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Abstract—Most human-robot interfaces, such as joysticks and 
keyboards, require training and constant cognitive effort and 
provide a limited degree of awareness of the robots’ state and its 
environment. Embodied interactions, that is the bidirectional link 
between the physical bodies and control systems of the robot and 
of the human, could not only enable a more intuitive control of 
robots, even for novices, but also provide users with more 
immersive sensations. But providing an embodied interaction by 
mapping human movements into a non-anthropomorphic robot is 
particularly challenging. In this paper, we describe a natural and 
immersive embodied interaction that allows users to control and
experience drone flight with their own bodies. The setup uses a 
commercial flight simulator that tracks hand movements and 
provides haptic and visual feedback. The paper discusses how to 
map body movement with drone motion, and how the resulting 
embodied interaction provides a more natural and immersive 
flight experience to unskilled users with respect to a conventional 
RC remote controller.

Keywords—Aerial Robotics, Telerobotics and Teleoperation, 
Virtual Reality and Interfaces

I. INTRODUCTION

There are several situations where humans are required to 
control distal robots, for example in exploration of remote areas, 
inspection, or monitoring of distaster areas. Human–robot 
interfaces (HRI) can significantly improve the symbiosis 
between the human and machine [1]. However, most current 
HRIs—such as joysticks, keyboards, and touch screens—
require user training and concentration during operation; 
therefore, they are limited by a physical and cognitive effort that 
is often a barrier between the user and the robot. Force feedback 
through a joystick or through an exoskeleton [2] can improve 
human robot interaction, but is often limited to direct mappings 
between human body parts and corresponding body parts of an 
anthropomorphic robot (a fingered gripper, a robotic arm, a 
humanoid, e.g.).

A different approach relies on embodied interactions rather 
than interfaces, which is the bidirectional link between the 
physical bodies and control systems of the robot and of the 
human. The ultimate goal is not only a more natural and 
effective control of distal robots, but also the physical 
transformation of a human into a sensory–motor system (robot) 
with a different morphology and behavior. With embodied 
interactions based on a more natural form of control for 
humans, for example, through gestures, and an immersive and 
rich multi-modal feedback, the user can ultimately embody a
robot with non-anthropomorphic morphology; hence, the 
user’s body and perception can be seamlessly blended with a 

distal machine. Embodiment, also known as “experiencing 
presence” in the field of virtual reality [3], results from a
combination of self-localization—when the user projects 
himself onto the distal robot—and self-ownership—when the
user feels the artificial body as his/her own [4], [5].
Embodiment is usually triggered by tailored sensory–motor 
stimulations that enhance the feelings of self-localization and 
self-ownership [4], [5]. In proper embodied interactions, the 
distal robot becomes transparent to the user, whose actions will 
be defined by only the environment [6]. For example, a user 
embodying a drone should experience a sensation of flight.

Among the various mobile robots with non-anthropomorphic 
morphology, drones are interesting candidates for embodied 
interactions because of their remarkable capability to extend 
human perception and range of action.

This paper first reviews the state-of-the-art research in human–
drone interaction. Then it demonstrates through different 
mapping strategies the advantage of replacing a standard 
control interface, an RC remote controller with a natural and 
immersive setup, Birdly (SomniacsSA, Zurich, Switzerland)
(Fig. 1). Birdly is a flight simulator that allows the user to fly 
in a virtual environment with hand gestures, reproducing the 
flight of a bird.

Fig. 1.  The main components of the setup that allows users to “fly like a drone”. 
The Birdly platform, has visual, haptic and vestibular (pitch and roll, yellow 
and orange arrow respectively) feedback. The pronation and supination 
movements of user’s hands (red arrows) are transformed into drone motions 
and the movement of her head is reproduced by the camera gimbal of the drone. 
The pitch and roll angles of the drone are transformed into pitch and roll angles 
of the Birdly platform, its speed is transformed into speed of the air fan, and 
the image from the drone camera is projected in the visual googles.
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II. RELATED WORK

In human-drone interaction, we discuss two types of control 
methods: non-gestural and gestural control. 

A. Non-gestural Control
Non-gestural controllers are widely used in drones. RC remote 
controller, joysticks, and touch screens are widely used by all 
major drone manufactures (DJI, Parrot, 3D Robotics). Despite 
their popularity, these interfaces are not immersive and
sometimes difficult to use. For example, it was found that 
people could not complete their flying tasks using joysticks and 
touch interfaces (iPhone), whereas they could successfully 
complete these tasks using upper body gestural control [7].
Brain–machine interaction (BMI) has also been used to control 
drones. LaFleur et al. [8] developed a controller based on 
electroencephalographic (EEG) signals. The user had to think
left, right, up or down to steer the drone. However, the use of
EEG signals requires the users to maintain a high degree of 
concentration during the flight to reduce the noise in the EEGs 
signals. Moreover, the use of EEG signals requires time-
consuming user calibration. Gaze gesture control [9] has also 
been used in drones. However, this technique requires the user 
to focus his/her gaze for the control of the drone and prevents 
the user from exploring the environment.

B. Gestural Control
Studies on the gestural control of drones can be divided into
two main categories: third-person view and first-person view 
(FPV). In the third-person view, the user acts on the drone as 
an external viewer, whereas in the first-person view, the user 
acts from the perspective of the drone.

In the third-person view, the user usually exploits body 
gestures to interact with single [10] or multiple drones that are 
within the line of sight [11]. The inherent issue with third-
person view is the lack of immersion as the user acts on the 
drone from an external perspective. 

