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Abstract—Tasks that change the physical state of a robot
take a considerable amount of time to execute. However,
many robot applications spend the execution time waiting,
although the following tasks might require time to prepare.
This paper proposes to amend tasks with a description of
their expected outcomes, which allows planning successive tasks
based on this information. The suggested approach allows
sequential and parallel composition of tasks, as well as reactive
behavior modeled as state machines. The paper describes the
means of modeling and executing these tasks, details different
possibilities of planning in state machine tasks, and evaluates
the benefits achievable using the approach.
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I. INTRODUCTION

Most classical industrial robot arms are currently used for
fixed and recurring preprogrammed tasks. There, planning
(at run time) and reaction to indeterministic events are of
minor importance. When it comes to more modern or mobile
robots, the situation is different: Due to the greater variability
in the environment, these robots must be able to sense
external events and react accordingly, and can thus be seen
as reactive systems.

In this context, it can be observed that when executing a
task, performing its physical actions often requires a consid-
erable amount of time compared to the computations needed
to prepare them. Still, it is often possible to tell details about
the positive outcome of the task even before the task is fully
executed. In contrast, for failures the amount of information
that can be given in advance is limited (e.g. where the robot
will be when the error occurs is usually unknown). While
these details could considerably help to plan ahead, many
software frameworks often ignore this potential and spend
the execution time waiting for completion (cf. Sect. II).

To improve this situation, we propose to model tasks
including their expected outcome(s) and details about the
corresponding situation(s). These expected outcomes include
successful execution, but also detectable errors and relevant
situations that occur during execution. Using these tasks, it
becomes possible to plan the following tasks even before the
execution of the current task has completed. These tasks can
be combined in a sequential or parallel way, can perform

Figure 1: Robots handing over a baton, adapted from [2]

case distinctions and can even be used to model reactive
behavior through state machines. Composing these tasks,
the programmer can configure details about the relationship
between the tasks and the quality of transition: For some
events, an immediate reaction may be required, so the
corresponding reaction task has to be planned before the
event can occur, while other events allow some time, so that
more relaxed planning schemes can be used.

To evaluate the approach, the cooperation between two
mobile robots was modeled and implemented (cf. Fig. 1).
There, two KUKA youBots [1] drive in parallel, and hand
over a baton while in motion. To realize the reactive be-
havior and coordination, state machines are used, while the
possibility of advanced planning reduces the waiting time
between the different robot actions. Additionally, a theoreti-
cal example with more complex planning is introduced and
analyzed, showing the possible advantages of the appraoch.

This paper is structured as follows: After an overview of
different ways to handle complex robot behavior (Sect. II),
the appraoch of defining and executing tasks is outlined
in Sect. III. Sect. IV describes the experiments conducted
to evaluate the approach and points out the corresponding
results. Finally, Sect. V gives a conclusion and outlook.
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II. RELATED WORK

For modeling and composing tasks or device capabilies,
different approaches exist in ROS and OROCOS.

ROS actionlib [3] allows to model interruptible tasks
through Actions. Actions represent long-running, pre-
emptible tasks that provide feedback and notify about their
result, and that can be canceled when the goal has to be
changed. They can be seen as an extensible way to model
device capabilities, allowing extensions by introducing new
components that provide Action servers. To combine mul-
tiple Actions, a new component can provide an Action that
invokes the corresponding Actions in parallel or sequentially.
However, no timing guarantees are given for this type of
composition, as it relies on network communication between
the different Action servers. Furthermore, Actions do not
share a common interface and thus cannot directly be passed
between different components (e.g. a planner cannot provide
its result as a generic Action that can be passed to another
component deciding when it should be executed).

For reactive behavior on the task-level with ROS, Bohren
et al. [4] introduced SMACH state machines. In SMACH,
ROS Actions, Services or Python code can be defined as
States, and States can be composed into new States in
a concurrent, sequential or state-machine form. Therefore,
each State defines different outcomes that can be used
in composite States to define reactions or handle error
conditions. Furthermore, states in SMACH (and thus state
machines) can be made available to other components as
actionlib Actions. This composition mechanism is similar
to the one presented in this paper, however without timing
guarantees, so that guaranteed reactions to events cannot
be specified this way. Furthermore, SMACH (as well as
actionlib) provides no explicit semantics or metadata for
Action or State post conditions, making further planning
during execution harder to achieve. SMACH state machines
are executed in a blocking way and thus do not offer the
possiblity of using the execution time of robot actions for
further (motion) planning steps.

