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Abstract—Skill-based approaches for programming robots
promise many benefits such as easier reuse of functionality
across applications, encapsulation and hiding of process details,
and often a certain level of hardware abstraction. While many
previous approaches allow to compose high-level skills, the
basic skills themselves are usually atomic, non-extensible, or are
supposed to be created by experts beforehand.

We designed a prototype-based skill model to create force-
controlled manipulation skills for robotic assembly tasks. In this
paper, we show how skills can be created by composing sub-
elements, each modeling a different aspect of a skill such as kine-
matics, task description, or coordination. Using prototype-based
inheritance, skills can be incrementally refined and extended to
create new skills, instead of creating each skill from scratch.

Our skill model uses iTaSC for task specification, hierarchical
statecharts for coordinating the execution of skills, and provides
a domain-specific language that allows to quickly compose and
parameterize skills and applications.

I. INTRODUCTION

Skill-based approaches for programming robots have been
a subject of research for almost three decades, as skills
promise many benefits over the traditional robot programming
approach of teaching and replaying trajectories. Complex
processes are broken down into smaller and easier to handle
sub-steps, each being executed by a single skill. Skills can
provide parameters, so users are able to configure the skills
according to the task at hand. When skills are designed with
a certain generality, they can be reused across a wide range
of applications, saving programming efforts.

Hasegawa et al. [1] describe one of the first systems using
model-based manipulation skills. By explicitly modeling the
environment, a wide range of changes can be represented
by parameters, making the system more adaptable than con-
ventional approaches. A hybrid position/velocity/force control
scheme helps to cope with uncertainties in the models. The
newly introduced complexities of sensor-based robot control
are fully encapsulated in the manipulation skills and hidden
from the user.

A variety of models for manipulation skills are structured
similarly. Many of these models are based on the Task Frame
Formalism (TFF) [2]. The TFF defines a task frame (or com-
pliance frame) and allows to assign different control modes to
each of its axes. Other models use the Task Function Approach
(TFA) [3] or iTaSC (instantaneous Task Specification using

Constraints) [4], which are not limited to a single task frame
like the TFF. The execution of the individual skills is often
coordinated by statecharts or Petri nets. Most models provide
domain-specific languages (DSLs) as support for creating
applications. The following paragraphs introduce skill models
that are similar to ours.

Bruyninckx and De Schutter [5] give a formal definition for
task descriptions based on the TFF and show many examples
that are quite similar to some of our basic skills, including
sliding, inserting, and the guarded approach. Klotzbücher et
al. [6] provide DSLs for modeling skills using the TFF and
for modeling a restricted Finite State Machine (rFSM) to
coordinate their execution. Weidauer et al. [7] use place/tran-
sition (Petri) nets to coordinate and hierarchically structure
Manipulation Primitives [8] that are also based on the TFF.
Thomas et al. [9] port the Manipulation Primitives to a KUKA
LWR and provide a DSL called LightRocks using UML/P
statecharts to create skills.

Kresse et al. [10] map symbolic high-level task descriptions
(e.g. ‘point-towards’ or ‘keep-horizontal’) to task functions
and solve them using the TFA. Individual tasks can be com-
bined to form complex skills. Vanthienen et al. [11] present
a DSL to model skills using iTaSC. For coordination, rFSMs
are used. Here as well, the composition of tasks is shown.

There are, however, certain shortcomings of previous ap-
proaches. Basic skills are often seen as atomic, non-extensible,
or are supposed to be created by experts beforehand, while
the actual users only arrange and parameterize them. There
is often little tooling and modeling support for creating
these low-level skills, therefore requiring a lot of robotics
and programming expertise. Furthermore, while these skills
can mostly be combined into high-level skills, it is usually
only possible to run skills successively, not concurrently, in
particular when skills have conflicting tasks. These issues limit
the reuse of skills and their effectiveness.

In our previous work [12], we describe a prototype-based
skill model that allows to create, compose, and refine force-
controlled manipulation skills with a strong focus on reuse.
Our model is based on iTaSC, a task specification formalism
permitting the composition of partial task descriptions, as is
necessary for our purpose. This paper further elaborates on
the aspects of composition and incremental refinement of skills
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Fig. 1: Schematic overview of our system

and describes our domain-specific language in more detail. We
demonstrate the high reusability of our skills by the creation of
a comprehensive skill library, where new skills do not have to
be built from scratch but can reuse and extend existing skills.

