
HAL Id: hal-03189849
https://hal.science/hal-03189849

Submitted on 5 Apr 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Multi-Robot Scheduling and Path-Planning for
Non-Overlapping Operator Attention

Sebastián A Zanlongo, Franklin Abodo, Philip Long, Taskin Padir, Leonardo
Bobadilla

To cite this version:
Sebastián A Zanlongo, Franklin Abodo, Philip Long, Taskin Padir, Leonardo Bobadilla. Multi-Robot
Scheduling and Path-Planning for Non-Overlapping Operator Attention. 2018 Second IEEE Inter-
national Conference on Robotic Computing (IRC), Jan 2018, Laguna Hills, United States. pp.87-94,
�10.1109/IRC.2018.00021�. �hal-03189849�

https://hal.science/hal-03189849
https://hal.archives-ouvertes.fr


Multi-Robot Scheduling and Path-Planning for
Non-Overlapping Operator Attention

Sebastián A. Zanlongo∗, Franklin Abodo∗, Philip Long†, Taskin Padir† and Leonardo Bobadilla∗
∗School of Computing and Information Sciences

Florida International University
Miami, FL 33199, USA

Email: {szanl001, fabod001}@fiu.edu, bobadilla@cs.fiu.edu
†Department of Electrical and Computer Engineering

Northeastern University
Boston, MA 02115, USA

Email: {p.long, t.padir}@northeastern.edu

Abstract—There is a growing need for robots to perform
complex tasks autonomously. However, there remain certain
tasks that cannot - or should not - be completely automated.
While these tasks may require one or several operators, we can
oftentimes schedule when an operator should assist. We build
on our previous work to present a methodology for allocating
operator attention across multiple robots while attempting to
minimize the execution time of the robots involved. In this paper,
we: 1) Analyze of the complexity of this problem, 2) Provide
a scalable methodology for designing robot policies so that few
operators can oversee many robots, 3) Describe a methodology for
designing both policies and robot trajectories to permit operators
to assist many robots, and 4) Present simulation and hardware
experiments demonstrating our methodologies.

I. INTRODUCTION

The ability of robots to autonomously perform tasks has
vastly increased in recent years. Despite this, there are many
tasks that currently cannot - or will not - be automated, and
therefore require a human operator to step in and assist the
robot. Examples include industrial [30] and defense tasks such
as traversing a dangerous environment, executing sensitive
maneuvers that include complicated kinematics and actions
that require human oversight - such as removing detonators.
These portions of a robot’s actions cannot be automated for
practical, ethical, or other concerns. Moreover, many robot
designs assume that there will be dedicated operator for
each robot, and some robots may require separate operators
for different actions (e.g. discrete operator for navigation,
manipulation, monitoring, etc.). However, while these tasks
might not be automated, they can be planned for. Indeed, we
see great benefits in combining human abilities with robots
[26], in particular in industrial applications [11].

One such example is robot assisted disaster response teams.
The ratio of operator to robots in robot assisted rescue task is
generally about 2:1 [20]. However, this number can increase
for more complex robotic systems, for example humanoid
robots. Humanoid robots are equipped with high degrees of
freedom and thus can be viewed a general solution to a wide
range of tasks. As seen during the DARPA Robotics Challenge
(DRC), in complex dynamic environments, humanoids require

large teams of operators and shared control is indispens-
able [5]. In [32], the human robot interfaces used at DRC
is analyzed and several design guidelines for future systems
proposed. Among these points, there are two particularly
relevant to this work. First, the authors state that a decrease
in the amount of operator input needed to control the robot
actually increases system performance. In fact, during the
DRC operator errors led to major failures [1]. Second, less
operators means less confusion and a more effective operation.
Moreover, there are other reasons to reduce the number of
operators, for instance during the emergency response to
Fukushima, there was an explicit desired minimize the number
of operators to reduce unnecessary radiation exposure [21].

