A reference architecture for deploying
component-based robot software and comparison
with existing tools

Nico Hochgeschwender, Geoffrey Biggs and Holger Voos

Abstract—This article discusses the problem of deploying
component-based software for a robotic system, including both
the initial deployment and re-deployment at run-time to account
for changing requirements and conditions. We begin by evaluat-
ing a set of tools used for all or part of the deployment activity.
The evaluated tools are the OMG DEPL specification, Chef,
Ansible, Salt, Puppet, roslaunch and Orocos Deployer/ROCK.
These tools were chosen to cover a range of capabilities and
styles. The evaluation identifies a set of core roles found in the
deployment activity, and based on this we propose a reference
architecture for a set of tools that satisfy the deployment activity.
This reference architecture provides a foundation for future
work in developing and evaluating tools that can be used in
deployment.

I. INTRODUCTION

Deploying software on real, heterogeneous robot systems
is a challenging and nebulously-defined exercise. It encom-
passes activities beginning as early as releasing software and
ending as late as altering and changing software during run-
time to meet changing and emerging requirements [1] [2].
What “deployment” means can even vary according to the
software system being deployed, the tools being used, and the
development process being followed.

For the purpose of this paper, software deployment is
defined as an activity with the goal to make an application
ready to use. This encompasses “tak[ing] the requirements
of the software to be deployed, along with the resources
of the target environment on which the software will be
executed, and decid[ing] how and where the software will be
running in that environment”. We base this definition on the
deployment and configuration specification introduced by the
Object Management Group (OMG) [3].

To employ this definition in the context of robotics, it is
worth emphasizing that robots are expected to perform many
different tasks over a long period of time. To do so, they need
to cope both with varying requirements for the software and
with changing resources. Both requirements and resources are
induced by changing tasks, goals, and environmental features.
Thus, deployment in robotics is a frequent activity performed
throughout the complete life-cycle of robot software systems,
namely from design-time to run-time. To this end, reliable

Geoffrey Biggs is with the Robot Innovation Research Centre,
AIST, Japan geoffrey.biggs@aist.go. jp Nico Hochgeschwen-
der and Holger Voos are with the Interdisciplinary Centre for Se-
curity, Reliability and Trust, University of Luxembourg, Luxembourg
nico.hochgeschwender@uni.lu.

deployment tools covering the full range of the deployment
task and ensuring the availability of robotic applications are
required. Those tools should be available not only for robot
software developer, but also for the robots themselves as
we aim to reduce human intervention in order to deploy
increasingly unsupervised robots in increasing long-running
applications.

In this work we select and evaluate some existing tools
used for all or part of the deployment task. These tools
are taken from the robot domain and from other domains
where deployment is a mature task. The starting point of
the evaluation is the observation that the tools available for
software deployment are not sufficient to deal with many use
cases appearing in robot software deployment. In particular,
the tools tend to be inflexible and do not cover use cases
involving responding at run-time to changes in requirements
and resources. The evaluation identifies the core roles found
in each assessed tool. Based on the evaluation we generalize,
propose and describe a reference architecture for tools used
in the task of deploying component-based robot software,
according to the definition of deployment given above. Further,
we give some insight into the suitability of some tools to solve
the deployment task as defined by the reference architecture.

II. ANALYSIS OF EXISTING DEPLOYMENT TOOLS

To identify the frequently-occurring roles in the deployment
process, we analyse a range of well-known tools that are used
for deployment. We include both tools used in robotics and, for
a broader perspective, tools from outside the robotics domain.
Most of these are designed for static deployment and are
more commonly known as configuration management tools.
Popular examples include Chef and Ansible which are mature
tools used by system administrators on a daily basis. By
contrast, tools that can handle automatic dynamic deployment
are mostly found in the robotics domain, and even so there is
only one example, the ROCK tool.

The tools covered in this evaluation have been selected
based on popularity in their fields and to give a good coverage
of the style of tools available. Space restrictions and the
number of tools in existence prevent this from being an
exhaustive list of every tool with relevance to the extensive
deployment task.

The purpose of the analysis is to identify commonly-
occurring roles in the deployment process. These roles may be
performed by a human or by some part of the tool, whether

an independent component (such as a daemon) or as part of a
monolithic entity. We have therefore tried to re-use role names
across tools to identify commonalities.