II. SKILLS FOR ROBOTIC ASSEMBLY TASKS

Fig. 1 outlines the main parts of our system [12]. Skills and
applications are described in a DSL with XML as a carrier
syntax. Before execution, they are parsed and expressed in our
prototype-based skill model. The statecharts coordinating the
skills, the algorithms to execute them, and all other elements
in the model are then instantiated and executed. The desired
robot motions are calculated at a constant rate between 100
and 250 Hz, depending on the robot, and sent to the robot via
a joint velocity interface.

Skills take on multiple roles: They contain the task descrip-
tion, modeling a sub-process to be executed by the robot. They
are responsible for coordination, as they act as states in a
hierarchical statechart and contain stop conditions (monitors)
for their tasks. Lastly, they act as containers for the kinematic
elements that are used for the task description.

We use iTaSC [4] as a task specification formalism, which
allows us to compose partial task descriptions. For iTaSC,
virtual kinematic chains (VKCs) model relative motions be-
tween robot tools and workpieces. VKCs define feature co-
ordinates, which are expressed by Cartesian, cylinder, or
spherical coordinates, depending on the application at hand,
to make the task description as simple as possible. These
feature coordinates are put into relation to the robot’s joint
coordinates by forming kinematic loops that connect the VKCs
with the chain of robot links. Tasks are then described by
imposing constraints on the feature and/or joint coordinates,
i.e. specifying desired values for them and assigning con-
trollers. A task description may constrain only some of the
degrees of freedom and multiple partial task descriptions can
be combined and executed concurrently to form more complex
tasks. Each partial task formulates a sub-goal like applying a
force in a certain direction or keeping a certain distance to an
object. Put together, complex tasks such as a sliding motion
or a peg-in-hole insertion are described. As constraints may
express conflicting tasks, they are strictly prioritized and the
task priority strategy is applied recursively as described by
[13].

III. A PROTOTYPE-BASED PARAMETER MODEL

In our skill model, everything is represented by a parameter,
from a basic integer value to a complex skill containing many

sub-parameters. In this section, we introduce the different
types of parameters, describe how parameters can inherit
properties from other parameters using a prototype-based
inheritance scheme, and show the transformation of parameters
into executable code.

As an introductory example, Listing 1 shows the definition
of a parameter model for the control error monitor. It
contains some meta data, defining how it should be instantiated
for execution, and in its data field a list of parameters that will
be passed as arguments for the initialization.

Our model applies a prototype-based inheritance scheme,
which is related to JavaScript’s prototype chain. In contrast
to the more common class-based programming, there are no
classes and new objects are always created by cloning existing
ones. In our DSL, the clone element creates a new parameter,
setting the name with the id attribute and the prototype to be
cloned with the prototype attribute. For example, a simple
string parameter can be defined by cloning the string

prototype, simultaneously setting its new value:
<clone id="event" prototype="string">succeeded</clone>

The type element provides a second way to create a pa-
rameter, allowing to edit a parameter’s meta data, as used in
Listing 1 for the event parameter. Both styles clone elements
the same way. The only difference is whether the meta data
should be edited or not. Listing 1 also shows how existing
parameters are edited using the member element, in this case
setting the description string of the parameter, which is part
of the meta data.

A. Types of parameters

A basic parameter contains a data field for one of the basic
data types string, float, int, or bool. Examples are the samples,
event, and description parameters that are shown in List-
ing 1. For the basic types, it is also possible to provide a list
of comma-separated values, as shown for the coordinates

and errors parameters. Default values may be given for the
parameters or they can be left undefined. A dictionary is an
associative container. It contains other parameters, which can
be accessed using their id. New parameters can be inserted
but each id has to be unique within the parameter. The
control error monitor parameter itself is a dictionary.
A list contains an ordered number of sub-parameters. The
sequence skill, as described later, contains a list of sub-
skills. A nested parameter contains a single other parameter of
a specified type. An example is shown later in Listing 3 where
a controller is added to a controller assignment using



Listing 1: Definition of a monitor and its meta data
<type id="control_error_monitor" prototype="monitor">

<!-- Meta data for instantiation -->
<meta>
<member id="description">Checks control errors</member>
<member id="implementation">
<clone prototype="python">

<member id="module">
component_library.monitors.basic</member>

<member id="class">ControlErrorMonitor</member>
</clone>
<clone prototype="orocos">

<member id="package">monitors</member>
<member id="component">ControlErrorMonitor</member>

</clone>
</member>

</meta>

<!-- Arguments for initialization -->
<data>
<clone id="coordinates" prototype="string_csv"/>
<clone id="errors" prototype="float_csv"/>
<clone id="samples" prototype="int">10</clone>
<type id="event" prototype="string">
<meta>

<member id="description">Name of the event</member>
</meta>
<data>succeeded</data>
</type>

</data>

</type>

the controller parameter. All our model’s parameters are
ultimately derived from or composed of these four primitive
types.

