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Towards A Robot Hardware Abstraction Layer (R-HAL) Leveraging
the XBot Software Framework

Giuseppe F. Rigano', Luca Muratore! 2, Arturo Laurenzi', Enrico Mingo Hoffman', and Nikos G. Tsagarakis

Abstract— The rapid advances in robotics have recently led
to the developments of a wide range of robotic platforms that
exhibit significant differences at the hardware components level.
In analogy to the case of the early computer hardware few
decades ago, most of these robotics systems do not possess
any form of hardware abstraction. This necessitates the users,
writing code to control these platforms, to have extensive know-
how of the robot hardware devices and their communication
interfaces and protocols. Consequently, this poses a significant
challenge to robot software developers since they have to know
how every hardware device in the robot works to ensure their
software’s compatibility when transferring/reusing their code
on different robots.

In this paper we present a new Robot Hardware Abstraction
Layer (R-HAL) that permits to seamlessly program and control
any robotic platform powered by the XBot control software
framework [1]. The implementation details of the R-HAL
are introduced. The R-HAL is extensively validated through
simulation trials and experiments with a wide range of dissim-
ilar robotic platforms, among them the COMAN and WALK-
MAN humanoids, the KUKA LWR and the CENTAURO upper
body. The results attained demonstrate in practise the gained
benefits in terms of code compatibility, reuse and portability,
and finally unified application programming even for robots
with significantly diverse hardware. Furthermore, it is shown
that the implementation and integration of the R-HAL within
the XBot framework does not generate additional computational
overheads for the robot computational units.

I. INTRODUCTION

A robotic platform can be considered as a complex
distributed system composed by a set of hardware devices
communicating through different fieldbus systems and a set
of interfaces and protocols of diverse instruction and data
fields. The aforementioned complexity is mainly due to
hardware specific operation protocols, hardware distribution
and synchronization requirements [2]. As a result, frequently
during software development in robotics it is very challeng-
ing to develop code, e.g. control software modules, that can
be reused with no changes on different platforms.

However, efficiently developing control and application
software, that can be shared, ported and reused in these
diverse range of robotic hardware with minimum effort, is a
fundamental requisite for advancing fast the capabilities of
these machines.
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Figure 1. The robot Hardware Abstraction Layer introduced
for the XBot software architecture. The R-HAL assures high
flexibility towards any type of robotic platform or simulation
environment.

An important component, needed to achieve this, is the
Hardware Abstraction Layer (HAL), which can be incorpo-
rated to mask the physical robot hardware differences and
limitations (e.g. kinematics model, sensor, update frequency,
etc) varying from one robotic hardware to another. In such a
case, an application programming interface (API) alone could
do very little to hide those differences, by mostly assuming
a common model, that will not be effective in most of the
cases.

Thus, the robotic software architectural decisions should
seriously consider the key role played by HAL for the
interaction and the coordination of robot hardware and soft-
ware control modules. HAL can provide a relatively uniform
abstraction that could hide the specifics of the underlying
hardware such that the underlying robotic hardware is trans-
parent to the robot control software [3]. Furthermore, HAL
assures portability and code-reuse: it efficiently permits robot
control software developed for one robot to be ported to
another. In one example [3], the HAL permits the same
navigation algorithm to be ported from a wheeled robot and
used on a humanoid legged robot.

In a robotic platform different fieldbus systems can be
employed to permit communication among the robot hard-
ware devices. CAN bus is one example. Among the others,
the iCub humanoid [4] and the HyQ quadruped [5] are



exploiting this protocol to communicate with the actuators
control boards. Nevertheless, the CAN bus limit the data
throughput and have higher roundtrip(reaction) time with
respect to Ethernet-based solutions [6].

Even if Ethernet(defined in IEEE 802.3) is non-
deterministic and thus is unsuitable for hard Real-Time
(RT) applications due to its random delays and potential
transmission failures, it is used in several robotic platform
e.g. on COMAN humanoid [7] or the recent upgrade of the
iCub, called iCub2 [8]. An example of a fieldbus system
with RT communication capabilities is EtherCAT (Ethernet
Control Automation Technology), an industrial protocol built
on the Ethernet specifications. It assures high transmission
rate, minimum roundtrip time with respect to other industrial
protocol, precise synchronization (< 1us), and demonstrates
flexible topologies, easy configuration, implementation and
cost effectiveness [9]. WALK-MAN humanoid [10] robot is
using the EtherCAT technology.

On the basis of the above mentioned considerations,
the XBot [1] RT software platform was designed only for
EtherCAT based robots. However to support a wider variety
of robotic systems it is essential to incorporate a R-HAL
interface inside the framework. In the work presented herein
we will show the design choices taken for the implementation
of the robot hardware abstraction layer and the capabilities
of this software component, which enable us to efficiently
port and run the same control software modules on differ-
ent robots, both on simulation and on the real hardware
platforms. The rest of the paper is organized as follows:
Section II presents the related work, while section III gives
a detailed description of the proposed HAL. Section IV
presents the experimental results. Finally section V addresses
the conclusions.