In most situations, an operator is only required in specific
parts of an operation. Knowing this, we can schedule these
operator interactions so that a single operator can perform
multiple tasks. The contributions of this work are: extending
our preliminary ideas [34] in the following directions. First,
we analyze the complexity of this problem. Second we present
a sampling-based algorithm that allows us to design policies
for a large number of tele-operators instead of a complete
algorithm that only works for a small set of operators. Third,
we allow re-planning of the robots alongside the operator.
Finally, we present results of both simulated and physical
experiments.

The remaining work is organized as follows: Section II dis-
cusses related literature and the original work being extended.
Section III describes the problem, and Section IV defines the
solution. In section V we present both software and hardware
simulations, and conclude in Section VI along with future
directions.

II. RELATED WORK

The inspiration for this work comes from a lack of planning
tools for mission autonomy that can help operators plan
requirements and robot policies. There are some existing
approaches, such as in [4], [19], [3], however, in Gerkey et
al. [8] we find that many existing solutions are based on
experimental evidence, and don’t have formal approaches. We



also find evidence of both a need for human collaboration with
multi-robot systems [26], and an emphasis on experimental
results in [25]. This is of particular interest as Hughes [12]
argues that leveraging human operators alongside robots will
result in robust systems that are more reliable, which has led
to work on tele-operation using 1 : 1 operator:robot paradigms
[33], [9].

Of particular interest and relevance to this research is the
work by Trautman [27], [28], which incorporates anticipated
human behavior into robot behavior so that the robots can
execute complex plans. In [30], we also find evidence for
the need to optimize human-robot interaction in industrial
applications which involve repeated human-robot interaction
in a controlled environment. We aim to improve upon these
foundations by providing a formal methodology for scheduling
operator attention across multiple robots.

This paper builds upon [34], in order to perform multi-
robot planning [23], [24], and also has some similarities with
that of Hauser [10], where the goal is to minimally displace
obstacles in order for a robot to travel from its initial to
goal state. Likewise, in this paper we aim to remove operator
“collision obstacles” in order to minimize the ending time of
the mission. Work by Wang et al. [29] attempts to deal with the
large complexity of coordinating many robots and operators
by dividing planning and scheduling into separate components.
This is also an approach used by LaValle and Hutchinson [16],
[17], and is incorporated into our solution as well.

III. PRELIMINARIES

We are provided a set m of robots A = {A 1,A 2, · · · ,A m}.
Each robot A i has a configuration space C i that represents
the set of all possible transformations, where the set of valid
configurations in C i is called the free space C i

f ree. Robots
also have initial qi

I ∈ C i
f ree and goal qi

G ∈ C i
f ree configu-

rations, and a trajectory τ i. The trajectory takes the robot
from the initial configuration τ i(0) = qi

I through C i
f ree to

the final configuration τ i(li) = qi
G, where li is the length

of the trajectory. The configuration space for all robots is
defined as: C = C 1 × C 2 × ·· · × C m. When executing the
trajectory, the robot A i may encounter ki critical segments
Si = {[si

1, f i
1], . . . , [s

i
k, f i

k]}, during which it will require one of
the p operator’s supervision. Each interval [si

j, f i
j] is a closed

subset of the trajectory and defines the start si
j and end f i

j
points of the segment τ i[si

j, f i
j] requiring attention. The set of

all critical segments is defined as S = S1 ⋃S2 ⋃ . . .
⋃

Sm. Given
a range of time T = [0, t f ], where the mission is executing, we
will attempt to minimize t f = max(t1

f , . . . , t
m
f ), when all robots

have finished.
A conflict is defined as

⋂p+1
i=0 [s

i
a, f i

a] 6= /0|a ∈ ki, meaning
that p+ 1 robots require supervision at the same time. Let
the set of invalid configurations Xobs indicate configurations
where the number of robots requesting supervision exceeds p,
and X f ree = X\Xobs to be configurations where the number of
requests does not exceed p.

