require-

ments.

The first application includes an omnidirectional robot

equipped with a RGB-D sensor (e.g. feature Depth Camera
selected) which is expected to place objects in containers lo-

cated at service areas (e.g. feature Simple Placement selected).

Further, the robot is deployed in an environment with static

obstacles (e.g. feature Static selected). The second application

rpsl.feature_resolution do
name "resolution"
resolve "CavityRecognition"

with "contour_detection"
with "template_matching"

end

Fig. 6. An example of a resolution model which resolves the feature Cavity
Recognition with contour_matching and template_matching
components (see Fig. 7.)

differs in the task requirements where the robot is expected

to precisely place objects (e.g. feature Precision Placement
selected) in object-specific cavities (e.g. peg-in-hole task).

Clearly, both applications require different perception capa-

bilities in order to robustly perform the tasks. For example, in

order to place objects in containers the container on a service

area needs to be detected (e.g. Features Service-Area Detection
and Container Recognition selected) whereas for the peg-in-

hole task cavities need to be detected (e.g. Feature Cavity
Recognition selected).

A. Integration of HyperFlex with RPSL

In order to achieve such a systematic composition on feature

model level we employ the techniques described in Sec. III-B.

Basically, three different feature model composition situations

can be distinguished. Firstly, a feature of a parent feature

model is linked to several features of different child feature

models (see feature a5 in Fig. 5). In the context of the

case study the feature Simple Placement in Fig. 4 is linked

both to the feature Container Recognition in Fig. 2 and a

manipulation feature Position Controlled expressing a standard

approach to place objects. Secondly, several features of the

parent feature model are linked to the same feature of a child

feature model (see feature a5 in Fig. 5). Again, in the context

of the case study the feature Container Recognition is linked

to two features in the requirements feature model, namely

the feature Container in case the environment is equipped

with containers and for the task Simple Placement. Further,

we link the feature Precision Placement with the feature

Cavity Recognition which ensures that for this particular task

the required perception capability is automatically selected.

Thirdly, some features of the parent feature model are not

linked to any features of the child feature models and vice

versa (see feature b3 in Fig. 5). For example, in the case study

the feature Rover is not linked to any perception-related feature

in Fig. 2.

In the next step, each feature belonging to the perception

capability (see Fig. 2) is resolved in terms of one or more

perceptual components or even perception graphs modeled

with RPSL (see Fig. 7).

The corresponding resolution model governs a model-to-

model transformation where the source model is an instan-

tiated feature model containing the selected feature and the

target model is an architectural specification of the configured

perception graphs realizing the set of selected features. For

281

example, the feature Cavity Recognition is resolved by two

components (see Fig. 6), namely Contour Detection in order

to detect the object-specific cavities and Template Matching
component which matches the detected contours with a set

of a priori defined object-specific contours. The Template
Matching component also computes the pose of each cavity

using the centroid of the 3D contour with the x-axis along

its principal axis. Nevertheless, for the precision placement

task also other features are selected and the model-to-model

transformation takes those resolutions into account and ensures

that the resolved components are composable. To this end, it is

checked whether their output and input types are compatible.

For example, the mandatory feature Service Area Detection
is resolved by the RANSAC Plane Detection component (see

Fig. 7) which provides a plane which in turn is required

by the contour detection component required for the Cavity
Recognition feature.

The Container Recognition feature on the other hand is

resolved by a perception graph composed of three components,

namely Euclidian Clustering to cluster objects lying on the de-

tected plane, Bounding Box Detection to compute a bounding

box for each cluster which in turn are classified in containers

in the Container Recognition component by using dimension

and color criteria. It is important to note that both architectures

are instantiated with the Depth Camera and RANSAC Plane
Detection component as they are resolved by the feature Depth
Camera (see Fig. 4) and the mandatory perception capability

Service Area Detection.

V. RELATED WORKS

The following subsections illustrates the related works in

three areas: (i) approaches to variability modeling, (ii) ap-

proaches to Feature Models composition, and (iii) variability

modeling approaches in robotics.

A. Design Space Exploration

Modeling the architectures resolving features by domain-

specific approaches as done in this paper raises the question

how to systematically explore the resulting design space. That

is, checking whether the resolved architectures are compatible

from a structural, behavioral, functional and non-functional

point of view. In [21] Saxena and Karsai already showed

that design space exploration can benefit from MDE-based

approaches. Their framework enables domain experts to define

specification languages and the exploration of design spaces

defined in these languages. In our work, we argue it is more

desirable to reuse already existing tools, languages and tech-

nologies rather than implementing a framework from scratch.