II. RELATED WORK

In computer science, the separation of concern principle
followed by the modern software design patterns has been a
relevant topic even before the Object Oriented Programming
(OOP) languages. The main goal is to enhance the reuse
of the code using abstractions of real objects and hiding
implementation details. Although programming by interface
is a good practise to use for any type of software develop-
ment, the need of abstraction layer is strong when interfacing
with hardware devices because of the several communication
protocols.

For the above reasons, the Object Management
Group [11], not-for-profit technology standards consortium,
last year announced the adoption of the Hardware
Abstraction Layer for Robotic Technology (HAL4RT) [12]
as an open standard for the implementation of robotics and
control software systems. By standardizing on HAL4RT it
will be possible to port or reuse drivers on different robotics
hardware.

The approach used by some of the RT robotic frameworks
follows the use of making abstraction of the low level analog
and digital I/O devices and exploit the polymorphism to
change the specific implementation at runtime.

The OROCOS [13] framework relies on the Device Inter-
faces ! as a means to achieve hardware abstraction modeling
the concept of low level analog/digital I/O as well as a bit
upper level axis interface. However it requires more effort
from the user side in order to interface an entire robot.

EEROS [14], an industry-ready open source RT robotics
software, uses a similar methodology trying to wrap each
specific hardware libraries using a configuration file to chose
the low level I/O parameters. An interesting feature of the
EEROS framework is the safety layer embedded in the HAL
that allows to handle the safety behaviour of the robot in
emergency situations.

A different approach is used by PODO [15], where the
hardware abstraction is done at the level of the robot using a
shared memory mechanism. Nevertheless no mention about
interfacing different robot hardware has been found in their
work.

The OpenRTM-AIST [16] RT framework has the goal to
build an independent middleware in order to improve the re-
usability of software on the independent platform. It uses a
different approach, each hardware component is seen as an
RT component with its internal state machine that handles
the component’s life cycle. The communication between
components follows the publisher/subscriber model and it
is realized using the data port.

Similar consideration to the OROCOS framework can be
done for the NRT YARP [17] middleware where the user has
to implement a specific driver for each device family.

ROS [18], the popular component-based NRT framework,
aims to provide a really high level hardware abstraction
by means of the ROS-CONTROL ? packages. The robot
hardware interface is designed in such a way to move the
integration effort to the driver level and let the user to easily
read the state of the robot and send commands.

The RT XBotCore platform was initially designed to
provide a bland level robot hardware abstraction just for
EtherCAT based robot, making really difficult interfacing
with any new robot hardware. Despite the EtherCAT ab-
straction, XBotCore was highly tied to the low level with no
autonomous threading capability, in the sense that it relied on
the custom low level software to become part of the thread
loop.

The proposed work tries to overcome the aforementioned
issues making a really flexible system and improving soft-
ware re-usability. To achieve that, a strategy similar to ROS
has been adopted allowing to interface easily with the code
already written for ROS and as a result the advantage of
having a choice between RT (Real Time) and NRT (Not
Real Time) control system. However it is important to note
that the RT capability depends on the low level hardware and
software layer.

Ihttp://www.orocos.org/stable/documentation/
rtt/v2.x/doc-xml/orocos—-components-manual.html#
1dp41997920

2http://wiki.ros.org/ros_control



III. R-HAL

In this section we will discuss both the initial and the
current design choices of the XBotCore platform trying to
underline pros and cons by comparing the two software
designs.

A. The former XBotCore design

As mentioned in the previous section, the initial design
of the XBotCore was not ready to easily plug a new robot
hardware. The Fig.3 shows the former software architecture
where four main elements can be analyzed:

o XBotEcat, responsible to interface the low level soft-

ware control;

« XBotCore, designed to provide the implementation of

the interfaces;

« Interfaces representing Joint, IMU, FT, Hand;

o GazeboXBotPlugin, aims to emulate the XBotCore

component acting as a Gazebo® simulator plugin.

The above described architecture allows to reuse part of
the code but it is not completely optimal for a full reuse
leading to a code replication inside the GazeboXBotPlugin
and in any new concrete implementation. Moreover the UML
class diagram shows the lack of any hardware abstraction
layer, since only the XBotEcat implementation is provided
as an endpoint to the low level control. The lack of multi-
fieldbuses support is a strong limitation that needs to be
overcome.