Define a Coordination Space X = [0, l1]×·· ·× [0, lm] (fol-
lowing a procedure similar to [15], chapter 7) representing all

possible configurations of the robots along their trajectories.
At (0, ...,0) all robots are in their initial configuration, and at
(l1, ..., lm) ∈ X all robots are in their final configuration.

Problem 1: Scheduling for Multiple Operators: Given a
set of robots A , each with a trajectory τ i, and a set of critical
segments Si, determine a policy π i : T → [qi

I ,q
i
G] for each robot

mapping time to a position along its trajectory such that 1)
robots enter their critical sections only when an operator can
supervise them, 2) the number of operators requested at any
time is less than or equal to p, and 3) an effort is made to
minimize the ending time of the mission t f .

Building on the previous problem, we might also ask: Can
we get better results if we generate an alternative trajectory for
robots so that they do not require supervision at the same time
as other robots, thus avoiding operator attention “collisions”
altogether?

Problem 2: Scheduling with Re-Planning: Given a set
of robots A , a number of operators p, and a Workspace W
where the robots reside, find trajectories τ through C f ree that
avoid operator conflicts and reduce the completion time of the
mission.

Problem 2 is a more concrete extension of Problem 1. As be-
fore, robots will have initial qi

I and goal qi
G configurations, and

will be moving through a Workspace W . This workspace may
include environmental obstacles o ∈ O , such that the robots
should only move in the obstacle-free region W\O . Thus, the
free configuration space for the robots consists of removing
all robot-obstacle collisions Cobs = {q ∈ C |A (q)

⋂
O 6= /0} to

get C f ree = C \Cobs. Moreover, the workspace may contain
dangerous regions d ∈C f ree, which the robot can only traverse
if there is an operator to supervise them.

IV. METHODS

Here, we provide solutions to the problem defined in Section
III.

A. Scheduling for Multiple Operators

In our earlier work [34], we provided a solution to the
scheduling problem for both a single operator and multiple
operators using a novel geometric approach. However, the
complexity of creating the coordination space makes the so-
lution intractable for problems with a large number of robots.
We sketch a complexity proof of the problem as follows:

1) Computational Complexity Sketch: This problem can
be shown to be NP-hard via proof by reduction [7]. In the
Multiprocessor Scheduling problem, we have a set of J jobs,
where each job ji has a length li. Given a set of processors p,
determine the minimum time needed to schedule all jobs such
that they do not overlap. Starting with our problem, assume
that each robot will require an operator during a single segment
[si

1, f i
1], whose length is equal to τ i, and that this segment

occurs immediately at t = 0. The length of the segment now
corresponds to the length of time needed from an operator (a
job), and we must schedule these jobs across p operators (the
processors). This is the Multiprocessor Scheduling problem
where j jobs must be scheduled across p processors. We see



then that our problem is at least as hard as the known NP-hard
problem of Multiprocessor Scheduling.

2) A sampling based solution: Knowing that the problem
is NP hard we then ask: how can we improve the runtime of
the solution by using a heuristic approach?

We can improve the scalability of the solution in [34] by
generating a path through the coordination space and using
a lazy evaluation approach to check the locations visited,
rather than generating the entire coordination space; using
RRT ∗ described in [13], [14], and replicated in Algorithm
1 for reference. We modify the calls to SampleFree to use
an obstacle detection function as in Algorithm 2, and to
CollisionFree as in Algorithm 3.

