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Abstract—Ten years after its first release, the Robot Operating
System (ROS) is arguably the most popular software framework
used to program robots. It achieved such status despite its
shortcomings compared to alternatives similarly centered on
manual programming and, perhaps surprisingly, to model-driven
engineering (MDE) approaches. Based on our experience as users
and developers of both ROS and MDE tools, we identified possible
ways to leverage the accessibility of ROS and its large software
ecosystem, while providing quality assurance measures through
selected MDE techniques. After describing our vision on how to
combine MDE and manually written code, we present the first
technical contribution in this pursuit: a family of three metamod-
els to respectively model ROS nodes, communication interfaces,
and systems composed from subsystems. Such metamodels can
be used, through the accompanying Eclipse-based tooling made
publicly available, to model ROS systems of arbitrary complexity
and generate with correctness guarantees the software artifacts
for their composition and deployment. Furthermore, they account
for specifications on these aspects by the Object Management
Group (OMG), in order to be amenable to hybrid systems
coupling ROS and other frameworks. We also report on our
experience with a large and complex corpus of ROS software used
in a commercially deployed robot (the Care-O-bot 4), to explain
the rationale of the presented work, including the shortcomings
of standard ROS tools and of previous efforts on ROS modeling.
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I. INTRODUCTION

Since the turn of the century a combination of scientific,
technical, and economic factors contributed to major transfor-
mations in robotics, both in terms of features (e.g., industrial
robots with safe human interaction, autonomous guided vehi-
cles without fixed infrastructure) and of scope (e.g., service
robotics and the consumer market). Scientific achievements
enable increasingly robust navigation and manipulation in
unstructured environments. Technical factors include higher-
performance, lower-cost computation, communication, sensing
units, also thanks to consumer electronics and its economies
of scale. Socio-economical trends such as collaborative engi-
neering and new actors entering the field also contribute to the
transformation: think of open-source, made even more popular
in the last decade by online collaboration platforms; and of
the influx of well-funded robotics startups [1]. Notably, many
of the new developments are centered on algorithms (e.g.,
in perception) or aim to improve human robot interaction or
reconfigurability (e.g., through user interfaces). They are thus
implemented in software, which becomes an enabler as much
as a potential limiting factor for the advancement of robotics.

It should not surprise that the combination of such factors
originated new software frameworks for robot programming.
ROS, one of them, was created in the late 2000s at a well-
funded startup (Willow Garage) to develop a robotics platform
(the PR2) targeting a nascent market (service robotics), while
creating a worldwide community through a platform facilitat-
ing open-source collaboration (GitHub). What is surprising,
and motivates this work, is that such framework grew into
today’s arguably most popular and widely used one, while not
being superior to others in terms of technical features, nor
benefiting from a large development team in the traditional
sense. Open Robotics, its steward organization since 2012,
consistently reports less than 10 staff members tasked to work
on ROS. And yet, a majority of service robotics platforms
in the market or under development are ROS-based, with
manufacturers of industrial robots also actively exploring this
option (ABB [2] [3] and DENSO [4] [3], among the others).

On the other hand, technically superior tools leveraging
MDE hold the potential for a step change in software quality
by decoupling the description of components and their interac-
tions (the what), from their implementation (the how), which
shifts from a manual, error-prone endeavor to a tool-assisted
operation. However, despite their significant uptake in domains
such as avionics or automotive, model-based approaches to
software engineering have not (yet) become commonplace in
robotics, at least for application-level software (except perhaps
in niche segments like surgical or space robotics). A thorough
examination of the business reasons for this is outside the
scope of this paper, although important and worth exploring
(size of market vs cost of MDE tools, standard vs vendor-
specific programming interfaces, etc). In Sec. II, we will
instead share some insights from our practical experience
working with industrial customers and building and piloting
MDE robotics workbenches, identifying the limiting factors
so far preventing us, and possibly other developers of robotics
software, to fully embrace MDE. In Sec. III we will review
relevant work, to then outline our goal to combine manual
programming of ROS systems with MDE benefits in Sec. IV.
Sec. V introduces the main technical contribution of this paper,
i.e., three metamodels encapsulating ROS nodes, communica-
tion patterns, and systems, representing the first step towards
our goal. We use a real example in Sec. VI, motivating the
development of the tools and offering a concrete use case, and
last, we conclude with directions for future work in Sec. VII.