The described solution makes the XBotCore an embedded
component inside the low level control software relying on
the Template Pattern of the EcThreadBoardControl class in
order to be part of the control loop. The resulting system
architecture has a light complexity but the flexibility issue
increases the effort the user has to carry out to support any
new hardware.

void XBot::XBotCore::control_init(void)

ialInterface->init();
init_internal();
return;
1
int XBot::XBotCore::control_loop(void)
{
int state = halInterface->recv from slave();
if(state == 0)
loop internal();
halInterface->send to slave();
1

Figure 2. XBotCore - R-HAL components interaction.

B. The R-HAL approach

The purpose of the new software design is to pro-
vide a middleware independent from the low level hard-
ware/software with autonomous threading capability. The
UML class diagram in Fig. 4 shows the software architecture
with the R-HAL approach.

3http://gazebosim.org/

The core component is the HAL interface responsible to
provide an endpoint to the low level hardware/software layer
in such a way to be flexible towards any new robots. The
HAL achieves its job by providing three abstract methods
that each concrete implementation has to implement. In
detail, adopting a master - slave approach, the HAL lifecycle
is described by the following methods:

o init(), useful in the initialization phase (open connection,
initialization of data structures);

o recvFromSlave(), designed to communicate to the slaves
and fill the data structure;

o sendToSlave(), deals with the communication to send
the reference signals to the slaves.

The HAL interface extends the XBotJoint, XBotFT, XBo-
tIMU and XBotHand interfaces but it does not provide any
implementation, leaving the job to the child classes. In partic-
ular we provide three implementation XBotEcat, XBotEther-
net, XBotKuka, XBotGazebo respectively for Ethercat, Eth-
ernet, Kuka lwr 4 based robots and Gazebo based simulator.

The described design does not limit the user to add new
behaviour because it is just required to implement other set of
interfaces. All the HAL implementation are built as shared
library loaded at runtime according to what specified in a
configuration file. In particular the factory design pattern
has been adopted to load/unload several implementations.
The XBotCore class will load the specific HAL imple-
mentation getting the factory from the HALInterfaceFactory
class where the symbols are resolved immediately to avoid
slowdowns during the RT execution.

The XBotCoreThread gets the threading capability by
inheriting from ThreadHook class such that it is possible
to realize the control loop. In order to provide more flex-
ibility a Controller interface is used to represent a generic
controller behaviour. XBotCore acts as a specific controller
implementation and it interacts with the HAL by calling
the init() method in the controllnit() and the other two
methods inside the controlLoop() as shown in Fig 2. The
task of XBoCoreThread class is to invoke the controllnit()
and controlLoop() methods on a controller implementation.

The described abstraction layer allows to easily switch
between simulation and real robot as shown in Fig. 1. The
XBotGazeboPlugin class emulates the same behaviour of
the XBotCoreThread class relying on the ModelPlugin class
to be part of the Gazebo internal loop. The advantages of
the presented architecture are evident and despite the high
flexibility provided it does not increase considerably the
complexity of the software design.

C. Mixing RT-NRT controlled hardware

The software architecture presented in the previous chapter
is well designed in the scenario in which we suppose to have
either a fully RT or fully NRT environment. However how
to mix NRT and RT controlled hardware is a requirement
to be considered. One possible example of the aforehead
mentioned condition, could be interfacing a RT hardware
robotic arm with a NRT robotic end-effector (hand). A
solution that exploits the Cross Domain Datagram Protocol
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Figure 5. NRT end-effector (Hand) control from the RT
side.

pipes (XDDP pipes) from Xenomai* (required for the XBot
RT architecture) has been adopted. The design idea is shown
in Fig.5, where we have an implementation of the XBotHand
interface that uses XDDP pipes to forward the data to the
NRT side and vice versa. A NRT thread will manage the
robotic hardware exploiting the XDDP communication and
running the low level end-effector control modules. The
interaction between the RT and NRT domains takes place
inside one of the possible HAL implementation. A mapping
between the joint ID and IXBotHand interface allows us to
load at runtime the specific RT-based or NRT-based end-
effector (hand) control implementation.

IV. EXPERIMENTS

To validate and evaluate the performance of the XBotCore
software platform, we performed a set of experiments on

4https://xenomai.org/



different robotic platforms as described in the following
section. Moreover a comparison between the former software
design and the R-HAL introduced design is provided.

A. Experimental Setup

The proposed software architecture has been validated on
the following robotic platforms (Fig. 6):

o WALK-MAN robot, a full-size humanoid with 33 DOFs
(Degree-Of-Freedoms), 4 custom F/T sensors and 1
IMU. The WALK-MAN head is equipped with a CMU
Multisense-SL sensor that includes a stereo camera, a
2D rotating laser scanner, and an IMU.

o CENTAURO upper body prototype has 15 DOF [19].
Each arm has 7 DOF. For the trunk there is an additional
1 DOF that permits the yaw motion of the entire upper
body and extends the manipulation workspace of the
robot. 2 custom F/T sensors are placed at the wrists.