Algorithm 1 Attention RRT ∗(xinit ,S)
1: V ←{Xinit}
2: E← /0
3: for j ∈ [1,n] do
4: xrand ← SampleFree( j)
5: xnearest ← Nearest(G = (V,E),xrand)
6: xnew← Steer(Xnearest ,xnew)
7: if ObstacleFree(Xnearest ,xnew) then
8: Xnear← Near(G = (V,E),xnew, |V |)
9: V ←V

⋂
{xnew}

10: xmin← xnearest
11: cmin←Cost(xnearest)+ c(Line(xnearest ,xnew))
12: for xnear ∈ Xnear do
13: if CollisionFree(xnew,xnear) ∧ Cost(xnear) +

c(Line(xnew,xnear))≤Cost(xnear) then
14: xmin← xnear
15: cmin←Cost(xnear)+ c(Line(xnear,xnew))

16: for xnear ∈ Xnear do
17: if CollisionFree(xnew,xnear) ∧ Cost(xnew) +

c(Line(xnew,xnear))≤Cost(xnear) then
18: xparent ← Parent(xnear)

19: E← (E\{(xparent ,xnear)})
⋃
{(xnew,xnear)}

20: return G = (V,E)

Algorithm 2 checks if a point in X also resides in X f ree.
We accept the location to check x, a set of operators p,
and the set of supervision segments S. In line 1, initialize
the collision count to 0. Iterate over the attention segments
in lines 2-3, checking to see if for each dimension of the
location, it intersects a corresponding attention obstacle in line
4. If there is a collision, we increment the number in line 5,
and if the number of collisions is greater than the number of
operators, we break and indicate that x represents an invalid
configuration, else the location represents a valid configuration
(lines 6, 7).

Algorithm 3 expands upon Algorithm 2, checking if a line
lies completely within X f ree or intersects an obstacle. In lines
4, 5, we order the start and end point of dimension i of the line
so that they are in ascending order, and in 6, 7, we take the
max and min of the endpoints of the line, and the endpoints of
the attention segment. If they have an overlap (line 8), then that

Algorithm 2 ObstacleFree(x,S, p)
1: num colls← 0
2: for Si ∈ S do
3: for s j ∈ Si do
4: if s j

s ≤ x[i]≤ s j
f then

5: num colls← num colls+1
6: if num colls≥ p then
7: return True
8: break
9: return False

Algorithm 3 CollisionFree(x,start,end, p)
1: num colls⇐ 0
2: for Si ∈ S do
3: for s j ∈ Si do
4: linelower←min(start[i],end[i])
5: lineupper←max(start[i],end[i])
6: intersectionlower← max(linelower,s

j
s)

7: intersectionupper← min(lineupper,s
j
f )

8: if intersectionlower ≤ intersectionupper then
9: num colls← num colls+1

10: if num colls≥ p then
11: return False
12: return True

location within X will require an operator for that instance of
s j. If the number of intersecting attention segments is greater
than the number of operators (lines 9-11), then the location is
invalid.

Executing the modified RRT ∗ algorithm, we receive a
path h : [0,1]→ X through X f ree, where the path goes from
h(0) = (0, ...,0) to h(1) = (l1, ..., lm), as seen in Figure 1. We
then proceed as in our original work [34] by mapping h to
the sequence of configurations x̃i that correspond to robot A i.
To accomplish this, define σ i : T → [0, li], which yields the
location of A i along τ i at time t. Next, compose φ i = τ i ◦σ i

to derive a mapping T → C i
f ree. With this mapping, we can

now find the configuration of robots at any time via φ i(t) =
τ i(σ i(t)). The method described here can handle robots with
different-length trajectories by extending the corresponding
dimensions accordingly. RRT ∗ is probabilistically complete,
and thus will not yield opt(t f ), however given a large enough
set of samples, it will converge towards opt(t f ).