For OROCOS, restricted Finite State Machines (rFSM)
[5] allow modeling reactive behavior. An rFSM describes a
hierarchical state machine without parallelism, aimed at the
coordination of robot applications. According to the pure-
coordination pattern [5], these state machines only process
and raise Boolean events which have to be provided by
monitor components or handled by configurator components,
which in turn manipulate or reconfigure the active compo-
nents in order to achieve the goal. rFSM state machines are
implemented on top of the programming language LUA with
specialized memory allocation and garbage collection, and
can thus be executed with real-time guarantees.

As an extension to rFSM state machines, Scioni et al.
[6] describe how to achieve preview coordination: In this
approach, the execution environment takes hints about ex-

ecution probabilities based on likelihood labels on some
transitions. Using these labels, likely successor states can
be prepared (performing some of their work) while the
previous state is still active, as long as there is no conflict
between the preparation steps and the actions performed in
the current state. This allows reducing the execution time,
while keeping the action definitions coherent (instead of
moving the preparation step into the previous state).

The preview coordination mechanism introduces a form of
decoupling between workflow and capability execution and
makes use of meta data about conflicts between states, but
the rFSM mechanism still does not include further semantic
descriptions for the results of states. This way, the following
tasks cannot analyze and prepare for the expected results of
the previous State, a powerful and important feature offered
by the approach introduced in this paper.

Another related approach has been introduced by Angerer
[7] in the form of Robotics API Activities. It can be seen as
the basis of the approach suggested in this paper, but had a
stronger focus on real-time and specific ways of modeling
meta data, and does not support reactive behavior in the form
of state machines. This approach has been further extended
by Schierl [2] and along with further research led to the
results presented in this paper.

III. APPROACH

To facilitate planning during execution, we propose to
model individual robot tasks along with a description of their
expected outcome(s) (as described in Sect. III-A). Based on
these outcome description(s), it becomes possible to plan the
successor task (or at least start planning) before the current
task has been fully executed – maybe even before execution
starts. This feature can be exploited during execution, as
described in Sect. III-B. When it comes to more complex
tasks with different viable outcomes, an implementation that
is based on simple control flow tends to become confusing,
so it becomes helpful to define the desired behavior in a
model-based way. Here, the formalism of state machines is
often used. Our approach allows modeling complex tasks
based on state machines, as described in Sect. III-C. For
these state machines, different choices concerning execution
exist that may be configured and affect the resulting perfor-
mance (Sect. III-D).

A. Defining Tasks and Outcomes

Initially, a task to be executed by a specific actuator (e.g.
move to a given position, pick up an item, or even bring me a
beer) is modeled as an Activity (cf. Fig. 2). As the same task
can be performed more than once (if you are with friends),
it becomes helpful to keep track of different task executions.
So, when a task is to be executed in a given situation, its
Activitys is instantiated through createHandle() yielding an
ActivityHandle.
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Figure 2: Relevant classes for task definition and execution

Being responsible for a single task execution, the Activity-
Handle offers state tracking that notifies about execution
progress, and is also responsible to decide how the desired
task is to be executed in a given situation. It receives a situa-
tion description (see below) the task is to be executed in, and
has to provide instructions on how to act, and what outcome
to expect after the action has been performed. Thus, the
ActivitySchedule takes a situation description called Activity-
Result, and provides an ActivitySchedule that describes the
task to execute, as well as a set of possible ActivityResults
that can occur while/after executing the task. This way, it
provides possible post conditions for the execution of the
task, while the preconditions are derived from the results of
the previous task. If the previous task has multiple possible
outcomes, the ActivitySchedule is provided with the different
acceptable outcomes, and can plan for each of the envisioned
situations.

This differs from typical planning mechanisms that are
based on pre/post conditions and try to combine fitting
actions, but instead allows applying a given task in many
different situations.

To describe the expected situation, the ActivityResult
contains status information about each individual actuator
contributing to the task, as well as a description about the
envisioned geometric and logical situation of the world. The
actuator-specific information may contain details about a
gripper, e.g. whether it is open or closed, as well as joint
positions, velocities and accelerations for robot arms.