II. PROBLEM STATEMENT

ROS was designed with an emphasis on flexibility
of software development: language-neutral, and with a
microservices-like architecture for both the runtime and the
support tools. A recurring description is that of “simple
plumbing”, i.e., a middleware offering basic communication
primitives (topics and services) to loosely coordinated units
of computation (nodes) exchanging data through language-
independent data structures (messages). None of these ideas
were new at the time of its debut, and in fact most scientific
publications mentioning ROS are not describing the system
but rather reporting it as the platform of choice to run the
experiments (on real or simulated hardware) and to share the
data to e.g., compare SLAM algorithms. In summary, ROS:

• puts minimal architectural and language constraints, re-
sulting in a low threshold in terms of required expertise.
This makes it accessible to most developers but truly mas-
tered by few, since the tradeoff of such flexibility is that
unintended software behaviors can easily go undetected;

• is unrivaled in terms of available features (albeit of
varying quality), given the ease to create and share ROS
packages, due in turn to the low entry threshold. This
makes it the easiest and fastest platform to bootstrap a
robot platform and/or application with, but the hardest
with which to perfect it to a higher level of robustness.

As a testament to how quickly these two aspects made ROS
grow, there are now over 3000 available ROS packages cov-
ering most robotics subdomains [5], [6]. Our experience with
MDE tools, especially when building the ReApp toolchain [7]
and using it with system integrators for realistic industrial use
cases [8], showed us that they have almost opposite –perhaps
complementary?– strengths and weaknesses:

• they force developers to express their designs in terms of
models and within a specific development environment.
This requires getting familiar with the tooling (a higher
entry barrier compared to using established languages),
which on the other hand is much less likely to allow for
unintended behaviors in the final software artifact;

• much fewer reusable components are available, as so far
no single tool bootstrapped an ecosystem comparable to
ROS. This entails more development for a new platform
or application. However, the software quality of the final
artifact will be possibly much beyond that of a prototype.

The two approaches present a seemingly irreconcilable
dichotomy. An “early victory” through ROS and its abundance
of developers and readily available packages, with the prospect
of a much harder path to refined, higher-quality systems. Or, a
high “upfront investment” to get familiar with the MDE tool of
choice and possibly have it extended to cater for your use case,
but with the guaranteed return of a correct-by-construction
final outcome. We look for a possible synthesis between these
two approaches: leveraging the ROS ecosystem and its ease of
use, while using MDE techniques when applicable and worth
the investment, so to possibly achieve fast prototyping with
the prospect of a tool-supported refinement phase.

III. RELATED WORK

A. ROS and software quality

Given its increasing adoption in commercial applications
and other domains demanding production-level code, quality
assurance (QA) of ROS software has become the focus for a
number of efforts from multiple organizations. QA initiatives
focusing on the community development process, as described
in [9], are not relevant for the sake of this discussion at
this stage. More relevant are techniques and supporting tools
concretely inspecting software artifacts, during development
(in a Continuous Integration fashion) or afterwards (e.g., audits
for something akin to a quality certificate). With regards to
testing of individual components, a representative selection
of techniques is already adopted by, or at least available
to, ROS practitioners. Such techniques range from traditional
unit testing [10], to static checking for conformance to style
guides [11], to more recent, early developments in applying
fuzzing techniques [12]. As these examples indicate, there
is ample room for established software QA techniques to
be applied to the ROS use case. Tools already exist or are
emerging, and their uptake in standard development practices
for widely used ROS components will make (or not) the
difference and show whether they can significantly impact the
software quality of ROS.

With regards to the quality of larger systems composed
of nodes or, in turn, of other subsystems, existing software
engineering techniques are less directly of help. This since in
order to verify system composition, some specific knowledge
of ROS internals and conventions is necessary, and so far
very few tools embed it. A rudimentary way to verify the
correct composition of a ROS system is to use the stock
rostopic and rosgraph tools on a running system. They provide
respectively information on active topics (i.e., messages being
published by nodes over a named channel) and on the com-
putation graph (i.e., how nodes are composed by establishing
said communication channels). The fundamental limitations
of these tools are that they work only at runtime, resulting
in cumbersome trial-and-error runs, often on real hardware,
to test systems for composition; and that they support only
topics and not services (i.e., RPC-like interfacing between a
client and a server node). One notable, recent example of a
tool inspecting the computation graph statically is detailed
in [13]. By inspecting API calls in the Abstract Syntax Tree
(AST) of ROS code, and by applying remap rules parsed from
launch files (i.e., possible renaming of topics and services), the
authors seemingly succeed to statically extract a computation
graph by means of static analysis. However, they do not
apparently perform soundness checks on the graph per se (e.g.,
to verify “dangling” publishers or subscribers), but rather use it
as an intermediate step to then perform property-based testing.