B. Scheduling with Re-Planning

With the coordination space and corresponding path from
Method A (Algorithm 1), we have a solution that avoids
operator collisions. We now seek a solution that yields a better
result if we are able to alter the trajectories of the robots.
Extend the notation for Problem 1 as follows: First, denote U i

to be the set of intervals U i = {[bi
1,c

i
1], ..., [b

i
k,c

i
k]} where for

each interval [bi
j,c

i
j], an operator is not available to supervise

robot A i. Second, consider the dangerous regions d ∈ C i
f ree

to be obstacles within O i when the robot does not have an



(a) (b)

Fig. 1. RRT ∗ Examples
(a) RRT ∗ visualization for two robots avoiding operator attention
collisions (purple). The axes correspond to the positions of robots
1 and 2 along their trajectories. The red line represents a valid path
through the coordination space that can be mapped back into policies
for the robots. (b) Similar example as (a) for three robots.

operator to supervise it d ∈Oi|t ∈U i. Third, define a procedure
replan, that can re-plan the trajectory of robot such that the
robot will not perform critical maneuvers during times U i,
and returns a new Si and τ i. As an example, replan can be
a path-planning algorithm that avoids dangerous regions of
the environment when an operator will not be available). For
illustrative purposes, an example of replan can be found in
Section V.

We solve this scheduling and path-planning problem by
comparing the path h through the coordination space with a
desired path hdes, a path from the origin to the opposite corner
(the shortest path through X). Building on the example found
in Figure 2(a, b), we can visualize an ideal path as the one in
Figure 2(c), which is currently not possible due to an operator
conflict. As we follow our ideal path through the coordination
space, we may encounter an obstacle at point x ∈ X such that
hdes(x)

⋂
Xobs 6= /0. In this case, we must either plan around the

obstacle, tuning the velocity of the involved robot(s) as in the
solution for Problem 1 or create alternate plans for the robots
so that the number of robots requesting supervision during
that time can be satisfied by the p operators, and potentially
reducing the total mission run-time by not having to wait for
an operator to become available.

As before, we have to consider conflicts within the resulting
coordination space S. We then allow for the possibility of
re-planning trajectories to eliminate overlapping supervision
requests. However, by altering the trajectories of robots to
avoid an operator attention collision, we alter when the robots
involved will reach later parts of their trajectory, affecting
when they will require operator supervision in subsequent sec-
tions. This in turn will modify X , potentially moving, creating,
or removing later obstacles. As an illustration, in Figure 3(a),
we have two robots, which are expected to simultaneously
enter regions requiring supervision. The resulting coordination
space in Figure 3(b) shows that we can resolve this by stopping
robot 1 (represented by the vertical segment of h) until robot
2 has exited the region. We can attempt to circumvent this
conflict by having robot 2 plan a trajectory that partially avoids

(a) (b)

(c)
Fig. 2. Example Coordination Space

(a) 2 Robots (red), and trajectories (yellow) in a 2-dimensional
Environment. Blue areas require an operator’s supervision. (b) 2-
dimensional Coordination Space resulting from (a). The axes corre-
spond to the positions of robots 1 and 2 along their trajectories. The
red line represents a valid path through the coordination space that
can be mapped back into policies for the robots. The blue squares
are areas of operator attention collision. (c) Coordination space from
(b), with the desired (optimal) policy shown as the red line.

the conflict. However, the additional time needed to circle the
region will cause it to encounter its second critical section at a
later time - the same time as robot 1 (Figure 3(c)) - resulting
in another operator conflict obstacle that must be dealt with.

In order to handle the complexity of the problem, this paper
uses a heuristic approach as shown in Algorithm 4. We begin
by constructing a coordination space X and path h through
X f ree (lines 1, 2) using RRT ∗ as in Solution 1. This provides
us with our standard solution. We then create what would be an
optimal solution hopt , given by no robots requiring supervision
(lines 3, 4). Next, we check to see if the optimal solution is
feasible by looking for any collisions with obstacles in the
actual coordination space (line 5), which can be done using
Algorithm 3. If the optimal solution is invalid, we can correct
it in two ways:

1) Accept the obstacle, and alter our policy (as in Solution
1).

2) Re-plan the robots that have a conflict in order to
eliminate the obstacle.

