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Robotic Control for Cognitive UWB Radar
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Abstract—In the article, we describe a trajectory planning
problem for a 6-DOF robotic manipulator arm that carries
an ultra-wideband (UWB) radar sensor with synthetic aperture
(SAR). The resolution depends on the trajectory and velocity
profile of the sensor head. The constraints can be modelled
as an optimization problem to obtain a feasible, collision-free
target trajectory of the end-effector of the manipulator arm in
Cartesian coordinates that minimizes observation time. For 3D-
reconstruction, the target is observed in multiple height slices.
For Through-the-Wall radar the sensor can be operated in sliding
mode for scanning larger areas. For IED inspection the spot-light
mode is preferred, constantly pointing the antennas towards the
target to obtain maximum azimuth resolution.

I. INTRODUCTION

The concept of a cognitive radar [1]], [2] architecture at
Fraunhofer FHR [3] is based on the three-layer-model by
Rasmussen [4] as shown in Fig[l]

The skill based behavior represents the basic signal gener-
ation and processing capabilities of the system. This provides
the subsymbolic, continuous stream of input-data to the ar-
chitecture. The rule-based abstraction layer applies machine-
learning methods to recognize certain pre-stored cues in the
perceived scene. Upon match, the architecture will reactively
execute a prestored procedure on its actuators or modify its
sensor parameter settings. The knowledge-based abstraction
layer provides long-term deliberation and goal-based planning.

In this article, we will focus on the generation of constraints
for trajectory planning for a robotic arm carrying a UWB radar
sensor. All three layers need to interact to compute the trajec-
tory according to the scene and execute it by commanding the
sensor and the manipulator joints and finally form an image.

Ultrawide-band 3D-SAR imaging using robotic arms have
been demonstrated using milllimeter-Wave FMCW-Radars [3],
[6]], [7]]. In this article, we concentrate on a chirped radar with
a lower center frequency of 8 GHz, yielding better material
penetration properties.

II. RoBoTiC UWB SENSOR SETUP

The system under consideration consists of a robotic manip-
ulator arm that carries a UWB sensor able to work in synthetic
aperture radar (SAR) mode. We used a stock ST Robotics R17
6-DOF industrial type manipulator arm shown in (Fig. [2).

High resolution imaging can be only achieved with an
even higher precision positioning. The 3D-trajectory of the
sensor needs to be measured and synchronized with the sensor
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data. For that purpose, accelerometers and gyroscopes from an
attached inertial measurement unit (IMU) are used. The IMU
drift is additionally stabilized using the hardware readout of
optical encoders of the robot arm joints controlled by step-
motors.

The sensor has one transmitter and one receiver in a typical
common offset arrangement as shown in Fig. 3] The horn type
antennas can be rotated to exploit polarization diversity.

The spatial resolution and processing gain that the system
can achieve ultimately depend on the trajectory and velocity
profile of the sensor head. The constraints can be modelled
as an optimization problem to obtain a feasible, collision-
free trajectory of the end-effector of the manipulator arm in
Cartesian coordinates that minimizes observation time.

III. SENSOR CHARACTERISTICS AND TRAJECTORY
CONSTRAINTS

The chirped radar sensor uses a selectable center frequency
from 3 to 8GHz and 4GHz of bandwidth B, resulting in §, =
3.75¢m of range resolution given by:

c

b~ 5 (M)

where ¢ denotes the speed of light in vacuum.

The center frequency can be tuned according to a partic-
ular target or propagation environment (ground penetration,
through-the-wall imaging, IED inspection, etc.). The sensor is
able to operate in stripmap or spotlight SAR modes using lin-
ear trajectories. Several parallel trajectories can be combined
for 3D imaging. The mobility of the arm could be further
exploited to generate non-linear trajectories around a target to
obtain a more accurate 3D reconstruction.

Considering the case of planar acquisition geometries work-
ing in stripmap mode (as in Fig. [4) the cross-range resolutions
0,y can be generally obtained as:

Ac
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where R is the distance to the target,Fig.5 \. is the wave-
length at the center frequency and I, and I, are the lengths
of the 2D synthetic aperture (during which the target is in the
antenna beam).
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Fig. 2. Transmit (Tx) and receive (Rx) antenna of UWB radar sensor mounted
to robotic manipulator arm. Photo also shows IMU position.

Therefore, in order to obtain a similar resolution in range
and in cross-range, the trajectory planning must aim to create
at least an aperture of 0.5 to 1.3 times the distance R to the
target in both directions, depending on the center frequency
used by the system (8-3GHz respectively).