Not surprisingly, to the best of our knowledge the existing
approaches from the ROS community all seem to address soft-
ware QA through a-posteriori checks, rather than by providing
some means during development for correct-by-construction
composition.



B. MDE efforts targeting ROS

A number of efforts applied MDE to the robotics domain,
with differences in terms of metamodels (e.g., UML or spe-
cialized ones such as RobotML [14]), targeted architectures
(e.g., Urbi [15], OROCOS [16], ROS, simulation engines),
and support for specific paradigms such as separation of
concerns or features such as generation of memory-efficient
code. A characteristic often shared is the use of Eclipse
tools, specifically the Eclipse Modeling Framework (EMF)
and its ecore implementation of the OMG eMOF (essential
Meta Object Facility) specification. Tools built on Eclipse are
mentioned due to our previous experience with them as users
or developers, which informed our current line of work.

SmartSoft [17] has a service-oriented component-based
approach covering the entire robot development process by
defining the components skeleton (a wrapper for the user
code), the interfaces and patterns for their communication. It
uses EMF, Xtext and Sirius as implementation technologies,
a choice which we decided to follow. Its latest version offers
advanced features such as runtime behavior simulation and
performance analysis [18], with the understandable drawback
of not allowing import of existing components originating
outside of SmartSoft. The RobMoSys project [19] leverages
SmartSoft and ROS, among the others, and promises pre-
dictable composition of both existing and new components
through MDE. The BRICS (Best Practices in Robotics) [20]
component model (BCM) combines the model-driven ap-
proach with the separation of concerns paradigm, and intro-
duced the 5Cs (Computation, Communication, Coordination,
Configuration, and Composition) concept. The BRICS Inte-
grated Development Environment (BRIDE [21]), developed
at our organization Fraunhofer IPA, bridges BCM and ROS
using model-to-text (M2T) transformations to generate ROS
skeleton code to be filled by an application domain expert.
This achieved BRIDE’s main goal of “explicit separation of
two phases of the development process, i.e., capability building
and the system development” [21]. BRIDE showed how to fit
ROS in a model-based approach, and the experience with it
and with the following project ReApp [22], together with the
experience of manually developing large robot systems with
ROS, motivates the work presented in this paper.

Compared to the top-down approach of BRIDE and the
ReApp Workbench, both aiming for system development to
happen within their IDEs with ROS serving merely as the
backend architecture, we aim to address:

• the import through modeling of existing, manually devel-
oped ROS systems, so as to make them first-class citizens
of the MDE tooling;

• verification of system properties by exploiting such mod-
eling, usable to check for constraints typically verifiable
only at runtime (e.g., “is a publisher for a topic that this
node is subscribing to present in the system, and if so,
does it use the same message format?”);

• interfacing with other systems, similarly encapsulated in
a model exposing their basic communication mechanism.

Some shortcomings of BRIDE, due to its different goals,
made us decide to reboot our MDE-ROS effort, rather than
continuing to develop it. The most significant of them are
the single ecore model (ROS DSL) conflating several distinct
concepts, and its lack of a generic (non ROS) component
interface, needed to encapsulate subsystems and/or to allow
hybrid systems.

IV. VISION: BOOTSTRAPPING MDE DEVELOPMENT WITH
ROS MANUAL CODE

Our vision is motivated by a belief rooted within our group:
in the wide and varied robotics domain, manual code, meaning
software developed using manual processes, is not going to be
completely superseded in the mid-term. Reasons for this are:

• an all-encompassing MDE tool, catering for the myriad
of use cases and hardware platforms, and also gathering
the community needed to co-create or otherwise econom-
ically sustain a viable ecosystem, is theoretically possible,
but unlikely to be achieved in practical terms;

• most current robots are built on manual code, which is
to be dealt with for the foreseeable future;

• for fast prototyping manual coding is likely to continue
being the best option, given the cost of modifying the
tools to accommodate for unforeseen use cases.