We now describe how to re-plan the robots. Begin by
sampling along hopt with Algorithm 2; when a collision is
encountered, denote this as an obstacle z ∈ Xobs, where zA is
the set of robots and their segments zS that are responsible
for the conflict (line 6). By selecting the obstacle z that is
closest to the origin, we will preserve any previous work,
and only affect the policy that remains after encountering



(a) (b)

(c)
Fig. 3. Shifting Conflict Regions

(a) Environment and expected trajectories; (b) Original Coordination
Space; (c) Final Coordination Space

this obstacle. For each robot involved in the collision, use
the mapping defined in Solution 1 to determine the times U i

during which it needs supervision (the times corresponding to
intersecting the obstacle) in lines 8, 9. Then use replan and
U i to re-plan the remaining portion of the robot’s trajectory,
returning and saving a new set of segments during which it
requests supervision, and trajectory τ j (lines 10, 11). If no
modification is possible, the original trajectory is returned.
Given that there are |zA | robots involved in the collision
represented by obstacle z, we need to remove g = |zA | − p
robots from this collision in order to remove the obstacle. In
line 12, we select the g robots involved in z that have the
shortest trajectory lengths (minimum effect on total mission
time). Next, we compare a path through the new coordination
space with the g re-planned robots, to the path through the
original coordination space (lines 13 - 18). If the new path
given by using the re-planned robot trajectories is shorter
than the original solution, we update our solution (lines 19,
20), otherwise, we maintain the current robot trajectories and
instead add that obstacle to the obstacles in Sopt (lines 21, 22)
so that the robot velocities will be tuned.

Once there are no more obstacles intersecting the optimal
policy hopt , we are left with a policy that will result in no
operator conflicts.

V. SIMULATION

In this section, we describe our implementation of RRT ∗

and re-scheduling, and provide both simulated and physical
experiments.

Algorithm 4 Heuristic Re-Planning(s, p)

1: X = [0, l1]×·· ·× [0, lm]
2: h← RRT ∗(X ,(0, . . . ,0),(l1, . . . , lm),S, p)
3: Sopt ←{ /0}
4: hopt ← line(X ,(0, . . . ,0),(l1, . . . , lm))
5: while hopt

⋂
Xobs 6= { /0} do

6: z← First Obstacle(hopt ,S, p)
7: alternatives← /0
8: for A i ∈ zA do
9: U i

test ← Unsupervised Times(hopt ,A i,zS)
10: S j,τ j← r(A i,U i

test)
11: alternatives→ alternatives

⋃
(Si,S j,τ j)

12: alternatives = min(g,alternatives)
13: Salt ← S
14: for (Si,S j,τ j) ∈ alternatives do
15: Salt ← (Salt\Si)

⋃
S j

16: halt ← RRT ∗(X ,(0, . . . ,0),(l1, . . . , lm),Salt , p)
17: if len(halt)≤ len(h) then
18: S← Salt
19: h← halt
20: else
21: Sopt ← zS
22: hopt ← RRT ∗(X ,(0, . . . ,0),(l1, . . . , lm),Sopt , p)

23: Output: hopt

A. Software Simulation for Scheduling with Re-Planning

Here, we describe and display our simulation. We also
provide an example replan algorithm to allow robots to re-
plan their trajectory around the unsafe areas if an operator
will not be available during certain times.

Example Re-plan Algorithm: The replan algorithm func-
tions as follows: Intuitively, we are striving for the shortest
path between xi

init and xi
f inal within the physical environment.

This can be achieved by using the A∗ algorithm [2], [18]. How-
ever, the shortest path may pass through obstacles requiring
supervision. Given the times during which an operator will
not be available, U i, we can modify A∗ as follows: Denote the
starting time of the mission as Ti = 0. Augment A∗’s nodes
with an additional time parameter. As we expand each node,
we set it’s neighbors time attribute to time+travel time where
time is the current time-stamp, and travel time is the the time
required to move from the current node to the neighbor. This
will give an estimate of when the robot will reach a location
within the environment. If the neighbor is inside a conflict and
the neighbor’s time lies within U i, then we treat the neighbor
as an obstacle that cannot be visited. This implementation of
A∗ nicely solves the problem, and will result in a path that
leads out of and around conflicts during the operator-denied
intervals, as seen in Figure 4.