To talk about the world state, a model as described by
Schierl et al. [8] is used. It is based on geometric features

(modeled as frames), along with relations that are defined
between the frames that form an undirected multigraph.
These relations describe the logical situation, e.g. that an
object is placed on the ground or grasped by a gripper (or,
rather their respective frames are), as well as geometric
information to give the exact position where the frames
are relative to each others. To give a description about the
future world state, a view of the world model with both
position changes and topology changes is required. For tasks
that include robot motions, a position change that gives the
(expected) new place of the robot or all of its components
is recorded. This geometric information is used whenever
performing geometric calculations based on the world view.
Additionally, some tasks change the connectivity between
different frames: When a robot picks up an object from the
ground, the relation between ground and object has to be
removed, and a new relation between gripper and object has
to be established. These topology changes are also relevant
for further planning, because a grasped object changes the
shape of a robot: some motions that were previously possible
now result in collisions. Thus, the world view provided
by the task includes sets of removed and added relations.
After executing the task, the described world state has to be
in place, either implicitly because the robot moved to the
promised position, or explicitly by enacting the topology
changes.

B. Executing and Composing Tasks

Once a task has been defined, i. e. created as an Activity,
it can be executed in a blocking or non-blocking way. For a
specific execution instance, the Activity creates an Activity-
Handle that takes the ActivityResults of the previous Activity
and prepares ActivitySchedules for each of the situations.
The ActivitySchedules are activated so that they trigger the
execution of the respective task once their ActivityResult
is reached. Additionally, the ActivitySchedules provide their
possible ActivityResults for use with following Activitys.

In the blocking case, the method execute() blocks until
a completion ActivityResult of a corresponding Activity-
Schedule has been reached. Fig. 3a shows a depiction of
this behavior. The Activitys are shown as vertical life lines
with time running from top to bottom, with the different
boxes denoting the phases planning P and execution E.
However, in this case the situation description contained in
the ActivityResult is of little use, because once the result has
been reached, the described situation is already reached, and
the execution time has already been wasted waiting.

To use the execution time, non-blocking execution with
beginExecute() allows the control flow to continue once
any of the ActivitySchedules has been triggered and the
execution of the task has thus started. The following task
can then be prepared for different possible start situations
(based on the ActivityResults of the currently running task),
and immediately execute one of the planned solutions if the
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Figure 3: Blocking and non-blocking execution of simple and composed tasks with planning (P) and execution (E)

corresponding situation occurs. This situation is shown in
Fig. 3b – here, the dotted lines denote times where B is
already planned and waiting to be executed. The preparation
of B happens while A is running, and B starts running once
A is completed. In contrast, if B is independent of A, e.g.
if it controls different devices, it starts immediately when
prepared, as shown in Fig. 3c.

Additionally, these tasks can easily be combined: For
sequential execution, the sequential task provides the sec-
ond task with all the ActivityResults of the first task’s
ActivitySchedules, so that the second task can react to all
expected outcomes of the first task, while the results of
the second task are provided as results of the seqence. In
cases where determinism is required, this kind of planning
can even allow real-time guarantees (given a corresponding
software framework that supports scheduling of real-time
tasks): planning the second task for all possible outcomes of
the first task before the first task’s execution starts guarantees
that the second task can immediately take over no matter
how long the first task takes. In Fig. 3d, the sequence
S is executed after A, and the planning of S1 and S2
completely happens before S1 is started, guaranteeing that
S2 can be started immediately when S1 ends. However, this
determinism is only possible if the outcomes are fully known
in advance: if details of an outcome description depend
on sensor data, these ActivityResults can only be provided
when the sensor data becomes available, and planning of the
next task is delayed to this moment (no longer guaranteeing
determinism).

To achieve parallel execution, the parallel task provides
both subtasks with the same initial situation (as Activity-
Results), and combines resulting ActivitySchedules (and op-
tionally ActivityResults) to create the ActivitySchedule and
ActivityResults of the parallel task. This situation is shown

in Fig. 3e, where the parallel tasks P1 and P2 are planned
and thus allow P to start them at the same time after A is
completed. Of course, the parallel task has to make sure
that the subtasks do not conflict, e.g. by checking that they
control different devices.

Additionally, simple case distinctions can be made based
on the possible ActivityResults. A task with case distinction
classifies the ActivityResults of the previous task and for-
wards them to the corresponding subtask depending on the
decision condition. Fig. 3f shows this situation, with C as a
case distinction for the result of A, deciding to execute C2
and unload C1.

