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XBotCore: A Real-Time Cross-Robot Software Platform

Luca Muratore! 2, Arturo Laurenzi!, Enrico Mingo Hoffman', Alessio Rocchi!,
Darwin G. Caldwell' and Nikos G. Tsagarakis'

Abstract—In this work we introduce XBotCore (Cross-
Bot-Core), a light-weight, Real-Time (RT) software platform
for EtherCAT-based robots. XBotCore is open-source and is
designed to be both an RT robot control framework and a
software middleware. It satisfies hard RT requirements, while
ensuring 1 kHz control loop even in complex Multi-Degree-
Of-Freedom systems. It provides a simple and easy-to-use
middleware Application Programming Interface (API), for both
RT and non-RT control frameworks. This API is completely
flexible with respect to the framework a user wants to utilize.
Moreover it is possible to reuse the code written using XBotCore
API with different robots (cross-robot feature). In this paper,
the XBotCore design and architecture will be described and
experimental results on the humanoid robot WALK-MAN [17],
developed at the Istituto Italiano di Tecnologia (IIT), will be
presented.

I. INTRODUCTION

One of the main challenges when developing a complex
robotic system is the design and the implementation of a
software architecture, essential for the interaction and the
coordination of hardware and control modules. Ever more
frequently a robot control system has to be able to perform
critical tasks in an autonomous way, satisfying hard RT re-
quirements, i.e. it must guarantee predictable response times.
Furthermore it is necessary to have a software middleware
capable of abstracting the complex hardware (e.g. actuators
and sensors) of the robot providing a simple, standardized
API to control the system. The robotics middleware should
be modular, easy-to-use, robust, reliable, easy to maintain,
efficient, flexible and should provide support for multi-
threading [4].

As a distributed control system the hardware components
of the robot have to communicate using a field-bus system
with RT communication capabilities: we selected EtherCAT
(Ethernet Control Automation Technology), an industrial
protocol built on the Ethernet (IEEE 802.3) specifications
that assures:

o high transmission rate

o minimum roundtrip (reaction) time, w.r.t. other indus-
trial protocols (e.g. CAN, Profibus, etc.) [13]

e precise synchronization (< 1us) by exact adjustment
of Distributed Clocks

« flexible topologies: Line, Star, Tree, Daisy Chain + Drop
Lines can be used in any combination

o easy configuration and implementation

o cost effectiveness

EtherCAT combines an efficient and relatively high speed
message transmission, with the predictability imposed by a
master/slave medium access control policy. All the message
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reception, data processing and frame retransmission oper-
ations are made “on the fly” by the slave nodes, without
any extra delays. Special hardware components, embedded
in the slave’s Ethernet interface, are responsible for these
operations.

RT scheduling is essential for precise robot control period,
especially for high-frequency (e.g. 1 kHz): there are several
operating systems or platforms which support RT operation,
like Windows CE, INtime, RTLinux, RTAI, Xenomai, QNX,
VXWorks. We selected a Linux based RTOS because we
want to avoid a licensed product that does not give us the
possibility to modify the source code depending on our
system. Xenomai is our choice because its design considers
extensibility, portability and maintainability as well as low
latency [2], furthermore it has been already used successfully
in many robotics hardware.

XBotCore is not specific to a single robot or to a class
of robots: its implementation is flexible, generic and cross-
robot. Furthermore it does not depend on any existing
software platform, but it gives to the user the opportunity
to easily integrate any RT or non-RT framework.

II. RELATED WORK

In [3] a low level control framework, called OROCOS
(Open Robot Control Software), is introduced, which pro-
vides a set of components for RT control of robotic systems.
It relies on the Common Object Request Broker (CORBA)
architecture, that allows inter-process and cross-platform
interoperability for distributed robot control. We decided
not to depend on any Inter-Process-Communication (IPC)
framework in order to avoid increasing the complexity of
the software platform.

Very similar to OROCOS is OpenRT-M [1], developed in
Japan from 2002 under NEDOs (New Energy and Industrial
Technology Development Organization) Robot challenge
program. It is based on CORBA, so similar considerations
as for OROCOS can be made w.r.t. the software complexity;
moreover part of OpenRT-M documentation is in Japanese.

YARP (Yet Another Robot Platform) [11] and ROS
(Robot Operating System) [14] are popular component-based
framework for IPC that do not guarantee RT execution
among modules/nodes. It is essential for us to have a
component responsible for the RT control of the robot,
making these frameworks only viable as external (high-level)
software frameworks.

PODO [8] is the framework used by KAIST in HUBO
during the DRC (Darpa Robotics Challenge) Finals. Its
control system has RT control capabilities and its inter-
process communication facilities are based on POSIX IPC;
moreover it uses a shared memory system called MPC to
exchange data between processes in the same machine. This
heterogeneous system has the potential to cause confusion
as it is unclear which architectural style must be used to
communicate with a specific component [7].