A. OMG “Deployment and Configuration of Component-
based Distributed Applications” specification

The Object Management Group (OMG) provides a spec-
ification for the deployment of component-based software
applications. This specification is titled “Deployment and
Configuration of Component-based Distributed Applications”
(DEPL) [3]. It is primarily intended to be used with
component-based software designed and implemented using
the OMG’s other technologies, such as CORBA and IDL.

We begin with this specification as it in some ways can
act as a base reference model for the static deployment
of an application into a distributed computing environment,
which is a use case that fully encompasses deploying into an
environment consisting of single computing node. It identifies
some common role names for use in the analysis of other tools.
The architecture of DEPL is shown in Figure 1.

The DEPL’s architecture is rooted in two overarching re-
quirements.

o DEPL is used for static application deployment. Although
there are hints in the specification of monitoring node
resource usage, there is nothing specified in the way of
responding to changing conditions and re-deployment at
run-time. However, this is also not explicitly forbidden,
leaving an implementor of the specification open to
providing such a feature if they choose to do so.

o DEPL is, like the CORBA applications it is intended for,
designed to be used for distributed system deployment.
This means it has an extensive data model and facilities
in its architecture for working with multiple computing
nodes.

These two requirements mean that DEPL has no explicit
role for monitoring the state of the application or system after
deployment in order to respond to changes by altering the
deployed application. The ‘“NodeManager” entity may fulfill
this requirement, but there is nothing in the specification on
how this may be achieved nor on how the entities responsible
for deployment should behave. What context monitoring (in
the form of resource monitoring) there is in DEPL is intended
to be used when the application is first deployed, as part of
determining which nodes should host which components of
the software.

The architecture’s design also stems from a third require-
ment, that of allowing multiple vendors to provide differ-
ent parts of the deployment infrastructure. The result is the
somewhat awkward division of deployment execution respon-
sibilities amongst the ExecutionManager, NodeManager, Do-
mainApplicationManager and NodeApplicationManager enti-
ties. The stated goal is to allow the tool responsible for
managing deployment to be separate from the tool responsible
for performing deployment actions on each node.

In DEPL we can identify the following roles as being
involved in some aspect of deployment.

o System selection. The selection of what to deploy is
performed by a planning tool. This is not explicitly
defined in the DEPL specification, but its presence is
made clear.

o System deployment. The ExecutionManager and the Do-
mainApplicationManager are responsible for managing
the deployment of the application.

o Deployment infrastructure. The NodeManager and the
NodeApplicationManager, an instance of which runs on
each node in the domain (the distributed system into
which the application is being deployed), are responsible
for performing the actual deployment, starting the appli-
cation’s components.

o State store. The state of the domain, in terms of avail-
able resources, is stored and used during by the system
selection role to decide on which node to place each
component of the application.

B. Chef

Chef [4] is a style of tool known as a “configuration man-
agement” tool. Its intended purpose is to manage the software
installed and running on a server. It is most commonly used in
server management, particularly for services providing World
Wide Web and Internet- or Intranet-based application content.

The architecture of Chef is shown in Figure 2. Like all
configuration management tools, the most notable aspect is
the reliance on a human administrator to perform the system
selection role. Chef provides a tool, Chef Manage, to aid in
this task but it is the human administrator who decides what
to deploy and where to deploy it.

The system deployment role is spread across two entities
in Chef. The central Chef Server, of which there is only one
instance, instructs clients to deploy systems when it is itself
instructed to do so by the human administrator. The majority
of the system deployment role is performed by the Chef Client
directly.

The Chef Client is also responsible for the deployment
infrastructure role, performing the actual instantiation and
initialisation of the part of the system being deployed on its
node.

Chef includes an entity known as “Bookshelf” that fulfills
a role we call the “catalogue”. This provides access to the
cookbooks (descriptions of deployable systems) as well as sup-
porting data needed for deployment by Chef Client instances.

Chef also includes another role not found in the DEPL
architecture. An entity known as “Ohai” performs a state
monitoring role. One instance of this runs on each computing
node. It gathers information about the state of the node and
the (sub-)system deployed to that node. This information is
used by the Chef Client entity while performing its system
deployment and deployment infrastructure roles. However,
none of this information is used by the system selection role.

