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I. INTRODUCTION

With nowadays available optical sensors and modern com-
puter vision approaches, robots can explore and interact with
their environment in a multitude of situations autonomously. In
order to allow for a reliable and safe interaction, especially in
the presence of humans, the robot has to have a precise knowl-
edge about its manipulators’ poses. This demands a common
frame of reference of the camera systems and the manipulators.
The classical way of solving this problem is the well-studied
hand-eye calibration [1]. For vision controlled manipulation
with a robotic arm, knowledge of the camera to tool center
point (TCP) transformation is important. This is typically done
by classical hand-eye calibration, with which an unknown pose
of a camera and its internal parameters (so-called intrinsics)
are obtained in parallel. This is conducted by recording many
pictures of a precisely known calibration pattern, usually a
chessboard style pattern, at different configurations of the robot.
The calibration algorithm then finds the optimal solution for
both intrinsics of the camera and the sought transformation
between camera and robot frame of reference. For good results
it is crucial to obtain sample images at different configurations
and a maximal range of angles. Even if this is often possible,
there are cases where this method would fail because the robot
is not able to achieve the desired range of angels. Another
problem is that this method yields very poor results if the
precision of the robot arm is insufficient. To avoid this problem,
usually no hand-eye calibration is done at all in such cases,
but Visual Servoing [2], [3] is performed, where the robot
is commanded with direct visual feedback. This of course
brings a whole range of other problems, like the need for a
continuous line of sight of the camera to the scene and high
computational complexity [4]. In this study, we want to present
a new calibration method, which allows for a precise hand-eye
calibration also in these situations. In the next section a new
algorithm is introduced, with which it is possible to estimate
a mathematical model connecting the kinematics of a robot
to the camera frame of reference by sampling a big amount
of visual markers and fitting a Bingham distribution. Hereby
it is equivalent if the camera is attached to the moving arm,
and the pattern is fixed, or the other way around. Additionally,
the kinematic chain does not have to be an arm, it can be for
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Fig. 1. Justin humanoid robot platform (top left) with a camera mounted at
the base (top right), as example of complex robotic systems where traditional
hand-eye calibration is difficult to apply.

example also just a mobile base. For our experiments we will
focus on a humanoid robot, but the method described in the
consecutive sections would be equivalent in other setups as
well.

II. MATERIALS AND METHODS

The basic idea of our approach is to track visible features,
in our case AprilTags fiducial markers [5] during a rotational
motion of the robot. We obtain for each visible marker a
full 6D pose describing the relation of the camera to each
marker. The relative rotation of each marker in consecutive
camera images is the estimated according to section II-B. The
result of one example motion can be seen in Figure 2: In the
middle the camera frame is depicted, on the right the markers
location (colored dots) and the estimated relative rotation axes
can be seen. After applying a Bingham distribution to all of
the estimated relative rotation axes, the peak of this Bingham
distribution is shown in the origin. After an optimization step
the centroid and axis of the rotation are estimated according
to section II-C. The result, showing the found centroid and
axis of rotation, is shown on the left in Figure 2. This axis
corresponds to the physical rotation axis of the robot. If we
repeat this rotational motion with a different pose of the robot,
we again obtain the new rotation axis. The intersection of those
axes correspond to a known point of the robot.

In the case of the humanoid robot platform Justin, we have
a camera attached to the robot (Figure 1) and rotate it around
its vertical axis, tracking markers in the robot’s surroundings at
the same time. By repeating this rotational motion for different
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Fig. 2. Different axis estimates as unit vectors (red) shown in the camera’s
frame, orthogonally projected to the YZ plane. The Z axis of the camera (blue)
is the viewing direction, Y points down. Relative rotation axes are visualized
for each marker (where consecutive detections were made), whose positions
are coded with different colors. The rotation axis estimate based on the fitted
Bingham is shown in the origin, while the optimized axis (i.e. the upright
direction) is at the estimated center of rotation.

Fig. 3. Top down view of Figure 2, showing the marker detections in the
camera’s coordinate frame (in different colors per marker), with the estimated
rotation center (black point on the left).

tilts of the robot, e.g. slightly tilted to the back or left, we can
estimate the intersection point of the rotational axes, which
corresponds to the center point of the base.

A. Bingham Distribution for Representing Rotations
In our work we are describing rotations using unit quater-

nions because of their computational advantages compared
with other representations and their lack of singularities [6].
The Bingham distribution, named after Christoph Bingham,
describes an antipodally symmetric distribution on the n-sphere
[7]. Because of this antipodal symmetry, it is very suitable to
describe a distribution of 3D rotations in unit quaternion form.
The probability density function of a Bingham distribution is:

B (x;K,V ) :=
1

F (κ1, κ2, κ3)
exp(

3∑
i=1

κi(v
T
i x)

2) (1)

where κ1, κ2,κ3 are concentration parameters and V =
[v1, v2, v3] are orthogonal basis vectors. F (κ1, κ2, κ3) is a
normalization term such that the distribution integrates to one
on the surface of the hypersphere S3.