Assuming the target is continuously sliding through the an-
tenna beam, another way to express the cross-range resolution
relies on the knowledge of the antenna footprint:
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Three-layer model of a cognitive radar architecture according to [4]
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Fig. 3. Schematic of the robot arm and polarimetric antenna mounting.

where O, ©, are the antenna beam angles in radians in the
x and y directions.

In the particular case of a sensor setup with a central
frequency of 8GHz and antenna beamwidth of both ©,,0, =
20 deg, the expected resolution will be about 5.4cm. In prac-
tice, data is windowed to reduce sidelobes in the imaging and
as a result the actual resolutions are usually poorer than those
given by the formulas.

Two other important parameters to be taken into account
are the optimal size of the scanning area and the sampling
requirements. For planar acquisition geometries working in
stripmap mode, to obtain full resolution imaging of the total
area of interest an additional half beam aperture must be added
in both dimensions as shown in Fig. 3]

This additional distance can be calculated with the expres-
sions

d, = Rtan % (6)
d, = Rtan % @)

that clearly depend on the distance between the sensor and
the object of interest.
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Fig. 5. « and z direction of the scanning area.

In the particular case of an object of dimensions D, = 0.5m
and D, = 0.3m located at R = 0.5m from the sensor,
with a central frequency of 8 GHz and antenna beamwidth
of both ©,,0, = 20deg, the scanning trajectory should be
extended by about 9 cm in both dimensions. In the following,
we will use L, = 0.8m and L, = 0.5m as physical linear
displacements with constant velocity in the z,y-directions
to satisfy the requirements for the scanning area in both
directions.

Another important parameter is related with the sampling
requirements of a particular acquisition. The measurement
positions in the synthetic radar aperture require a minimum
spacing in order to sample adequately the phase history
associated with all the scatterers. If the distance between
measurements is too large, the Nyquist criterion is not fulfilled
and artifacts may appear in the reconstructed image.

Assuming that the targeted area is confined within a rectan-

gular box of dimensions D, D, and that L, and L, are the
lengths of the aperture, the required sampling spacing A, A,
in the measurement to satisfy the Nyquist criterion is given
by [8]:
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where A,,;, is the wavelength at the maximum working
frequency. In our example, the sensor-head must not move
more than A, = 0.0095m per pulse. Since the pulse repetition
frequency (PRF) of our system is fixed to 12Hz, the resulting
maximum velocity vpq, = A, - PRF =0.11m/s.

Here it must be considered also that signal propagation in
dielectric materials (ground, wall) will shrink the wavelengths
and then sampling requirements become even more stringent
[9]. A previous estimation of the dielectric permittivity of
the propagation media may further optimize the acquisition
geometry.

IV. TRAJECTORY GENERATION

In order to maximize the acquisition speed, we selected
a trapezoidal velocity [I0] profile shown in Fig. [} To
slightly oversample, we select a constant target velocity of
v = 0.lm/s < vUmae- The trajectory accelerates for the
first 2000msec, then reaches constant acquisition speed v for
L, = 0.8m and then decelerates again.

The linear trajectory can be used to form a SAR image
in stripmap mode for each height slice. As shown in Fig.
the pose of the robot end-effector follows a meander-
shaped pattern composed of linear segments for the different
height slices. For a six degree of freedom robot, the inverse
kinematics can easily be computed as illustrated in the figure
for joints 3 and 6. The ST Robotics controller already contains
routines to command the pose of the end-effector in Cartesian
coordinates with the desired trapezoidal velocity profile.

V. EXPERIMENTAL RESULTS

Fig.[8|shows an example of an image obtained with the robot
arm using some reference objects inside a plastic suitcase. The
trajectory followed by the sensor has been planned considering
the constraints previously mentioned to obtain unaliased high-
resolution images of the total area of interest. Three reflecting
spheres and two metal links are placed on top of absorbing
material, creating a reflecting target area of about 40cm in
width an 30cm in elevation. The obtained image is able to
resolve the individual objects separated by about 5 cm (Fig.

B).
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Fig. 6. Trapezoidal velocity profile for linear trajectory of the sensor head.

Fig. 7. Resulting inverse kinematics of 6DOF robot joint for linear SAR
trajectory.

VI. CONCLUSIONS AND FUTURE WORK

In this work we presented a concept for sensor-controlled
trajectory planning for cognitive radar. As example, an UWB-
Radar sensor was used in stripmap SAR mode for 3D-imaging.
We showed the first results from an experiment with this sensor
at 8GHz center frequency controlled by a 6-DOF manipulator
arm. The test-objects located in a suitcase were resolved. The
next step will be to investigate non-linear trajectories with
additional constraints on the workspace of the manipulator arm
to obtain volumetric representations of the detected objects.
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