On the other hand, the advantages of MDE are evident to us,
after years of experiencing firsthand the problems of manual
coding. We envision the ideal MDE tool not as a “strait-jacket”
for the developer, where little can go wrong at the cost of
operational inflexibility (no manual code, nothing foreign to
the model can be imported, etc), but rather as a “scaffold”,
i.e., providing support on-demand and non-obtrusively to the
manual code bootstrapping the development process. A way to
do this is to model manual code artifacts, in order to make ex-
plicit any convention or assumption otherwise implicit. In this
spirit, the ROS metamodels presented in the next section allow
users to describe, with minimal models, manually developed
ROS systems, and thus to capture their interaction patterns
through their external communication interfaces. Such model
overlay can potentially be used to:

• improve the understanding of what will happen at run-
time. E.g., will a publisher and a subscriber correctly
communicate, or does an uncommon message format
break some (implicit) assumptions?

• ease interaction between ROS and other systems. A
model focused on the communication and the semantic
annotation of its components and interaction patterns can
facilitate M2M transformations with other middlewares
and their communication artifacts;

• diffuse best practices on manually written code. A
database of models for representative ROS components
and their interaction patterns could let an IDE highlight
inconsistencies, IntelliSense-style: “camera component
using non-standard communication patterns and message
formats: is this intended?”. Such database could be popu-
lated through static code analysis (HAROS is for instance
already capable to extract some interaction patterns [13]).



V. METAMODELING - FROM ROS TO SYSTEMS

Our metamodeling effort starts by reviewing ROS basic
concepts, in order to define a simple ROS metamodel to
capture them. We then introduce the Component Interface
metamodel, used to lift ROS specific details and raise the
abstraction level to generic components modeled after OMG
standards, to cater also for the modeling of non-ROS systems
if necessary. Last, the System metamodel is introduced to
describe the composition of Component Interfaces.

This family of three metamodels corresponds to three
matching Xtext DSLs, which allow the user to check and
validate against properties and constraints, as described later.
This kind of checks, although simple in the SICK laser scanner
component used as an example, is a proof-of-concept usable
in the larger Care-O-bot description of the next section. Our
experience suggests that when scaled to such larger system,
the convenience will become evident and significant. All the
code for this work, including the example, is publicly available
at https://github.com/ipa-nhg/ros-model.

A. ROS metamodel

ROS is conventionally seen under three “lenses”: the filesys-
tem (how code is organized and stored), the computation
graph (how systems are split in processes and how these
interact), and the deployment mechanism (how entities are
distributed, named, accessed at runtime). Distilling the basic
constituent entities from the system, we look once again to
the “simple plumbing” analogy of ROS as a peer-to-peer
network of processes (nodes) exchanging data. The com-
munication mechanisms are the topic and service patterns.
Topics are means for one-way communication and many-
to-many connections, while services are used for request-
response communication and one-to-one connection. Finally,
the objects of this communication are messages definition for
topics and the services definition for services, which consist
in language-independent data structures composed of primitive
data types (String, Double, Int, Boolean, etc). Our ecore ROS
metamodel describes all these core concepts. Fig. 1 shows
a screenshot of our tool describing graphically the model of
a pre-existing ROS driver for a SICK scanner [23] and an
extended properties view of the scan publisher. By layering
such minimal model on manually developed code artifacts,
we can model also their interaction patterns by describing the
communication interfaces. Such interfaces are defined by 1)
the number of participants (one-to-one or many-to-many), and
the direction of the flow of information (input or output) and
2) the object type of the communication (the data structure of
the messages being exchanged).

As a first example of how we can leverage this simple
model, the Xtext [24] plugin defining the grammar of the DSL
corresponding to this metamodel has access to a library of
ROS standard messages and services, collected from the ROS
wiki documentation. Code in Lst. 1 shows an example of the
validated model output of the model represented in Fig. 1(the
file sick s300.ros).

Fig. 1. Modeling example for a ROS driver for a the Sick scanner s300

ROS naming conventions verified by the Xtext plugin
include rules like those defined in REP 144 [25] for ROS
package names: a name must only consist of lowercase al-
phanumerics and “ ” separators.