B. Inheriting parameters

In addition to directly cloning one of the primitive types, it
is possible to use any other existing parameter as a prototype.
In the example of Listing 1, the control error monitor

parameter inherits from monitor. Cloned parameters inherit
all sub-parameters from their prototypes. Editing a parameter
sets a new value for the parameter, shadowing its prototype’s
original value. This works in the same way for basic and nested
parameters, as well as for a sub-parameter in a dictionary or
list.

C. From parameter models to execution

For instantiating and executing a model, the meta data in-
clude information on how to instantiate a parameter, as shown
in Listing 1. For Python, the name of a module and the name
of a class are given. The module is loaded and an object of the
class is instantiated. Similarly, for our C++ implementation, a
package name and the name of an OROCOS [14] component
to be deployed are given. The parameters in the data field
are converted to the respective programming language’s native
types and passed as arguments to initialize the newly created
object.

IV. COMPOSITION AND INCREMENTAL REFINEMENT
OF SKILL MODELS

While our parameter model allows to create, refine, and
compose any type of parameter, the primary use is for defining
skill models. This section describes how our extensive library

Listing 2: A skill with Cartesian feature coordinates
<clone id="cartesian" prototype="skill">
<clone id="tool" prototype="frame"/>
<clone id="target" prototype="frame"/>

<member id="kinematic_elements">
<clone prototype="kinematic_loop">
<member id="robot_chains">
<reference reference_id="robot.chain"/>
<clone id="ch_tool" prototype="cartesian_chain">
<member id="coordinate_type">object</member>
<member id="base" reference_id="robot.ee_link"/>
<member id="tip" reference_id="tool"/>

</clone>
</member>
<member id="feature_chains">
<clone id="ch_target" prototype="cartesian_chain">
<member id="coordinate_type">object</member>
<member id="base" reference_id="robot.base_link"/>
<member id="tip" reference_id="target"/>

</clone>
<clone id="ch_feature" prototype="cartesian_chain">
<member id="coordinate_type">feature</member>
<member id="base" reference_id="target"/>
<member id="tip" reference_id="tool"/>

</clone>
</member>

</clone>
</member>

</clone>

of skills is modeled. Not a single line of ‘glue code’ has to be
written when composing these skills, everything is modeled
and composed using our DSL.

A skill is essentially a container for other elements. The list
of kinematic elements KE contains the skill’s kinematic loops,
chains, and links, which define its controllable coordinates
following the iTaSC formalism. Tasks T impose constraints
on these coordinates and assign controllers C. The monitors
M define stop conditions for a skill. They raise events that
can be used for defining transitions. Each transition links one
event of the skill to the skill to be executed next. Scripts SC
fulfill supporting functions as will be described below. Lastly,
the list of sub-skills allows to create hierarchically nested
statecharts. Sub-skills can run in sequence, concurrently or
can be arranged in a statechart.

A. Composing and refining basic skills

In this section, several skills of our library are built from the
ground up, showing how to create new skills by incrementally
adding functionality to existing skills. Exemplarily, a skill
that models the kinematics for Cartesian feature coordinates
is extended in multiple steps by adding tasks, monitors and
scripts.

Kinematics: Listing 2 shows the definition of the
cartesian skill. A kinematic loop is closed from the robot’s
base link via its end-effector to the tool frame and from the
base link via the target frame to the tool frame [12]. The
tool and target frames are given as parameters to the skill.
These parameters are referenced by the cartesian chain el-
ements defining the loop. They provide the feature coordinates
x, y, z, roll, pitch, yaw. While this skill does not yet contain
a task description or monitors, it is the basis for all skills that
use Cartesian coordinates.
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Fig. 2: Skills modeling kinematics, task description, and coordination

Listing 3: Extension of a skill to add a task description
<clone id="cartesian_tracking" prototype="cartesian">
<clone id="axes" prototype="string_csv"/>
<clone id="offsets" prototype="float_csv"/>