C. Using State Machines for Complex Tasks

For longer or repeating task sequences, these composition
mechanisms that fully plan ahead may reach their limit,
because the number of tasks that has to be prepared grows
exponentially with the number of successive tasks (given that
each has more than one possible result). Thus, it becomes
helpful to limit the amount of pre-planning. One way to
achieve this while supporting complex compositions of tasks
is the use of state machines – a step often taken when
specifying reactive behavior.

The proposed approach uses Activitys to define states of
the state machine. For each state (or Activity), transitions can
be given that specify a switch to another Activity if certain
ActivityResults occur. Additionally, one distinct Activity is
chosen as start state, and ActivityResults of some Activitys
can be defined as transitions to a final state.

As each state can be entered more than once during
execution, for its Activity multiple ActivityHandles, Activity-
Schedules and also ActivityResults are prepared. The result-
ing set of ActivityResults for an Activity is dynamic, so
the transition cannot give a complete list. Instead, it works
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Figure 4: State machine definition and execution with planning (P) and execution (E)

as a predicate to ActivityResults that chooses whether a
given ActivityResult qualifies for the transition, which can
be as generic as any error or as specific as any successful
execution of the given grasp.

As an example, Fig. 4a shows a state machine of the three
tasks A, B, and C, switching from A to C if A succeeds, and
to B if it fails. State B is always followed by C, leading to
two different paths reaching C.

In addition to the predicate and following state, the
transition can also be annotated with qualifiers that direct
the order or timing of preparation. For transitions that may
not be missed (such as error recovery strategies that bring
the robot into a safe state), a transition can be marked as
reliable, requesting it to be prepared before the originating
Activity starts. These reliable transitions are handled similar
to sequential tasks described before, making sure that the
following state can be executed no matter how long or
short the first state takes. While having the same advantages
of sequential tasks, reliable transitions also inherit their
drawbacks, especially the amount of preparation necessary
if more than one ActivityResult is handled by a reliable
transition, as well as the fact that cycles in the reliable
transition graph are forbidden.

Fig. 4c amends the transition from A to B with a stereotype
«reliable», defining that the execution environment has to
guarantee that the transition will be taken if the failure
occurs.

D. Executing State Machines

Regarding execution, state machine tasks differ from the
composed tasks mentioned previously: While for sequen-
tial, parallel or conditional tasks planning can completely
be performed up front, state machine tasks require some
planning while the task is running. The Activity for the initial
state is prepared traditionally, based on the ActivityResults
of the previous task. Then, the ActivityResults of the created

ActivitySchedule are compared against the transitions origi-
nating from the start state to decide whether they have to be
handled by switching to another state (i.e. Activity). How-
ever, for found transitions and Activitys, different options
exist when to prepare them for the corresponding results, as a
trade-off between preparation of unnecessary traces and not
having prepared a required task. For the scope of this paper,
the preparation is usually delayed until their originating state
is entered (i.e. its Activity started running). Then, the target
states for outgoing transitions are prepared using the reported
ActivityResults of the current state, so that they can react
to the occurrence of the corresponding result. Additionally,
the outgoing transitions of the target state are analyzed, so
that they can be handled once the target state is entered.
This way, the states are prepared with a look-ahead of one
transition, which works fine as long as the typical execution
time of a state is longer than the preparation times for all
following states.

Fig. 4b shows the preparation timing resulting for the
state machine defined in Fig. 4a. B and C (denoted C1) are
prepared once A is started, and when the failure occurs, B
is started and C is unloaded. A new instance of C (denoted
C2) has to be prepared for the new situation resulting of B,
which is then executed once B finishes. Using this method
yields a behavior that is similar to the one of non-blocking
execution (cf. Fig. 3b), where the following task is prepared
once the previous is started.

However, this mechanism of delaying planning outgoing
transitions once the state is entered is not sufficient to guar-
antee that a certain transition can be taken without further
delay, especially if the result happens quickly after entering
the state. Thus, for reliable transitions, planning may not be
delayed until this time. Instead, reliable transitions and their
target state have to be prepared along with their originating
state, before the originating state is entered.

This behavior is shown in Fig. 4d. Here, A and B are
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Figure 5: State machine: Robot interaction, adapted from [2]

planned before A is started, making sure that the occurrence
of the failure cannot happen while B is still being planned.