Although much of the detailed state of each node and the
deployed system is stored individually on each Chef Client
instance and used solely by that instance, some state about

package DEPL[[5[| DEPL architecturs u
«System selection» Controls «System deployments» Request deployment | aDeployment infrastructures
Planning tool ExecutionManager NodeManager
Controls
Creates
Request deployment
Queri «System deployments «Deployment infrastructures
BaBries DnrnalnAppIIca‘lionHanag_ar NodeApplicationManager
Deploys to
«State store» Queries A =
1
TargetManager

Fig. 1:

The architecture of the OMG’s Deployment and Configuration of Component-based Distributed Applications

specification, specified in terms of the roles involved and the parts of the architecture that fulfills them

package Chef[[5]'| Chef architecture U
«Sysiem selection»
Chef Manage/Human administrator
Conirols
«Catalogues Queries «State stores Request deployment
Bookshelf «System deployments
Chef Server
Motifies
- . «Deployment infrastructures
wState monitoring» Queries) D loyments
. Chef Client
Queries T

Fig. 2: The architecture of Chef, modelled using a UML-like component diagram

the deployment on each node is returned to the Chef Server.
Thus the Chef Server partly fulfills the state store role.

Like DEPL, Chef is a tool for static deployment. Changes
in deployment are primarily intended to be initiated by
the human administrator fulfilling the system selection role.
However, Chef does have some capability to dynamically
deploy software to nodes. This is done via a semi-independent
deployment infrastructure, known as the “push jobs client”,
and separate interface to the system selection tool (the Chef
maintenance interface).

C. Ansible

Ansible [5] is a configuration management tool in the same
vein as Chef. It is used to automate tasks on a collection of
servers. These tasks can be as small as executing a single
command (for example, to configure the host name of a server)
to as broad as starting a suite of software in the correct order

with pre-programmed responses to different conditions on the
Server or errors.

The architecture of Ansible is shown in Figure 3. The core
architecture is very simple, consisting of a single entity, the
Ansible Automation Engine. This architecture is very similar
to the roslaunch architecture (described in Section II-F).

Like Chef, the system selection role selection role is played
by a human administrator. Ansible itself in general is not
capable of choosing when to deploy a system (known as a
“playbook” in Ansible, and not necessarily a long-running ap-
plication but also including one-shot tasks). It does, however,
have the capability to chain system deployments together. This
chaining can include conditionals, allowing a choice of the
next playbook to deploy once the current playbook completes.

The administrator may perform their system selection role
via the Ansible Tower web-based software interface. Ansi-

package Ansible[[]') Ansible architec:tureu

«System selection»
Human administrator/Ansible Tower

Deploy

«System deployments
«state stores

Ansible automation engine

Notify

Query Request deployment

55H session

«Dieployment infrastructures
Opuratlng_sjrmm environment (e.g. Linux shell)

Fig. 3: The architecture of the Ansible configuration manage-
ment tool

ble Tower provides various forms of support to the human
administrator, such as graphically displaying the status of
deployments collected from the deployment infrastructure role
via real-time queries. It also provides a graphical interface for
controlling the chaining of playbooks. However it ultimately
is just an interface for the human administrator.

Notably, Ansible does not include a separate entity fulfilling
the catalogue role. Although it can be told to use a directory of
playbooks stored on disk, it is flexible about where playbooks
come from. For the aspects of the state store role that relate
to maintaining current system state, the automation engine
queries servers as needed to get this information. A caching
system is available, although it is not clear whether this
can cache system information or just variables used in the
playbooks for use in follow-up playbooks when chained.

The deployment infrastructure role is, similar to roslaunch,
provided by the operating system environment on each com-
puting node. Ansible uses an SSH session to access the
deployment environment and executes commands much as a
human administrator would. For cases where software to be
executed is not currently present on the server, Ansible relies
on its ability to execute generic commands to copy (using
SCP) or install (using the deployment environment’s package

manager) software before execution'.