PackageSet { package { CatkinPackage cob sick s300 { artifact {
Artifact cob sick s300 { node Node { name cob sick s300
publisher {
Publisher { name scan

message ”sensor msgs.LaserScan” } ,
Publisher { name ”/diagnostics”

message ”diagnostic msgs.DiagnosticArray”
}}}}

}}}}

Listing 1. sick s300.ros file, the Xtext format of the node represented in
Fig. 1

B. Component Interface metamodel

As ROS concepts have been captured, and verification steps
on the information provided by the user have been performed
(message types, naming conventions), we now lift these ROS
specific language concepts to allow for communication be-
tween different frameworks. For this purpose we evaluated
the OMG specification “Deployment and Configuration of
Component-based Distributed Applications” [26] and adapted
the ROS model to a component-based structure. The main
concept of a component-based architecture is to partition the
applications into small, possibly reusable components that can
interact with each other through input and output ports. An ad-
vantage of this concept is its recursive nature, which allows the
encapsulation of a set of interconnected components as a com-
ponent by itself. This OMG standard defines an application as
“a component that is assumed to be independently useful...this
component can be implemented directly (by a monolithic
implementation), or it can be implemented by an assembly,
where the implementations for its subcomponents can again be
either monolithic or assemblies”. Adhering to this guideline,
we defined a metamodel that, based on the ROS metamodel
just described, adapts it to the concept of Component Interface.
That is, according to the OMG standard, “a named set of



Fig. 2. Class model for a component interface model

provided and required interfaces that characterize the behavior
of a component”. The interfaces that ROS requires to allow
interconnections are the communication mechanisms known as
topics and services. Partitioning inputs and outputs, for topics
this results in: publishers and subscribers; and for services in:
servers and clients.

As previously mentioned, the third lens to see ROS through
is the deployment mechanisms, i.e., how computational entities
are distributed, named, accessed during runtime execution.
To group entities (“components”, in the parlance of this
subsection) ROS provides a hierarchical naming structure used
for all resources in a ROS Computation Graph, where each
resource (node, topic, etc) is defined within a namespace.
Resources can create further resources within or above their
own namespace, and the connections can be made between
resources in distinct namespaces, as is often the case for
systems resulting from large scale composition.

Fig. 2 shows the ecore implementation of the Component
Interface structure for ROS. In it we reference topic and
service definitions from our ROS specific model, preserving
the definition of the nature of the interfaces, and add the
definition of namespaces for the entire component and for
each interface. By doing so, we maintain the flexibility of
the ROS deployment mechanism, allowing the definition of
global, relative and private namespaces for interfaces within
the same node. At the same time this provision addresses
adequately the OMG definition of component interface as a
set of interconnected components.

Code in Lst. 2 shows an example of the Component
Interface transformation of the model of Fig. 1, where:

• the ROS node cob sick s300 is allocated under the
namespace base laser front;

• the publisher of the scanner output data is remapped to
this namespace;

• the standard topic /diagnostics stays as global topic.
The transformation by adaptation of ROS code to a generic

standard concept such as Component Interface enables the
use of the same model to describe monolithic ROS nodes
and large ROS systems, achieving the two main objectives
of 1) simplifying the deployment process of ROS systems by
defining a system as a composition of sub-systems and 2)
facilitating the interoperability of an entire ROS application
with other component-based architecture frameworks.

Fig. 3. Class model for the rossystem model

ComponentInterface {
name base laser front
NameSpace RelativeNamespace {parts{”/base laser front” }}
RosPublishers{
RosPublisher ”/base laser front/scan” { ns ”/base laser front”
RefPublisher ”cob sick s300.cob sick s300.scan” },
RosPublisher ”/diagnostics” {
RefPublisher ”cob sick s300.cob sick s300./diagnostics”}}

}

Listing 2. Example of a component interface based on the sick s300 node
given in Fig. 1

C. System metamodel

ROS systems can be grouped and started through launch
files, an XML structure used to specify both standalone ap-
plications or subsystems. The launch files define which nodes
will be launched, from which package, with which arguments
and in which namespaces. Nodes could be grouped within a
namespace and/or within the machine where they are started.
Another powerful ROS feature, embedded as a tag for the
launch files structure, is the remapping, which allows to pass
complex name assignments.

Currently launch files need to be written manually, with
the developer responsible for checking the proper definition
of the interconnections between nodes. The lack of validation
techniques for such communication details at design-time is,
in our experience, one of the biggest shortcomings of ROS,
making it hard to verify that applications behave as intended. It
also represents tedious work of implementation and debugging
for systems integrators, as the next section will illustrate on
a representative example from a commercially deployed robot
which our team worked on.