In [16] an RT architecture based on OpenJDK is intro-
duced (used by IHMC during the DRC Finals). Nevertheless,
to their own admission [9], none of the commercially avail-
able implementations of the Java Real Time Specification
had the performance required to run their controller. Existing
Real-time Java Support is insufficient.

Considering the above limitations, we started developing
XBotCore from scratch, in order to have a reliable RT control
framework without depending on complex IPC framework.

III. DESIGN GOALS

The design of a software platform that lies at the foun-
dations of a complex system, such as a robotic system, is
the most crucial phase in the software development process.
XBotCore was designed to be both an RT control system and
an easy-to-use, flexible and reusable middleware for RT or
non RT tasks.

XBotCore design goals are the following:

« Hard RT control system: it must perform computation

within predictable timing constraints

o 1 kHz control frequency: robotics applications may
require high frequency control loops, e.g. RT Pattern
Generator for Biped Walking or haptics applications

o Cross-Robot compatibility: it has to work with any
kind of EtherCAT-based robot, without any code mod-
ification. It is crucial to be able to reuse the software
platform with different robots, or different part of the
same robot

« External Framework integration: it has to be possible
to use XBotCore as a middleware for any kind of
external software framework (RT or non RT)

o Plug-in Architecture: users and third parties should
be able to develop their own modules. In a robotic
system platform we need an highly expandable software
structure

o Light-weight: we don’t want too many dependencies on
other libraries, it should be easy to install and set up.
Moreover we expect to run XBotCore on embedded PCs
with low performance requirements in terms of memory
and CPU. We therefore need a small footprint and to
avoid high CPU usage

o Simplicity: it must be simple. Complex systems
may have unneeded and over-engineered features. For
robotics application we need the full control over the
software platform. KISS ("Keep It Simple, Stupid”)
principle is essential; simplicity is a key goal in XBot-
Core design and unnecessary complexity should be
avoided

« Flexibility: XBorCore has to be easily modified or
extended in order to be used in applications or envi-
ronments other than those for which it was specifically
designed

o Open-source: open-source software provides trans-
parency in the software implementation since any devel-
oper can study and modify the code, eventually to the
benefit of the robotics community. Moreover a flexible
license is essential for the free distribution of XBotCore
in other open-source projects

IV. XBOTCORE

As shown in Figure 1 XBotCore consists of 5 main
components: EtherCAT master, Plugin Handler, XBotCore-
Model, RT and non RT middleware API and Communication
Handlers.

External Software Frameworks

1
3 XENOMAI

l Communic
ation

Handler

non RT
API

Plugin
Handler

XBotCore Model

RT
API

ll RT Plugin

EtherCAT
master

EtherCAT Network

]

Figure 1. The diagram shows XBotCore components
interactions: an EtherCAT master RT thread communicates
with the EtherCAT slaves and with the Plugin handler RT
thread which schedules execution of a set of RT plugins. The
Communication Handlers non-RT threads allow interfacing
with non-RT external Software Frameworks

A. EtherCAT master

XBotCore is designed for EtherCAT based robots: we
expect a network of EtherCAT slaves in the system, e.g. the
electronic boards responsible for motor control and sensors
data acquisition. The EtherCAT protocol has a master/slave
medium access control policy: XBotCore EtherCAT mas-
ter implementation is developed starting from the SOEM
(Simple Open EtherCAT Master) library, an open source
implementation, meant to be highly portable on a variety of
embedded platforms (HW and RTOSes) [12]. The structure
of the data flowing in the EtherCAT network is called PDO
(Process Data Object) and it has two different sub-structures:
PDO RX: master input, slave output e.g. link position, motor
position, motor velocity, torque, temperature etc. and PDO
TX: master output, slave input e.g. position reference, torque
reference, gains etc.

Furthermore the XBorCore EtherCAT master provides an
asynchronous API to the higher level components in order
to read/write the PDO data.

B. Plugin Handler

The Plugin Handler is the main component of the RT
plugin architecture: it is an RT thread responsible to start all
the loaded plugins, execute them sequentially (as in [19]),
and close them before unloading them. A Plugin is a class
inheriting from the abstract class XBotPlugin. The Plugin
implementation is compiled as a shared object (.so0). It is
possible to dynamically load and unload one or more plugins
in the Plugin Handler. Writing a Plugin is straightforward
for the user, as he just needs to implement three functions:

e an init () function that will be called only once by

the Plugin Handler in order to initialize the variables
of the Plugin

e a run () function which will be executed in the control

loop of the Plugin Handler



e a close () function, called when the Plugin Handler
wants to remove the plugin

C. XBotCoreModel

XBotCore implies a novel approach to the configuration
of low-level control systems by using modern description
formats such URDF (Universal Robotics Description For-
mat) and SRDF (Semantic Robotic Description Format),
traditionally used for high-level software components (e.g.
ROS nodes). Its main feature is to be a cross-robot soft-
ware platform: thanks to the abstractions provided by the
XBotCoreModel class it is possible to control different
robots or different parts of the same robot without code
modifications. In fact the API provided to control the robot
is dynamically built starting from the URDF and SRDF
of the robot. Modifying the SRDF, removing for example
a kinematic chain (e.g. the torso of the robot), results in
a different API for the user that is compatible with the
available/desired parts of the robot to control. The same
happens when the URDF is modified, e.g. when working
with a different robot.