B. Estimation of Rotation Axis
There are several ways of obtaining the axis of rotation

based on a set of 6D detections of one or more markers.
The straightforward approach is to treat each seen marker

individually. Each marker ID, tracked over time then describes

its own rotational motion relative to the robot frame of reference.
By sampling the absolute rotation of each ID at every time
step the marker is seen, a Bingham distribution can be fitted to
each marker separately. From the least concentrated component
of this distribution the axis can be estimated.

Because each marker undergoes the same rotation relative to
the robot, the relative rotations between time steps can be used
to estimate the axis of rotation. Then one Bingham distribution
for all seen markers combined can be fitted to these, and the
rotation axis computed from the mode of this distribution.

C. Estimation of Rotation Centroid
Once a rotation axis is defined, a point defining the center of

rotation is needed. Based on a single rotation it is not possible
to yet define a unique point on the line around which the robot
rotates, but an arbitrary point on the line can be used, and the
final center of rotation will be estimated by intersecting two
or more of these different lines the robot rotated around.

Since the detections of a marker will be located at equal
distance from this line of rotation, we can define such a point
by fitting a set of concentric circles to each marker’s detections
(see Figure 3). These circles lie on a plane having the rotation
axis as normal, assuming the robot rotated around the vertical
direction, i.e. perpendicular to the ground. This information
helps to reduce the problem to 2D, by projecting the detections
along the rotation axis, and fitting the circles in a plane.

As a first step, we can obtain a small correction on the
rotation axis estimated based on the Bingham distribution by
ensuring that the marker rotations really lie on a plane having
this normal. By using the Bingham’s estimate as initial guess,
the variance of the projection of each marker’s detections is
minimized jointly, by adjusting the orientation of the rotation
axis. This is equivalent to fitting of planes to the marker’s
detections, but robust to cases where there are only a few noisy
detections, and/or they are close to being collinear.

Projecting the detections along the identified axis, a common
center of rotation needs to be computed. To obtain a robust ini-
tial estimate, we find the best individual circle for each marker
using RANSAC, and compute their average by weighting the
estimated centers according to inlier size. Then this location is
optimized for all markers jointly, using a Levenberg-Marquardt
optimizer. The resulting 2D point is transformed back to 3D,
marking the position of the current rotation axis.

D. Estimation of Robot’s Frame of Reference
For each rotation the robot makes, the line of rotation is

estimated as described, and since we know that the relative
pose between these lines is a rotation around an axis, we
can set out to identify this other axis of rotation. In keeping
with the explanations related to the setup on Justin, we will
refer to this second rotation as the robot’s tilt, but in general
this can be any other rotation axis that intersects the first
one. Since robotic arms have consecutive rotation axes that
intersect by design (and are described by its Denavit-Hartenberg
parameters), producing the two rotations is not a problem.
Typically the point of intersection is inside the more basic
joint. Similarly, in the Justin example this point is defined by
construction as the center of base tilting movements.



By performing the rotations around two such tilt axes, we
can define the axis of tilting as the cross product between the
rotation axes, and the point around which it is performed as
the intersection point of the two lines. Given the fixed direction
along the line of rotation, this then defines a unique frame of
reference, set by the robot by “demonstrating” its rotation and
tilt axes. In practice, we accept the two lines to be slightly off,
s.t. the point of rotation will be computed as the half-point of
the line-to-line distance segment. The estimate can be scored by
this distance, and how close the angle between them matches
what was executed by the robot.

In the following section we will verify each step of the
procedure, and validate if the made assumptions hold.

III. RESULTS

For our experiments the humanoid robot Justin [8], [9] was
used. Three rotational movements around the Z-axis of the
robot were performed, whereas the tilt of the robot was different.
During the first movement the robot was standing upright, in
the second movement the robot was tilted back and left, in the
third movement the robot was tilted to the front right. During
the rotation images were recorded by a camera attached to
the front of the robot. Markers (AprilTags) were placed in the
surrounding of the robot and were tracked by the robot, i.e. the
6D pose from the camera to each visible marker was known
for every time step.

A. Rotation Axis Estimation
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Fig. 4. The Bingham distribution based on different marker rotations depicted
as a heat map on the unit hypersphere S2 of one example rotation. The
subfigure a shows the resulting Bingham distribution of the absolute rotations
of each marker, resulting in a distribution with a smaller concentration around
one degree of freedom. Subfigure b shows the result based on the relative
angles of all the markers combined, leading to a peaked distribution.