D. Salt

Salt [6] describes itself as a tool for “event-driven orches-
tration”, and fits into the same configuration management
category as Chef and Ansible. It features a highly-modular
architecture, with flexibility being a lead design goal. Salt

IThere are modules for Ansible that abstract this capability to provide a
more user-friendly interface.

package Ealt[ﬂ Salt architec:mreu

wSiate monitoring»
Grains

Motifies

«System selections

Salt master daemon Queries

Requests deployment

«System deployments
w3ystem selections

Salt minion dasmon

Controls

«Deployment infrastructures
Execution modules

Fig. 4: The architecture of Salt

uses an agent-based (client/server) architecture, albeit a highly-
distributed one. The architecture of Salt is shown in Figure 4.

In Salt, there is no entity fulfilling the state store role.
Instead, Salt relies on gathering information at the time it is
needed using instances of an entity called “Grains”. These
fulfill the state monitoring role. Salt claims that this ensures
that information is always up-to-date when used, but the cost
is increased latency and, for distributed systems, increased
network traffic. However, these disadvantages are reduced by
Salt’s approach to sub-system selection.

Salt relies on distributed decision making for controlling
system selection and deployment. The central controller does
not completely fulfill the system selection role; it does not
make decisions about what each computing node (called a
“minion” in Salt’s terminology) in the network should do.
Instead, Salt sends the same configuration states to each
node. Each state, known as a formula, provides actions to
be executed to bring the computing node to the desired state
with the necessary system deployments. They include decision
points that are used by each node to determine which (sub-
)system it should deploy. This reduces the load on the Salt
master, but at the cost of making the configuration of every
node known to every other node (a potential security risk in
some environments).

Many of Salt’s processes are event-driven. The computing

packag_a Puppet[Puppet archinecr.ureu

«System selections

Human administrator

Deploy

Cmrdes) «Stat? ;:E:::anh Contrals
«Catalogu.a»
«System selection»
Puppet master
«State stores Queries “Daplﬂsy‘:;ﬂ%msrmiture»
2cter Puppet client daemon

Fig. 5: The architecture of Puppet

nodes have a significant level of autonomy within the confines
of the configurations provided by the Salt master. They will
alter their current deployments automatically based on events
received.

E. Puppet

Puppet [7] is a configuration management tool used to
manage a large set of servers, like Chef and Ansible. It is used
to automate the deployment of necessary software to a set of
servers. Like Chef but unlike Ansible, Puppet uses a agent-
based (server-client) architecture. This architecture is shown
in Figure 5.

In Puppet, a deployment action is controlled by the Puppet
master server and performed by a Puppet agent daemon in-
stance on each node to which software is being deployed. The
master server determines what should run on each node and
provides that node with instructions specific to it. The Puppet
master server is fulfilling the role of system deployment, while
the Puppet agent fulfills the role of deployment infrastructure.

Puppet specifies deployment goals (the desired configura-
tion of a computing node) in “catalogs”. Each catalog specifies
how a specific node should be set up, including which software
should be deployed on it. These catalogs are generated on-
demand by the Puppet master server from one or more
manifests. One catalog is downloaded to a Puppet client when
it must be deployed.

The manifests describe the necessary deployment of soft-
ware and configuration across a set of computing nodes, which
typically cooperate and therefore represent a single distributed
system. The manifests themselves are stored by the Puppet
master server. This means that the Puppet master server is
fulfilling the catalogue role.

The system selection role is performed by a combination of
a human administrator andthe Puppet master server. Condition-
als specified in the manifests currently active are used during
compilation of the catalog for each node. This allows Puppet
to automate the configuration of many types of nodes. It does

package roslaunch | roslaunch amhitecmreu

«System selection» wCataloguen
Human adminstrator ROS installation
Caontrols
Queries
«System deployments
roslaunch

Requests deployment

] 35H session

«Deployment infrastructures
Linux shell

Fig. 6: The architecture of the roslaunch tool

not directly provide dynamism to the deployment, although
the use of periodic automatic deployment-change checks and
redeployment can provide some measure of dynamism.

A small level of automated re-deployment is provided using
a simple event system in the Puppet clients. By specifying a
particular type of dependency between two deployed entities,
it is possible to ensure that one is re-deployed automatically
when the other re-deploys (usually due to a manual trigger).
This gives the Puppet client daemon the state monitoring role.

F. roslaunch

roslaunch [8] is the application launching tool provided
by ROS.