<member id="tasks">
<clone id="tracking_task" prototype="task">
<member id="coordinates" reference_id="axes"/>
<member id="desired" reference_id="offsets"/>
<member id="controller_assignments">

<clone prototype="controller_assignment">
<member id="coordinates">x, y, z</member>
<member id="controller">

<clone prototype="position_controller">
<!-- ... controller parameters -->

</clone>
</member>

</clone>
<!-- ... controller for orientation -->

</member>
</clone>
</member>

</clone>

Task Description: As shown in Listing 3, the
cartesian tracking skill extends the cartesian skill and
adds a task description to (partly) align the tool and target

frames. The axes to be aligned are given, with an optional
offset for each axis. Controllers are provided for controlling
position and orientation and are assigned to the respective
axes.

Monitors: Lastly, a monitor is added, which acts as a
stop condition for the skill. Listing 4 shows the lin motion

skill, which extends the cartesian tracking skill and adds
the control error monitor introduced earlier. The monitor
terminates the skill as soon as the control error is below the
specified threshold for a certain number of control cycles.
Listing 4 also shows how the skill is used. The parameters are
exemplarily set to position the gripper frame 10 cm above a
component frame, while leaving the other axes unconstrained.

Similar families of skills are created for other types of fea-
ture coordinates, e.g. robot joint coordinates, or cylindrical and

Listing 4: Extension of a skill to add a stop condition
<clone id="lin_motion" prototype="cartesian_tracking">
<member id="monitors">
<clone id="monitor" prototype="control_error_monitor">
<member id="coordinates" reference_id="axes"/>
<member id="errors">

0.001, 0.001, 0.001, 0.005, 0.005, 0.005
</member>

</clone>
</member>

</clone>

<!-- Using the lin_motion skill -->
<clone id="my_lin_motion" prototype="lin_motion">

<member id="tool">grip_point</member>
<member id="target">component_1</member>
<member id="axes">z</member>
<member id="offsets">0.1</member>

</clone>

Listing 5: Extension of a skill to hold the current tool pose
<clone id="hold_pose" prototype="cartesian_tracking">

<member id="target">hold_temp_frame</member>
<member id="scripts">
<clone prototype="temp_frame_script">
<member id="frame" reference_id="target"/>
<member id="source" reference_id="tool"/>
<member id="parent" reference_id="robot.base_link"/>

</clone>
</member>

</clone>

spherical coordinates as indicated in Fig. 2. Other controllers
can be used for velocity and force controlled skills, as in the
case of the velocity feedforward and apply force skills.

Scripts: Additional functionality can be offered by
scripts. The hold pose skill in Listing 5 and Fig. 3 shows
the typical usage of a script. The temp frame script

copies the tool frame when starting the skill, naming it
hold temp frame and setting its parent frame to the robot’s
base link to make it static. The target frame inherited from
the cartesian tracking skill is set to this copied frame.
The robot accordingly keeps the tool at the position it had
when starting the skill. When the skill is stopped, the script



Listing 6: Definition and usage of the approach skill
<clone id="approach" prototype="sequence_skill">
<clone id="tool" prototype="frame"/>
<clone id="target" prototype="frame"/>
<clone id="offsets" prototype="float_csv"/>

<member id="skills">
<clone prototype="lin_motion">

<member id="tool" reference_id="tool"/>
<member id="target" reference_id="target"/>
<member id="offsets" reference_id="offsets"/>

</clone>
<clone prototype="lin_motion">

<member id="tool" reference_id="tool"/>
<member id="target" reference_id="target"/>

</clone>
</member>

</clone>

<!-- Simple usage of the approach skill -->
<clone id="my_approach" prototype="approach">
<member id="tool">grip_point</member>
<member id="target">component_1</member>
<member id="offsets">0, 0, 0.1, 0, 0, 0</member>

</clone>

deletes the temporary frame again. The relative lin skill
works similarly. It extends the lin motion skill and also adds
a temp frame script script. Using the offsets parameter
inherited from the lin motion skill, the tool is positioned
relative to the position it had when the skill was started. Details
aside, these examples show the flexibility of being able to
compose skills of small, modular building blocks. They also
show the reusability of these building blocks.

Some skills, such as the idle skill, do not specify a
task. They are often combined with scripts or monitors as
shown in Fig. 4: The idle duration skill adds a monitor
that measures the skill’s execution time. After a specified
duration, the monitor terminates the skill. The set output

skill adds a script to write to a robot’s digital output. The
wait for input skill idles until a robot’s digital input is
set, e.g. to wait for signals from peripheral equipment like an
automatic screwdriver. We implemented further skills this way
that tare sensors, control robot grippers, or communicate with
third-party software such as vision systems.