Based on this observation, our third metamodeling tool
makes use of Component Interface models to compose ROS
nodes, sub-systems and systems, for which we can validate at
design-time the respective interconnections. The representation
of our ecore model to describe ROS systems is shown in Fig. 3.
We also accounted for the OMG specification “Deployment
and Configuration of Component-based Distributed Applica-
tions” [26] of a connection defined as “either a communi-



cation path among the ports of two or more subcomponents
allowing them to communicate with each other, or (it is)
a communication path between an assembly’s external ports
and an assembly’s subcomponents that delegates the external
ports behavior to the subcomponents ports”. In our case,
TopicConnections and ServiceConnections.

To validate the composability of nodes we identified the
two main causes of a mismatched communication among ROS
processes:

• Disparity of the communication object, i.e., the subscriber
of a topic asks for a different message type than the one
being published under the same topic name. In this case
the rosmaster will show a warning message and do not
allow the transfer of information.

• Disparity name of the communication agents, i.e., the
name of the subscriber does not match the name of the
expected publisher. This case is critical because for ROS,
from the point of view of the architecture, this does not
represent an error and will not result in any warning, not
even during execution.

Our tool evaluates these two rules and emits an error at
design-time if the user tries to join two interfaces with different
names or mismatched messages types. This implies that the
model of the system developed using our tools will undergo
a validation step before being generated.

Once the interconnection of different ROS nodes is val-
idated, we can also automatically generate the deployment
artifacts code (i.e. roslaunch, rosinstall and installation scripts
files), reducing considerably the effort and time for integration,
preventing typing errors, and ensuring that the generated files
have been checked against mismatched communication. Cur-
rently, launch files are generated, with rosinstall representing a
simple addition under development to be made available soon.

Fig. 4 shows one example of a ROS system defined using
our graphical tool. This particular diagram represents a node
combining and unifying the outputs of three different scanners,
all based on the same ROS node, i.e., the model of Fig. 1, and
mapped to different namespaces using our component interface
model. It also integrates the standard diagnostics aggregator
node, with all connections having undergone automatic check
and validation.

VI. A MOTIVATING EXAMPLE: THE CARE-O-BOT 4
The main goal motivating the work just presented is to

facilitate the composition of large systems, task which our
group performs on a regular basis both for internal develop-
ment and for customer projects. We aimed to leverage lessons
learned during the development of the Care-O-bot family of
service robots, especially with regards to the improvement of
ROS deployment mechanisms for systems. We have been suc-
cessfully using ROS native systems to control service robots
since the Care-O-bot 3 debuted in 2008, and more recently on
the Care-O-bot 4, which was also deployed commercially at
retail locations throughout Germany. During the development
of the Care-O-bot family we suffered from the lack of tools
for the design of the software architecture, the autogeneration

Fig. 4. Graphical representation of the composition of ROS components
using the rossystem metamodel and its validation tools at design-time

of deployment artifacts and, more importantly, for the debug,
test and introspection of large systems.

To give some perspective on a concrete and representative
case of ROS system for Care-O-bot 4, we can mention that
just the drivers to control the hardware (i.e. the lowest-level
components) are over 100 ROS nodes. Counting the number of
possible interconnections between nodes, the robot manages
over 500 topics and about 500 services. In addition to the
high number of nodes, topics, and services, another dimension
for the complexity so far manually tackled is given by one
of the launch files. It recursively includes several levels of
launch files redefining namespaces and hierarchies multiple
times and ultimately resolving to the actual driver nodes. This
huge infrastructure was created manually and can only be
validated by starting the entire robot system at runtime (using
tools like rosgraph) and testing empirically on the real robot
all its functionalities.

The particular case of Care-O-bot gets even more complex
given the emphasized modularity of the robot. That is, every
module should be able to work independently, but also be
composed and exchanged with others. This implies that there
are several versions of the same robot in terms of software
integration: for each version a new launch file has to be created
and tested at runtime on the real hardware. Due to this, and
to facilitate the development, debug and test of new robot
versions, the software infrastructure has to be divided into
separate sub-modules that can be checked independently of
each other. The cob robots [27] repository was created to
hold this deployment complexity, containing launch files to
start separately (with the correct configuration for each robot
version) the drivers of a component and the drivers of a set of
component whose composition provides a given functionality.
A final, top level XML file contains the composition and
distribution on computing machines of the previous launch
files and extra tools for the user interaction.