The architecture of roslaunch, which is relatively simple,
is shown in Figure 6. It uses an “agent-less architecture”. This
term means that computing nodes where ROS components
(which are known as “nodes” in ROS, but with a different
meaning to the computing node in a network architecture) are
deployed to do not need to run a persistent daemon specific to
the deployment infrastructure. Instead, ROS relies on SSH to
provide remote access to nodes, and therefore uses the SSH
daemon for access. It does not rely on any daemon for node-
local launching and management of components, using instead
the standard Linux shell infrastructure to fulfill the deployment
infrastructure role.

roslaunch is a relatively simple tool, designed only to
start a deployment, maintain the deployment in a running state
if part of it should terminate early, and shut down the deployed
system when instructed to or when an error occurs. It does
not feature any dynamic deployment capabilities, and its state
monitoring features are limited to monitoring the system it
launches for premature termination.

The role of system selection is performed entirely by
a human administrator. roslaunch provides no facilities

package ROCK[) ROCK U

«Catalogue»
Bundle list

Queries

«State stores
«System selections
SyskitRoby

Notifies «State monitoring»

Monitor

Caontrols

«System deployments Queries

Profiles

Requests deployment

«Deployment infrastructures
Qrocos

Fig. 7: The architecture of the Robot Construction Kit (ROCK)
tool

for automating this. The tool itself is responsible for the
system deployment role, controlling each computing node’s
deployment infrastructure to bring about the deployment of
the chosen system.

G. Orocos Deployer/ROCK

The Orocos deployer [9] is a software component re-
sponsible for both loading and configuring components de-
veloped in the Orocos ecosystem. The deployer takes an
XML file providing a description of the system to deploy.
This contains instructions for importing, loading and config-
uring components (i.e. setting names and properties) and their
connections to each other. From an architectural point of view
the Orocos deployer is a relatively simple, centralized tool,
yet the underlying deployment API exposed by the scripting
methods of the deployer component is rich in terms of the
possible configuration options. These include communication
policies and component scheduling options. The architecture
is nearly identical to that of roslaunch. Asin roslaunch,
the Orocos deployer fulfills the “system deployment” role. The
“system selection” role is fulfilled by a human administrator
and the XML description fulfills the “catalogue” role.

Another deployment approach in the Orocos ecosystem is
the Syskit tool which can be found in the Robot Con-
struction Kit (ROCK). ROCK is based on the Orocos RTT
framework and its underlying component model. The Syskit
tool aims to simplify the management and hence deployment
of large component-based robot software systems. To this end,
Syskit introduces the concept of “bundles” to group a set of
components together, declaring dependencies to other bundles

as necessary. These bundles fulfill the “catalogue” role. The
bundles and corresponding components can be browsed by the
Syskit tool to infer information such as component type
and exposed data and service ports. To make the bundles
executable they are refined by “profiles”. Profiles fulfill the
“system deployment” role. Profiles are executed by the Roby
tool. Roby fulfills the “system selection” role. The information
provided by profiles and bundles is also used to automatically
compose different bundles together by matching port types
and making connections. This automatic composition, which
also resolves redundancies, is performed by the Roby plan
management framework. This also makes it possible to declare
policies on how to cope with errors and failures and, if
necessary, which bundles need to be re-deployed.

III. REFERENCE ARCHITECTURE FOR A DEPLOYMENT
SYSTEM

Having evaluated a variety of tools used for some or
all of the deployment activity, we now propose a reference
architecture for deploying component-based robot software.
According to Taylor er al. [1] a reference architecture is
defined as “the set of principal design decisions that are si-
multaneously applicable to multiple related systems, typically
within an application domain, with explicitly defined points of
variation”. In this work we consider component-based robot
software to be related systems within the domain of robotics.
Reference architectures are considered to be best practices
in other domains. Examples can be found in well-established
domains, such as automotive [10] [11] and avionics [12].

Introducing a reference architecture for robot software
systems is necessary. Deployment is a recurring yet often
underestimated activity that is often prone to errors. Thus, a
reference architecture provides not only a way to organize
deployment, but also indicates how we can devise a template
solution for recurring applications. It is worth noting that
such a template solution is applicable and tailorable for many
diverse applications.