¢ COMAN robot, a 95cm tall humanoid robot with 29
DOFs. Custom torque sensors are integrated into ev-
ery joint to enable active stiffness control and 6-DOF
sensors are included at the ankle to measure ground
reaction forces.

o KUKA Iwr 4+, an industrial 7-axis jointed-arm robot.
Each joint is equipped with a position sensor on the
input side and position and torque sensors on the output
side. The robot can thus be operated with position,
velocity and torque control. Data transfer between the
robot controller and an external computer is carried out
using the FRI (Fast Research Interface).

Figure 6. Robotic platforms used during the experiments:
on top left corner KUKA Iwr 4+, on bottom left corner
COMAN, on the center WALK-MAN robot and on the right
CENTAURO upper body.

All the robotic platforms were tested both on the Gazebo
environment and on the real hardware by running an XBot
plugin that performs a circular trajectory. Thanks to the
dynamic API the experiments were executed in all the robots
without code modification but just loading the configuration
file for the specific robot platform. In particular, the OpenSoT
control framework[20], [21] was used to solve whole-body
control and inverse kinematics.

The software has been tested on Linux OS 3.18.20-
xenomai-ipipe-2.6.5 running on COM Express i7 CPU @
2.30GHz quad-core for WALKMAN and CENTAURO while
the COM Express i7 CPU @ 1.7GHz dual-core was used
for COMAN and KUKA arm. RTnet, an Open Soure hard
real-time network protocol stack for Xenomai and RTAI was
used assuring an implementation of the UDP/IP, TCP/IP
(basic features), ICMP and ARP in a deterministic way. It
is important to mention that in the case of the KUKA arm
all the control was done in NRT mode because we reused
the FRI API communication provided by KUKA intrinsically
not RT safe.

B. Results

In Fig. 7 we present the results of the R-HAL validation in
terms of control period. We report the data of the experiments
on the four robotic platforms described in the Experimental
Setup section. It is important to note that we requested
a control frequency of 1 kHz (i.e. 1 ms control period),
for all the platform RT controlled (i.e. CENTAURO upper
body, COMAN and WALK-MAN). As already mentioned,
the KUKA Iwr 4+ was controlled in N-RT mode at 200 Hz
(i.e. 5 ms control period). It is evident that no overhead has
been introduced with the R-HAL compared to the former
XBot software design.

0° CENTAURO Upper Body

870 100 200 300 400 500 600

0 100 200 300 400 500 600
Time Step
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o
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Figure 7. Control period comparison between the XBot
architecture with R-HAL and with No HAL.

To complete our analysis, in Table I, we show a compari-
son of the mean CPU usage time for the XBot platform with
or without the R-HAL. The outcome is that the R-HAL does
not introduced any processing overhead.

TABLE I
SINGLE CORE MEAN CPU USAGE %

No HAL R-HAL
CENTAURO upper body 93 +1.4 94 +1.9
COMAN 12.0 £2.2 122 £2.3
WALK-MAN 182 +1.7 185 £1.5
KUKA 3.8 £0.8 39 £1.0




V. CONCLUSIONS

The extensive uprising in robotic hardware of different
form is imposing a significant challenge to the robot software
developers when they have to deal with robotics systems with
hardware incompatibility making code development, porting
and reuse highly inefficient. To address this barrier, hardware
abstraction layers are necessary to mask the robot hardware
variances and the associated hardware-dependent instructions
to the robot from the application/control software developers,
enabling efficient and unified code development and reuse
among different robot hardware.

Towards this direction, we presented the concept of R-
HAL, a new Robot Hardware Abstraction Layer as a way
to improve the reuse of the code among different hardware
robotic platforms. In particular, we leveraged on the power
of the XBot software framework to develop and validate R-
HAL on a range of different robotic platforms. A comparison
between the initial software design and the new one has
been performed showing the advantages and disadvantages
of both architectures. The autonomous threading capability
together with the R-HAL interface allows to easily adopt
the XBot framework as a middleware for several different
robots by exploiting the power of the software polymor-
phism. Moreover an example of integrating RT and NRT
domain to support hybrid RT-NRT hardware has been shown
leading to a very high flexibility, towards any type of low-
level interface. The results demonstrate that the change in
complexity does not affect the CPU load maintaining the
desired execution bandwidth (control period, RT-NRT) in all
robotic platforms.

Future work will focus on the design of a safety layer
embedded in the R-HAL by applying hardware specific
capability constraints to the generated command signals and
defining the robot specific workspace for safe human robot
collaboration. Furthermore, R-HAL will be validated on
other research and industrial robotic platforms to rigorously
evaluate its benefits. The XBot software platform is released

free and open source’.
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