We now present an example to illustrate our work in Figure
4. We show a known 2-dimensional R2 environment with three
robots. The environment contains a set of areas (shown in
blue) where the ground may be too spongy to support a robot,



(a) (b)

(c) (d)
Fig. 4. Example Simulation Environment

Simulation Environment; Robots 1, 2, 3 are arranged from top to
bottom. (a) Robot 3 is paused to allow Robot 2 to receive supervision.
(b) Robot 3 has re-planned around the critical region, allowing Robot
2 to receive supervision. (c) Robot 1 is paused to allow Robot 3 to
receive supervision. (d) All robots proceed to their goal locations.

therefore an operator must supervise any robots inside of these
areas in case the robot starts to sink.

The example has also been designed to show several oper-
ator attention “collision” types. As all three robots move from
left to right, we see the following potential operator requests:
• A 1 requiring an operator
• A 1 and A 2 simultaneously requiring an operator
• A 1,A 2,A 3 simultaneously requiring an operator
• A 3 requiring an operator while A 1 and A 2 leave their

critical regions
• A 2 requiring an operator
• A 1 and A 2 simultaneously requiring an operator
In Figure 5, we see the coordination space corresponding to

the solution without re-planning (a, b), and with re-planning
(c, d). Many of the collisions in Figure 5(c) have resolved
by tuning the velocity of stopping one or more of the robots
involved. Comparing the initial and final coordination spaces,
we see that an additional set of collisions has been introduced.
This arises from A 3 re-planning around part of its supervision
segments, entering and leaving a dangerous region, creating
two instances where it will require supervision. This allows
the mission to finish faster, at t = 67, rather than if the robot
had simply paused, which would finish at t = 69.

The simulation was set up using a planar 2-dimensional
world. This world was then populated with a set of dangerous
regions with random locations and dimensions, and robots
were assigned random starting and goal locations such that
qi

I ,q
i
G ∈Ci

f ree, and trajectories taking them from their start to
goal as in Figure 6. A set of 10 environments were generated,

(a) (b)

(c) (d)
Fig. 5. Example Simulation Coordination Space

(a) Original Coordination Space; (b) Side view of (a); (c) Final
Coordination Space; (d) Side view of (c)

Fig. 6. Example Random Environment

Example of a randomly-generated environment and trajectories inter-
secting critical regions.

where each trial used a newly generated environment and set of
robot starting and goal positions. Each of the 10 environments
used in trials consisted of 2, 4, or 8 robots, moving at 1
cell/second. Each of these was in turn solved using both
Scheduling and Scheduling with Re-Planning, with 1, 2, 4,
or 8 operators. The results are shown in Table I.

We find a marked increase in savings as the number of
robots increases, as re-scheduling removes a greater number
of obstacles. In cases where the number of operators is equal
to or greater than the number of robots there are no savings as
expected, since this would not result in any attention obstacles
to avoid. Over the course of the trials, all tests with 2, and 4
robots completed successfully. Of the trials with 8 robots and 1
operator, no solutions could be found with the provided RRT ∗

parameters. With 2 operators, 30% completed, and 60% for
4 operators. This is likely due to the relatively low number
of samples taken (25,000) when running Attention RRT ∗, and
the large steer length, which did not allow for finding paths in



TABLE I
AVERAGE TIME SAVINGS WHEN RE-PLANNING VS ATTENTION RRT ∗

Robots Operators Average Savings
2 1 1.126
2 2 0
2 4 0
2 8 0
4 1 1.937
4 2 3.402
4 4 0
4 8 0
8 1 NA
8 2 0.218
8 4 5.284
8 8 0

narrow gaps between obstacles. Tuning these parameters lies
outside the scope of this paper, but is nonetheless an interesting
problem we hope to look into in future work.