The proposed reference architecture is depicted in Fig. 8
as a high-level role-based diagram. Here, each role forms an
important part of the deployment process. These roles have
been identified in Sec. II. The diagram assembles the roles,
each of them providing and requiring activities, for example,
notifying or querying other roles. Before each role is explained
in detail, we explain two principal design decisions of the
reference architecture.

« Firstly, the knowledge relevant for deployment, for exam-
ple about software components and execution platforms,
shall be explicitly stored and provided by one role,
making deployment knowledge accessible for other roles.
For example, the “State repository” role stores the current
state of deployed components and is queried by several
other roles, such as the “Sub-system selection” role.

« Secondly, deployment is performed in two steps. The first
step deals with selecting a (sub-)system (“Sub-system
selection” role), which is a set of components realizing
certain functional features suitable for the task at hand.

The second step deals with deciding where, for example
on which computing node, the selected components will
be executed. Having such a step-wise approach enables
developers to implement application-specific and domain-
specific tools fulfilling the sub-system selection role
without dealing with deployment concerns. These may,
for example, be tailored for perception, manipulation or
control.

A. Sub-system catalogue

The “Sub-system catalogue” role deals with the knowledge
about what can be deployed and the requirements to do
so. These requirements can include information such as the
existence of specific hardware, and the properties of that
available hardware (e.g. the amount of available memory). Fur-
ther, the catalogue contains information about where software
components can be deployed to and what the current state of
those locations or computing resources is. [13] gives insights
on the type of information required for deployment, which this
role will typically include.

B. State repository

The “state repository” is a dynamic storage containing the
current state of the deployed software and the deployment
environment. This state information is constantly updated by
the “Context monitoring” role. For example, in case of sudden
errors or crashes of deployed components.

C. Context monitoring

One or more tools fulfilling the “Context monitoring” role
are composed in the reference architecture in order to provide
the contextual information needed to select (see III-D) and
deploy sub-systems (see III-E). To this end, context monitors
collect and interpret all the measurements required to infer the
current state of the robots’ environment, platform (including
mechanical structure, sensors, actuators and computational
elements) and intelligence features such as tasks, behaviors
and skills. Context monitors make this information accessible
to other roles by inserting it in the “State repository”. Very
often robotic systems already acquire those measurements and
take important decisions based on their values. However, the
acquisition of these measurements is usually hard- coded in
the implementation of the software or hardware components
that reason about them. Thus, introducing dedicated context
monitoring will make components more reusable. In general,
context monitors are application-specific and employ vari-
ous context representations (e.g. logic-based vs. probabilistic-
based approaches) [14] suitable for the task at hand.

D. Sub-system selection

The “sub-system selection” role is in charge of selecting one
or more (sub-)systems suitable for the task at hand. Activation
is either triggered — in a reactive manner — by changes in
context information inserted in the “State repository”, or by
higher-level roles. In order to select the sub-systems suitable
for the task to be performed, different methods and algorithms

such as rule-based approaches or constraint solvers can be
used. Depending on the employed selection algorithm, differ-
ent types of queries may be applied to retrieve the information
required to carry out selection.

E. Sub-system deployment

The “sub-system deployment” role is responsible for de-
ploying one or more sub-systems and their corresponding
components into the target deployment environment. To this
end, the sub-system deployment role takes the requirements
of the to-be-deployed software from the sub-system catalogue
role performer and, combined with the state of the platforms,
tries to find a suitable match.

F. Deployment infrastructure

The “Deployment infrastructure” role is responsible for
bringing up and taking down each software component of the
selected (sub-)system and making or breaking corresponding
connections between those software components. The infras-
tructure is informed by the “Sub-system deployment” role
which software components on which computing nodes should
be started or stopped, respectively. In order to execute software
components on certain platforms the infrastructure may require
additional, execution-relevant knowledge. For example, how
software components are mapped to executable primitives,
such as processes and threads, or where the binaries of
components are located, may need to be known in order to
instantiate the components.

IV. CONCLUSION

In this article we have evaluated a variety of tools used for
part or all of the task of deploying robot software. From the
evaluation we have proposed a reference architecture that iden-
tifies the core roles that must be filled to satisfy the complete
deployment activity. These roles are sub-system catalogue,
state repository, sub-system selection, sub-system deployment,
deployment infrastructure, and context monitoring.