B. MDE for software variability management

A survey of recent papers that propose techniques for

Feature Model composition can be found in [3]. The surveyed

approaches mostly focus on model composition techniques

that are dedicated to support semantics preserving model

composition. HyperFlex is a complementary approach, as

it focuses on the automatic generation of Feature Model

rpsl.sensor_component do
name "depth_camera"
add_port :out, "out_port", "point_cloud"

end

rpsl.processing_component do
name "ransac_plane_detection"
add_port :in, "in_port", "point_cloud"
add_port :out, "out_port", "plane"

end

rpsl.processing_component do
name "contour_detection"
add_port :in, "in_port", "plane"
add_port :out, "out_port", "contours"

end

rpsl.processing_component do
name "template_matching"
add_port :in, "in_port", "contours"
add_port :out, "out_port", "poses"

end

rpsl.perception_graph do
name "precision_placement"
connect "depth_camera", "out_port",

"ransac_plane_detection", "in_port"
connect "ransac_plane_detection", "out_port"

"contour_detection", "in_port"
connect "contour_detection", "out_port"

"template_matching", "in_port"
end

rpsl.perception_graph do
name "simple_placement"
connect "depth_camera", "out_port",

"ransac_plane_detection", "in_port"
connect "ransac_plane_detection", "out_port"

"euclidian_clustering", "in_port"
connect "euclidian_clustering", "out_port"

"bounding_box_detection", "in_port"
connect "bounding_box_detection", "out_port"

"container_recognition", "in_port"
end

Fig. 7. An excerpt of the models encoding the perception graphs re-
quired for the simple and precision placement task. One sensor compo-
nent is modeled (depth_camera) and three processing components are
modeled, namely ransac_plane_detection, contour_detection
and a template_matching. Those components are connected in the
precision_placement perception graph yielding a structurally complete
specification of the perception capability required for the precision placement
task. Both the depth_camera and ransac_plane_detection compo-
nents are also used in the perception graph simple_placement. For the
sake of readability configuration parameters of the components (e.g. sensor
properties), data type definitions (e.g. contours, plane, and so forth) and
the missing components for the simple placement graph are omitted.

instances in a tree of variability models that are assumed to

be semantically coherent and correct.

In GenArch [11] the variability model and the configuration

model are represented using the same meta-model, while in

OMG CVL [16] the variability model and the resolution model

are not explicitly separated.

The Compositional Variability [2] approach supports the

hierarchical composition of architectural models and feature

models. The associations between a high-level feature model

and a low level feature models are defined by means of the so

called Configuration Links, which are similar to the feature

dependencies defined in the HyperFlex Refinement Model.
Differently from HyperFlex, this approach defines an abstract

282

component model and does not provide the capabilities for

modeling domain-specific component-based systems.

The approach described in [15] defines three modeling

categories. The Commonality describes the architecture of a

system, in terms of components, sub-components, ports and

connectors. These architectural elements can be enriched with

variation points, which represent the Variability and define

how the common parts can be configured. For example, a

variant for a component variation point can specify that a new

sub-component has to be included in the component. Finally,

the Configuration describes the selection of variants for all

the variation points. The architectural model and the configu-

ration conform to the MontiArc meta-model. Differently from

HyperFlex, this approach condenses all the information in a

single model.

C. Variability Modeling Approaches in Robotics

In recent years, several model-driven approaches and tools

for the development of robotic systems have been proposed,

such as OpenRTM [5], Proteus [12], and Smartsoft [19].

In particular, the SmartSoft model-driven approach supports

robotics variability management by modeling functional and

non-functional properties of robot control system. The ap-

proach addresses two orthogonal levels of variability by means

of two domain specific languages: (a) the variability related to

the operations required for completing a certain task and (b)

the variability associated to the quality of service.

These two variability levels are more related to the exe-

cution of a specific application (in the paper the example

is a robot delivering coffee), while the HyperFlex approach

supports modeling the variability of functional systems and

the variability of the family of applications resulting from the

composition of these functional systems.

VI. CONCLUSIONS AND FUTURE WORKS

In this paper, we presented the integration of HyperFlex, a

model-driven toolchain for composing Feature models accord-

ing to different composition strategies, with RPSL, a DSL to

express architectural variability of robot perception systems.

We demonstrated the feasibility of the approach by means of a

realistic case study. The integrated tooling has been conceived

for symplifying not only the configuration and deployment

of complex control systems of autonomous robots on a func-

tional, but also on an architectural level. Lastly, we would like

to emphasize that this work motivates us to consider further

integration activities of robotic DSLs [20] as both HyperFlex

and RPSL where initially developed independently from each

other, yet their integration was feasible and showed to be

beneficial for structuring the overall development process.

REFERENCES

[1] ROS: Robot Operating System. http://www.ros.org, 2007.
[2] A. Abele, H. Lönn, M.-O. Reiser, M. Weber, and H. Glathe. Epm: a

prototype tool for variability management in component hierarchies. In
Proc. of the 16th Int. Software Product Line Conference-Volume 2, pages
246–249. ACM, 2012.

[3] M. Acher, P. Collet, P. Lahire, and R. France. Comparing approaches to
implement feature model composition. In Modelling Foundations and
Applications, pages 3–19. Springer, 2010.