B. Hardware Experiment for Scheduling with Re-Planning

In this section, we further motivate the efficacy of the
approach by applying it to hardware rather than being lim-
ited to simulations. The hardware demonstration assumed a
single operator spread across three robots. The example was
implemented using a hardware/software test-bed composed of
line-following robots in a discrete grid environment, and a
distributed software system. The robots’ bodies and electronics
are based on the open-source Arduino Controlled Servo Robot
reference design [22]. The reference design was augmented
using three infrared light detectors for use in line detection,
and an XBee DigiMesh [31] radio transceiver for use in robot-
controller communication.

The software component of the test-bed is distributed across
one controller and all three robots. The robots observe the
world through line sensors, which inform them of whether
they are:

1) centered on a grid line
2) left of a grid line
3) right of a grid line
4) at a grid intersection (i.e. a world-state)
5) in an unknown part of the environment
The robots maintain knowledge only of their own world-

state (position and orientation) using a deterministic finite
state machine of infinite size, the transition function of which
is implemented using a second transition-state machine that
ensures – given some assumptions about the uniformity of the
environment – that the robots’ inter-state path does not deviate
from a grid line (i.e. that while transitioning between world-
states, their transition-state is one of the first three of the five
previously enumerated states). State transitions are performed
upon the instruction of the controller, on which the presented
algorithms run. The controller does not maintain knowledge of
the robots’ world-states, but can query each robot individually
as needed to determining if collision obstacles exist.

The simulation performed in Figure 7 began with a model
environment as in Figure 7(a), where each of the 3 robots
were assigned trajectories, expecting to traverse areas of the

(a) (b)

(c) (d)
Fig. 7. Hardware Experiment Example

(a) Simulation Environment; (b) Resulting Coordination Space; (c)
Corresponding hardware simulation at t = 1; (d) Hardware simulation
at t = 5

environment that require operator supervision (shown in blue),
and ending at their goal (red). A single operator is available to
oversee robots inside of critical areas. The physical environ-
ment represents the supervision-required areas as red/yellow
squares, in the same positions as in the simulation. We
then generated a coordination space (b), which provides an
attention-collision-free set of policies that enable the robots
to execute their trajectories while guaranteeing that a single
operator would not have their attention split among multiple
robots. The robots received and executed their corresponding
policies, moving and pausing when appropriate, such that
no more than a single robot entered a supervision region
at a time. Further experiments and videos can be found at:
http://users.cis.fiu.edu/∼jabobadi/oa/

The hardware experiments show a successful run using
our methodology to coordinate three different robots provided
a single operator. The robots finished in the shortest time
possible, and the operator was not overburdened.

VI. CONCLUSION

In this work, we provide a methodology for converting a
set of robot trajectories and supervision requests into a policy
that guides the robots in such a way that operators can oversee
critical sections of robot plans without being over-allocated.
Moreover, we indicate how to decide whether re-planning a
robot would yield a better plan compared to slowing down or
stopping to wait for an operator.

In the future, we would like to incorporate how robot
movements affect an operator’s effectiveness in overseeing
them [6]. In particular, we are especially interested in in-
corporating operator context-switching time. This may be
accomplished by extending obstacles towards the origin in
order to resemble the extra time needed for an operator to



adjust to their new task. Another possible avenue for further
work is incorporating uncertainty of a robot’s trajectory. Here,
in the case of uncertainty regarding when the operator will
be required, we can uniformly expand all obstacles. The
resulting coordination space will yield a path h which has a
more conservative solution. This may also be combined with
a receding horizon approach to allow for rapidly changing
robot plans in a more dynamic environment, compared to a
controlled industrial setting.

Future avenues of research will include uncertainty models
on how long operators take to complete their task. We also
plan to extend the configuration space use into a phase that can
include the robot dynamics and can model situations where the
robot needs some time to accelerate/decelerate and do more
realistic motions.
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