While some of the identified roles may be filled by a human,
and in several of the tools evaluated this is the case, the ideal is
for the entire deployment activity to be automated. To achieve
this, all roles must be filled by software tools that interact with
the other roles to provide an integrated tool chain.

This reference architecture provides a foundation on which
a set of interacting software tools can be built. Each tool must
fulfill one or more of the identified roles. If such a set of tools
is assembled, the task of deploying and re-deploying software
on a robotic system both before and during run time will be
achievable.

In future work we will implement and evaluate the reference
architecture for robotic scenarios where re- deployment of
component-based robotic software at run-time is desirable. To
implement the reference architecture we favor a run-time envi-
ronment that can be used by different robot systems. Having
such a run-time environment would foster the development
of reusable robot- and application-agnostic elements of the
reference architecture, such as the sub-system selection.

package Reference architecture [ﬂ Reference architecture rolesu
Queries
‘ Sub-system catalogue [L;
Queries
Notifies
State repository | 7 Sub-system selection I Controls 4 Sub-system deployment |
Inserts T Queries |
Queries Requests deployment

Context monitoring Queries

% Deployment infrastructure ‘
Notifies
Fig. 8: The proposed reference architecture
REFERENCES

[1] R. N. Taylor, N. Medvidovic, and E. M. Dashofy, Software Architecture:
Foundations, Theory, and Practice. 'Wiley Publishing, 2009.

[2] A. Dearle, “Software deployment, past, present and future,” in 2007 Fu-
ture of Software Engineering. Washington, DC, USA: IEEE Computer
Society, 2007, pp. 269-284.

[3] Object Management Group, ‘“Deployment and configuration
of component-based distributed applications specification,”
http://www.omg.org/spec/DEPL/4.0/, 2004, [Online; accessed 03-
January-2016].

[4] “Chef configuration management,” https://www.chef.io/, 2017, [Online;
accessed 15-October-2017].

[5] “Ansible configuration management,” https://www.ansible.com/, 2017,
[Online; accessed 15-October-2017].

[6] “Salt intelligent orchestration,” https:/saltstack.com/, 2017, [Online;
accessed 15-October-2017].

[7]1 “Puppet configuration management,” https://puppet.com/, 2017, [Online;
accessed 15-October-2017].

[8] “Roslaunch tool for launching ros nodes,” http://wiki.ros.org/roslaunch,
2017, [Online; accessed 15-October-2017].

[9] “Orocos deployer,” http://www.orocos.org/stable/documentation/ocl/v2.x/doc-
xml/orocos-deployment.html, 2017, [Online; accessed 15-October-
2017].

[10] “Autosar (automotive open system architecture),”

https://www.autosar.org/, 2017, [Online; accessed 15-October-2017].
[11] U. Eklund, O. Askerdal, J. Granholm, A. Alminger, and J. Axelsson,
“Experience of introducing reference architectures in the development
of automotive electronic systems,” SIGSOFT Softw. Eng. Notes, vol. 30,
no. 4, pp. 1-6, May 2005.
L. Wang, D. Ma, Y. Zhao, X. Zhao, and Y. Wang, An Approach to
Develop Architecture of ARINC653-Based Avionic Software. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2015, pp. 257-262.
[13] N. Hochgeschwender, L. Gherardi, A. Shakhimardanov, G. K. Kraet-
zschmar, D. Brugali, and H. Bruyninckx, “A model-based approach
to software deployment in robotics,” in 2013 IEEE/RSJ International
Conference on Intelligent Robots and Systems, Tokyo, Japan, November
3-7, 2013, 2013, pp. 3907-3914.
D. Calisi, A. Farinelli, G. Grisetti, L. Iocchi, D. Nardi, S. Pellegrini,
D. Tipaldi, and V. A. Ziparo, “Uses of contextual knowledge in mobile
robots,” in Proceedings of the 10th Congress of the Italian Association
for Artificial Intelligence on AI*IA 2007: Artificial Intelligence and
Human-Oriented Computing, ser. AT*IA "07. Berlin, Heidelberg:
Springer-Verlag, 2007, pp. 543-554.

[12

[14