As discussed in subsection II-B, we can either fit a Bingham
to the detections directly, or the relative transformations
between detections (see Figure 4). We tested both approaches
and show in Table I how much do the estimated axes vary
between markers individually, and the two approaches described
in subsection II-B. Since all markers should define the same
rotation, the angles between the estimated axes should be
minimal. We can see that for the individual markers, taking the
detections directly (i.e. “absolute” detections) and estimating
the axis of rotation as the least constrained axis in the Bingham,
yields more stable results than using relative rotations separately
for each marker ID (probably due to the fact that relative

TABLE I
USING ALL RELATIVE ROTATIONS OF EACH MARKER GIVES A ROTATION
AXIS WITH THE SMALLEST ERRORS (IN DEGREES) TO OTHER ESTIMATES

Consistency between markers Differences per marker
abs. rel. abs abs. rel.

vs abs. vs rel. vs rel. vs all vs all
Marker 1-2 1.52 1.05 Marker 1 2.29 0.87 1.43
Marker 2-3 2.18 3.40 Marker 2 1.19 0.65 1.70
Marker 3-1 0.66 3.15 Marker 3 0.26 1.52 1.76

rotations for consecutive timestamps exist only for a subset
of detections). However, taking the relative rotations has the
advantage that in fact all markers estimate the same relative
transformation, therefore all of them can be used together to
estimate a final rotation. This estimate (denoted “all” in the
table) has overall the lowest differences to the other estimation
methods, and was used in the following.

Most relative rotation angles are around 5 degrees, which
was the targeted frequency of taking images (see Figure 5),
with most deviations being small (60% of the angles is in the
±0.5 range). Small deviations can appear due to timing errors
of the image grabing, and detection errors.

Fig. 5. Histogram of the measured relative rotation angles in degrees

We are filtering out bad detections based on the relative
angles, by agglomerative clustering, starting at center and
accepting angles with the difference threshold of 0.1 degrees.
An example result showing the found rotation axis and centroid
for a given marker can be seen in Figure 6.

B. Rotation Centroid Optimization

Our concentric circle fitting is different from standard
approaches, like the 2D and 3D circle fitting from the Point
Cloud Library, in that it fits multiple concentric circles at once,
and that it does not optimize the radius explicitly. Rather
it is minimizing the pairwise differences of the center-to-
point distances within a set of circle inliers, resulting in more
residuals, less parameters and better convergence.

The distribution of the errors can be seen in Figure 7,
where we compare a version with and without explicit radius
optimization. To model the distribution of the magnitudes
of the errors, we fitted a Generalized Extreme Value (GEV)
distribution to the resulting point-to-circle distances using L-
Moments (lmomco R package), and found it follows as Weibull



Fig. 6. Example result of found centroids and axes, depicted as 3D cylinder
and the plane of rotation of the samples, shown in the centroid (orange), as
well as the rotation axis (thin blue line) and found markers in green.

distribution1. The expected mode of this distribution is 5.36E-
04 in the proposed radius-less case, and 6.20E-04 with radius
optimization, meaning a small but considerable reduction of
the most likely errors (86.44% relative reduction of the mode).

(a) Radius-based optimization errors

(b) Radius-less optimization errors

Fig. 7. Q-Q plot of fitted GEV distribution (Weibull) quantiles against the
radius-based and the radius-less optimization errors, with a 95% confidence
envelope, representing expected value ranges given the distribution2

C. Validation of the Calibration

We performed the two rotation s.t. once the robot was tilting
to the front right, then back to the left, and rotating with the

1The Weibull distribution is a special case of the GEV distribution, being
a very versatile function, it is often used in a wide range of applications to
model sizes/magnitudes of different kinds

Fig. 8. The location of the three lines estimated as the centers of the three
rotations, shown in orange, yellow and magenta, relative to the camera axes

wheels in a place. The line-to-line distance between the two
estimated axes in the camera’s frame was: 1.738mm, meaning
that the assumed center of rotation had to be moved off these
lines by half of this distance, i.e. less than 1mm. The angle
of 6.279◦ was measured between the lines, which was 0.09◦

off our estimate of the relative tilt.
For validation, we estimated a 3rd axis using the same

procedure, and it also crosses very close the same point:
1.566mm away from the first line, and 0.177mm from the
second. The three axes are visualized in Figure 8.

As an independent evaluation was performed by exploiting
the previously unused depth data, by detecting the normal
directions of vertical planes in the environment (walls, furniture,
etc), resulting in a mean angle of 90.246 degrees to our
estimated vertical robot position (with STD of 0.575 degrees).

IV. FUTURE WORK

In future work we plan to enhance the precision by adding
more markers and by the use of pre-learnt marker transforma-
tions. An interesting line of research is to use natural landmarks
/ keypoint descriptors instead of fiducial markers.
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