D. RT and non-RT middleware API

XBotCore is also a middleware that provides the user
with both RT and non-RT APIs The RT API is suitable
for the RT plugins that will run in the Plugin Handler: it
works using a shared memory communication mechanism
with the low level RT EtherCAT thread. The interfaces
implemented by the RT API are: IXBotJoint (abstraction
of the robot joints), IXBotChain (abstraction of the robot
kinematic chain), IXBotRobot (abstraction of the robot)
and IXBotFT (abstraction of the robot Force/Torque (F/T)
Sensors).

The non-RT API implements similar interfaces (i.e.
IXBotJoint and IXBotFT, but it uses XDDP (Cross
Domain Datagram Protocol) Xenomai pipes in order to
have asynchronous communication between RT and non-RT
threads. It is crucial to have a lock-free IPC in a robotic
system: RT control threads are able to exchange messages
with non-RT communication threads without any context
switch.

E. Communication Handlers

A robotic system has to communicate with the
external world using a set of non-RT threads: in
XBotCore the XBotCommunicationHandler class
is provided; instances of classes inheriting from
XBotCommunicationHandler run in non-RT threads,
from which developers have access to ready-to-use non-RT
API functions.

It is pretty straightforward to implement a new set of Com-
munication Handlers: XBotCore provides built-in support for
YARP and ROS communication frameworks.

V. EXPERIMENTS
A. Experiments description

To validate and evaluate the performance of the XBot-
Core software platform, we performed a set of experiments
on the WALK-MAN robot, a full-size humanoid with 33
DOFs (Degree-Of-Freedoms) and 4 custom F/T sensors. The
WALK-MAN head is equipped with a CMU Multisense-SL
sensor that includes a stereo camera, a 2D rotating laser
scanner, and an IMU. The robot control modules are based
on GYM [5] (Generic Yarp Module), a component model

Figure 2. XBotCore validation experiments setup: WALK-
MAN needs to remove a set of objects in order to perform
the valve turning

to easily develop software modules for robotics leverag-
ing the YARP ecosystem: Yarp Based Plugins for Gazebo
Simulator [6] were used to validate the control modules in
simulation. Whole-body control and inverse kinematics are
solved through the OpenSoT control framework [15].

In the evaluation different high-level software frame-
works were successfully integrated on top of XBotCore: Ar-
marX [18] perceptual pipeline for hierarchical affordance ex-
traction [10], Open-SoT previewer based on the Movelt! ROS
library for motion feasibility analysis and collision checking
and a manipulation GYM module, Open-SoT based, using
the YARP communication framework.

The experiments were carried out in a DRC-inspired
scenario targeting the removal of debris in front of a valve.
In Figure 2) the experimental setup is shown.

B. Results

We analyzed XBotCore performance in terms of control
period of the RT plugins and CPU usage: during the exper-
iments, each millisecond, we recorded all the data flowing
from the EtherCAT master to the EtherCAT slaves and vice
versa, thanks to an XBotCore low-level logging tool.

In Figure 3) we show the control period measured during
the experiments in the worst-case scenario, i.e. while the
robot was performing the manipulation actions: it is clear
that the control period is always below the 1000us (i.e. 1 kHz
control frequency) even if the RT system is communicating
with the high-level software components through YARP
XBotCommunicationHandler non-RT threads.

In Figure 4) a comparison is presented between XBot-
Core CPU usage while the robot is idle (i.e. not moving,
nor communicating with external software frameworks) and
when the manipulation experiments are running: the CPU
core usage overhead introduced by XBorCore when the robot
is performing the manipulation task as described above, is
only 1.2% (in average). Furthermore it is clear that the CPU
usage of XBotCore is very low (always ranging from 11.7%
to 14.2%).
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Figure 3. WALK-MAN control period during manipulation
actions: XBotCore assures always a control period below
1000us
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Figure 4. XBotCore CPU core usage comparison: robot
idle vs robot running the experiments

VI. CONCLUSIONS

In this work we introduced an RT, robot-agnostic soft-
ware platform called XBotCore. XBotCore works with any
EtherCAT based robot and it has a plugin-based software
architecture: it is easy and not time-consuming to write
a new RT control plugin. As a final remark we showed
that external frameworks (e.g. ROS or YARP) are easy to
integrate in XBotCore, thanks to his middleware API. We
evaluated XBotCore performance on the humanoid robot
WALK-MAN, showing that it can ensure 1 kHz RT control
loop during complex manipulation tasks, while commu-
nicating with the non RT external frameworks. Moreover
we demonstrated that XBotCore is light-weight: the CPU
usage is very low, both when the robot is idle and when
it is executing a task. XBotCore is released free and open
source at https://gitlab.robotology.eu/luca.
muratore/xbotcore
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