To give the reader an overview of this complexity, Fig. 5
shows a full rosgraph of the nodes and topics running just on
the base module (a third of the full system) to run the low-level



Fig. 5. Care-O-bot4-10 graph nodes example of the base module

hardware drivers. This example pertains to version 4-10 of the
Care-O-bot robot. Understandably, once integrating necessary
components like navigation, manipulation and perception, the
complexity to be dealt with increases even more.

Using tools such as those proposed in this paper, the
deployment phase for new versions of Care-O-bot combin-
ing already existing component could benefit from savings
in time and effort, by autogenerating the full deployment
software (launch files), and from validation at design time,
significantly easing the debug and test phases. They would
facilitate even more the design of new applications combining
high level functionalities by Care-O-bot architecture experts,
as they could create new functionalities by connecting software
components using the tooling.

VII. CONCLUSIONS AND FUTURE WORK

The advantages of MDE are crystal clear to us, after years
of experiencing firsthand the problems of manual coding in
systems software-wise as large and complex as the Care-O-
bot. However, past experience with model-to-code generation
tools leads us to also believe that a pure MDE approach
would not be feasible, due the problem of “bootstrapping” both
the development environment and commercially deployable
applications from models at the same time. Having to produce,
maintain, and work with manual code, colloquially meaning
software developed using manual processes, is for us and
probably for many robotics practitioners an established fact
that will be relevant still for years to come. Our vision is to
combine the two approaches by leveraging manual code when
available, and modeling it in order to make conventions and
assumptions explicit and possibly verifiable.

In this paper, we presented a set of metamodeling tools,
already implemented (albeit in prototypical stage) and made
available as open-source. The tools allow users to describe
software artifacts, both preexisting and fictitious, starting from
concrete ROS nodes up to the composition of implementation-
agnostic subsystems. Practical advantages of the metamodel-
ing tools and their DSL counterparts is a number of assistive
actions to validate the composition of systems (messaging
structures and patterns) and to execute their deployment (auto-
matic generation of launch files). A motivating example from a
real, commercially deployed, robot, shows the high relevance
to robot practitioners of our tools.

We plan to continue our work in this spirit, leveraging
our experience from previous projects to expand the results
presented in the paper to a collection of descriptive and
prescriptive tools. Descriptive, since they would serve as an
atlas to map commonly used interactions patterns of existing
components. Prescriptive, since they would highlight anoma-
lies and possibly suggest interventions. Two considerations
encourage us to pursue this course of action. First, the ROS
metamodel is intentionally minimal to be applied to any exist-
ing ROS artifact, and non-obtrusive so as not to necessitate of
e.g., special coding conventions. Second, populating a model
database to identify possible deviations from commonly used
message and interaction patterns is a task arguably amenable
to automation, e.g., through static analysis tools [11] and
even runtime monitoring scripts. In parallel to the extension
of the tools, we intend to consolidate them by testing on
larger examples such as the illustrated subset of the Care-O-
bot. Acknowledging the multiplicative power of open-source,
finding new users for the tools will also provide new inputs
for other directions of our work.



However, two other considerations make us aware of pos-
sible open matters. First, due to the heterogeneity and highly
dynamic nature of the robotics domain, can a model-based
approach keep up pace and grow as fast as the robotics world
does? Second, this approach attempts to connect two typically
disjoint profiles of developers: the enthusiasts of hand-written
code, and the proponents of structures and encapsulation of
software in pre-defined formal concepts. How likely is it for
work like the one presented here to find adopters among these
two communities?

We aim to work on these open matters in the scope of
the Service Robotics Network (SeRoNet) project [28], which
explicitly envisions multi-platform hybrid architectures (both
hand-written and model-based) and tooling support to the
developers. Also, as part of our contribution to the SeRoNet
project the work exposed in this paper will be maintained,
improved and augmented in terms of features, among which
is a more comprehensive deployment system. To achieve it, in
addition to the generation of launch files of the final system
model we target the creation of the rosinstall files and the
scripts for rosdep and other ROS tools needed to automatically
deploy full ROS systems. As part of a future contribution we
are also evaluating the use of mechanisms for the verification
of applications at task planning level.

The work and the example presented in this paper are
publicly available on GitHub https://github.com/ipa-nhg/ros-
model/.
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