B. Composing sequence skills

More complex skills can be created by composing skills.
Using a sequence skill is the easiest way to do this, as its
sub-skills simply run in a consecutive order. The approach

skill shown in Listing 6 combines two lin motion skills to
align the tool and target frames in two steps. This may be
beneficial for approaching a part to be picked from above to
prevent collisions. For the first lin motion skill, an offset

is given. As configured in this example, the tool frame is first
positioned 10 cm above the target, then moves down to the
actual target position.

Combining skills this way helps to encapsulate and hide
process details and reduces the number of parameters to be
specified by the user. Having to specify less parameters results
in less effort for programming, less effort for later changes,
and a smaller chance for making mistakes.

C. Composing concurrency skills

The ability of iTaSC to handle partial task descriptions
allows our system to run multiple skills simultaneously. A
concurrency skill executes all tasks of its sub-skills at the
same time and prioritizes them according to their order in the
list of sub-skills. By combining position, velocity, and force-
controlled skills, as well as monitors and scripts, a skill with
a certain desired behavior can be created in a straightforward
way.

A first example is the guarded lin skill shown in Fig. 5.
It contains a lin motion skill and adds a force skill. While
the latter does not contain an additional task, it provides
force measurements transformed to a point of interest, which
allows to add a threshold monitor that terminates the
skill’s execution when the forces exceed a predefined limit.
This skill is useful when a specific reaction to undesired forces
is required, e.g. when moving to a pick position where the part
to be gripped may not always be placed correctly.

The guarded approach skill combines velocity and po-
sition control. It contains a velocity feedforward skill,
which moves the robot in a certain direction and a hold pose

skill with a lower priority, which controls all remaining
degrees of freedom to keep the initial position. Similar to
the guarded lin skill, forces are measured and the skill
terminates when they exceed a predefined limit. This skill
is usually applied in assembly scenarios to establish the first
contact between two parts. It is often followed by a slide

skill, which combines velocity, force and position control. The
velocity feedforward skill is used to move the tool in one
direction, while apply force is keeping the contact that has
previously been established, as shown in Fig. 6 for a top-hat
rail assembly of electronic equipment. The hold pose skill,
with the lowest priority, again controls all remaining degrees
of freedom to keep their initial positions. The guarded slide

skill adds a stop condition, which is monitoring forces in the
direction of the sliding motion, to stop the robot when the
contact in the second direction is established.

D. Composing statechart skills

Statechart skills allow to model complex behavior. As an
example, Fig. 7 shows the logic of a screwdriving application
in the form of a statechart. Assuming the screwdriver is
correctly placed in a fixture, the initial state (skill) picks
up the screwdriver. The statechart reflects that a screwdriver
cannot be picked up again before placing it back into the
fixture first. However, multiple screwing processes can be run
before placing the screwdriver back. The screwdriving skills
are created with the same mechanism for composing skills
that is presented here. More details on them as well as other
applications of the skill model are given in [12].

V. DISCUSSION AND CONCLUSIONS

In this paper, we presented our prototype-based skill model
and gave an introduction to composing skills with our domain-
specific language. Several aspects of our model help to achieve
a high degree of reusability when creating new skills and
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applications. Skills are not atomic, as we provide building
blocks to users that are on a smaller scale than skills. They
are composed of kinematic elements, controllers, monitors,
and scripts. While these sub-elements are still programmed
by experts using a general-purpose programming language
like C++ or Python, they provide a general functionality that
can be used to create a large variety of customized skills.
Even non-expert users should be able to create their own
customized skills by combining the sub-elements. Skills are
also extensible. Existing skills can be cloned, refined, and
extended by adding new elements that provide additional
functionalities. Our skill library comprises multiple layers of
skills where each skill can be reused for creating new skills.

While tasks descriptions are mostly independent of the robot
in use, some controller parameters, especially for force control,
are still highly dependent on the robot and environment.
Reducing the need for parameter changes when switching
hardware components is part of our ongoing research to further
increase reusability.
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[11] D. Vanthienen, M. Klotzbücher, J. De Schutter, T. De Laet, and
H. Bruyninckx, “Rapid application development of constrained-based
task modelling and execution using domain specific languages,” in
IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), 2013, pp. 1860–1866.
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