[4] F. Amigoni, E. Bastianelli, J. Berghofer, A. Bonarini, G. Fontana,
N. Hochgeschwender, L. Iocchi, G. K. Kraetzschmar, P. U. Lima,
M. Matteucci, P. Miraldo, D. Nardi, and V. Schiaffonati. Competitions
for benchmarking: Task and functionality scoring complete performance
assessment. IEEE Robot. Automat. Mag., 22(3):53–61, 2015.

[5] N. Ando, S. Kurihara, G. Biggs, T. Sakamoto, H. Nakamoto, and
T. Kotoku. Software deployment infrastructure for component based
rt-systems. Journal of Robotics and Mechatronics, 23(3):350–359, 2011.

[6] R. Bischoff, T. Guhl, E. Prassler, W. Nowak, G. Kraetzschmar, H. Bruyn-
inckx, P. Soetens, M. Haegele, A. Pott, P. Breedveld, et al. Brics-best
practice in robotics. In Robotics (ISR), 2010 41st International Sym-
posium on and 2010 6th German Conference on Robotics (ROBOTIK),
pages 1–8. VDE, 2010.

[7] D. Brugali. Model-driven software engineering in robotics. IEEE Robot.
Automat. Mag., 22(3):155–166, 2015.

[8] D. Brugali, W. Nowak, L. Gherardi, A. Zakharov, and E. Prassler.
Component-based refactoring of motion planning libraries. In Intelligent
Robots and Systems (IROS), 2010 IEEE/RSJ Int. Conference on, pages
4042–4049. IEEE, 2010.

[9] D. Brugali and P. Scandurra. Component-based robotic engineering (part
i)[tutorial]. Robotics & Automation Magazine, IEEE, 16(4):84–96, 2009.

[10] D. Brugali and M. Valota. Software Variability Composition and
Abstraction in Robot Control Systems, pages 358–373. Springer In-
ternational Publishing, Cham, 2016.

[11] E. Cirilo, U. Kulesza, and C. Lucena. A product derivation tool based
on model-driven techniques and annotations. Journal of Universal
Computer Science, 14(8):1344–1367, 2008.

[12] S. Dhouib, S. Kchir, S. Stinckwich, T. Ziadi, and M. Ziane. Robotml,
a domain-specific language to design, simulate and deploy robotic ap-
plications. In Simulation, Modeling, and Programming for Autonomous
Robots, pages 149–160. Springer, 2012.

[13] L. Gammaitoni and N. Hochgeschwender. Rpsl meets lightning: A
model-based approach to design space exploration of robot perception
systems. In IEEE International Conference on Simulation, Modeling,
and Programming for Autonomous Robots, 2016. to appear.

[14] L. Gherardi and D. Brugali. Modeling and Reusing Robotic Software
Architectures: the HyperFlex toolchain. In IEEE International Confer-
ence on Robotics and Automation (ICRA 2014), Hong Kong, China,
May 31 - June 5 2014. IEEE.

[15] A. Haber, H. Rendel, B. Rumpe, I. Schaefer, and F. Van Der Linden.
Hierarchical variability modeling for software architectures. In Software
Product Line Conference (SPLC), 2011 15th International, pages 150–
159. IEEE, 2011.

[16] O. Haugen, A. Wasowski, and K. Czarnecki. Cvl: Common variability
language. In Proceedings of the 17th International Software Product
Line Conference, SPLC ’13, pages 277–277, New York, NY, USA, 2013.
ACM.

[17] N. Hochgeschwender, S. Schneider, H. Voos, and G. K. Kraetzschmar.
Declarative specification of robot perception architectures. In 4th
International Conference on Simulation, Modeling, and Programming
for Autonomous Robots, 2014.

[18] G. K. Kraetzschmar, N. Hochgeschwender, W. Nowak, F. Heg-
ger, S. Schneider, R. Dwiputra, J. Berghofer, and R. Bischoff.
Robocup@work: Competing for the factory of the future. In RoboCup
2014: Robot World Cup XVIII [papers from the 18th Annual RoboCup
International Symposium, João Pessoa, Brazil, July 15, pages 171–182,
2014.

[19] A. Lotz, J. F. Inglés-Romero, C. Vicente-Chicote, and C. Schlegel.
Managing run-time variability in robotics software by modeling func-
tional and non-functional behavior. In Enterprise, Business-Process and
Information Systems Modeling, pages 441–455. Springer, 2013.

[20] A. Nordmann, N. Hochgeschwender, D. Wigand, and S. Wrede. A
survey on domain-specific modeling and languages in robotics. Journal
of Software Engineering in Robotics (JOSER), 7(1), 2016.

[21] T. Saxena and G. Karsai. Mde-based approach for generalizing design
space exploration. In Proceedings of the 13th International Conference
on Model Driven Engineering Languages and Systems: Part I, MOD-
ELS’10, pages 46–60, 2010.

[22] M. Svahnberg, J. van Gurp, and J. Bosch. A taxonomy of variability
realization techniques. Softw., Pract. Exper., 35(8):705–754, 2005.

283