IV. EXPERIMENTAL RESULTS

The proposed approach has been evaluated in two exam-
ples. First as a real-world example, the interaction between
two mobile robots has been modeled. There, two mobile
robots drive parallel to each others and hand over a baton
while in motion. The implementation uses two KUKA
youBots and is based on the Robotics API [9]. There, both
robots are controlled using their on-board computers using
a C++ control core, while the high-level coordination and
task execution is implemented in Java and performed from a
laptop computer connected to the youBots through a wireless
network.

Because the handover example (apart from error handling)
is purely sequential, the first implementation was based
on separate tasks for moving the arm and gripper and the
execution model described in Sect. III-B. For all tasks that
do not depend on the second robot, non-blocking execution
was used, while the correct order of the gripping and
releasing tasks was performed through blocking execution
of the corresponding tasks in a common control flow.
While working fine in simulation, this implementation led to
unintended delays between the grasp and release operations
when executed on real robots, and thus required more space
for parallel driving than necessary. This was mainly caused
by the unreliable network connection and inefficient network
code that required multiple communication roundtrips to
transmit and start the tasks.

A second implementation modeled the expected behavior
through two linked state machines (cf. Fig. 5). Here, the
following tasks could already be prepared while the second
youBot was waiting for the first youBot, so the delay
between the grasp and release operation as well as the
required space for the interaction were significantly reduced.

The second, theoretical scenario was performed without
connection to a robot framework, but based on a prototypical
implementation with support for reliable transitions. Here,
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Figure 6: State machine: Second scenario

the scenario was to drive a mobile robot to a pick-up
area, take a large object, and return to its start position. In
addition, during all steps a sensor had to be observed, and
the robot had to stop once the sensor detected a dangerous
situation. To complicate things, in the environment the
shortest path to the pick up zone could not be taken while
carrying the large object, but instead a detour was required.

Fig. 6 shows a state machine model of the task. The top
row of states gives the main success flow, while reliable
transitions handle danger occuring during this task. Addi-
tionally, a Back off state has been added, which is executed
after the robot has stopped in case of emergency. As after
stopping the robot is already in a safe state, this transition
is not time-critical and thus does not need to be reliable.

The motion planning tasks, Go to pick up zone and Return
home were implemented as tasks that take considerable time
to plan (3 s for collision free motion planning) and to execute
(5 s to move the robot along the planned path), while Pick
up only takes time to execute (3 s to move the arm and
gripper), but plans quickly (1 s). As a comparative reference
simulating a system that does not support planning ahead
based on result meta data, the three main success task were
executed in a blocking way as a sequence.

When executed, the state machine of the second scenario
implementation completed after about an average of 16.05
s, while the comparative reference took an average of 20.08
seconds. Fig. 7 shows the resulting life lines for those
different execution models, clearly showing where time can
be saved by planning during execution.

V. CONCLUSION

Working with robots, the performance of applications is
not only limited by the available processing power of the
computer, but also by the physical limitations of controlled
devices. Usually, the time needed to execute a task is
significantly longer than the mere computation time, but
still some planning also takes considerable time. In this
paper, we proposed to amend robot tasks with descriptions of
their expected outcomes. This allows planning the following
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Figure 7: Execution times for the second scenario with planning (P) and execution (E)

task while the current task is still running, thus reducing
delays between the execution of successive robot tasks
and avoiding the situation that execution time goes unused
although planning steps may be pending.

These amended tasks can be executed in a blocking or
non-blocking way, or combined into complex tasks. Besides
sequential and parallel composition, state machines promise
to allow the specification of more complex reactive behavior
including recurring subtasks, while still behaving like reg-
ular tasks, so that further composition or planning remains
possible.

A prototypical implementation of this mechanism has
been created based on the Robotics API [9] and shown
to work for cooperating robots. Additionally, the approach
promises to accelerate the execution of tasks where con-
siderable time is spent planning the next steps, such as
collision free motion planning, and also allows specifying
events for which a timely reaction has to be guaranteed
(given a capable execution environment, such as a Realtime
Robot Control Core [10] used with the Robotics API).

Still, this paper is limited to simple preparation strategies
of state machines (transitions can be guaranteed, or planned
when the state is entered). As a part of further research, more
complex strategies might benefit from likelihood annotations
[6] or estimated planning times to decide which transitions in
the state machine will likely happen and should be prepared
first (to reduce the risk of missed transitions). Additionally,
longer sequences of transitions could be prepared in cor-
responding situations, e.g. to skip over states that take a
very short time to plan and execute. In the given theoretical
example, this could help if the grasping task took shorter,
because then the execution time of the Go to task could be
used to plan the Return task.
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