In the first-person view, head motion is commonly used to 
directly control the drone  [12] (Fig. 2(a)). The user often wears
goggles to receive feedback from the video captured by the 
drone. Nevertheless, head control systems have limitations 
because they do not allow the user to explore by looking 
around; the user could lose track of his/her desired trajectory or 
even crash by just looking at the environment. 

Another approach is to fly a drone using upper body gestures. 
Pfeil et al. [13] developed a controller based on torso and arm 
gestures, but they defined a set of five different gestural 
controls (three of them are shown on Fig. 2(b)). Sakamoto et
al. [14] tested an adapted version of the first person method 
developed by Pfeil et al. [13] but in the laying position. These 
gestural controls have two main drawbacks. First, they all use 
discrete mapping (i.e., every motion of the drone is defined 
based on the threshold of the gestures). This leads to 
discontinuous movements of the drone, which significantly
diminishes the experience of embodiment because the
immediacy of control is limited [3], that is, subspaces of the 
control input have no appropriate consequences. 

Some platforms allow users to simulate flight using gesture 
commands while receiving both visual and haptic feedbacks.
The Humphrey developed by Formquadrat [15] and the
aforementioned Birdly are two examples.

III. IMPLEMENTATION

We aim to compare the naturalness and immersion of flying 
between the use of Birdly platform and a standard RC remote 
controller. Birdly allows users to fly in simulation using hands 
gestures as shown in Fig. 1. Tilting both hands in the same 
direction allows to control pitch, while tilting them oppositely 
allows the user to roll. In this experiment, Birdly was 
interfaced with a fixed wing drone simulator as this type of 
drone is more compatible than a hovering drone with the 
gestures and the vestibular feedback provided by Birdly .

The comparison is done in simulation. The user wears an 
Oculus Rift DK2 for the visual feedback. The flight simulator 
is based on the dynamic of a fixed wing drone. This type of 
drone has been selected as it is more compatible with the 
gestures and the vestibular feedback provided by Birdly with 
respect to a hovering drone.

For the mapping strategies, the hand rotations on Birdly wing 
paddles must be mapped into fixed-wing controls. One 
possibility is to consider the hands as the flaps of the fixed-
wing drone. In this case, a given angular deflection of the 
paddles, will translate into an angular velocity for the fixed 
wing. Thus, we could associate this mapping with an angular 
velocity controller (rate controller). This controller is usually 
called Acro mode, e.g., in 3DR products and PX4
documentation. It is known to be used by experienced pilots, 
for example, using remote controllers in drone racing. Another 
strategy is to map the angle of the paddles into corresponding 

Fig. 2. Different types of gestural controls found in the literature. (a) The 
user controls the position and orientation of the drone with the movement of 
his head [12]. (b) Different flight styles to control the drone [13].
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angles, or attitude, of the fixed-wing drone. Thus, we could 
associate this mapping with an attitude controller. This control 
mode is called the Stabilize mode in 3DR products and in PX4
documentation. These two mapping strategies will be 
quantified and compared with respect to an RC remote 
controller.

IV. FROM RC REMOTE TO GESTURAL CONTROL

We compare four different flight conditions: RC remote with 
attitude or rate controller, and Birdly with attitude or rate 
controller. To precisely compare the four combinations, we 
used a custom-designed virtual simulator of a fixed-wing 
drone. Fig. 3 shows the simulated environment developed in 
Unity3D [16]. This comparison aims to determine the most 
natural and immersive controller by evaluating users’ 
capability to fly through a series of waypoints, which are 
visualized as small clouds scattered in the sky at different 
altitudes and directions.

Fig. 3. Flight Environment. The user is required to fly through a series of white 
points visualized as small clouds in the sky. The arrow on the bottom of the 
screen always shows the direction of the next waypoint, which is helpful if the 
user turned away from the waypoint and the cloud is not visible.

Human subjects are first explained how the simulated drone is 
controlled through Birdly or the RC remote controller and are 
then exposed to three successive flight phases: passive flight, 
training and evaluation. The first phase is a 1-min passive flight
where the subject sees the environment and gets familiar with 
it. The subject cannot control the drone but receives feedback 
(visual, haptic, vestibular, and auditory for the Birdly , visual 
feedback only for the remote controller). During this first 
phase, the simulated drone flies autonomously through a 
sequence of clouds and the subject is explained the task he/she 
will have to do in the next phases which is to “follow the clouds 
and to be as close as possible to the center”. The subject then 
starts a 9-min training phase, which involves flying through 
the clouds one after the other. The subject can ask for breaks, 
during which the simulation is paused. The training phase is 
followed by an evaluation phase, which involves flying 
through 84 waypoints. The size and flight dynamics of the 
simulated drone reproduce the fixed-wing drone eBee 
(senseFly SA). Since the drone speed is maintained constant at 
12 m/s which is the cruising speed of the eBee, the average 
duration of the evaluation phase is approximately 5 min. The 
spacing between the waypoints is approximately 40 m. 
Whenever the subject crashes the drone, he/she is repositioned
in front of the next waypoint.

The experiments were evaluated with quantitative measures 
and with a questionnaire. The quantitative measure was based 
on the distance between the drone and the center of each 
waypoint, as presented in [17]. 100% performance was 
obtained when the drone was crossing the center of the 
waypoint; this value decreases with distance from the center 
according to a Gaussian function and reached a value of 1% at 
38.4 m. This distance has been computed with the data of the 
evaluation phase and corresponds to the average distance to the 
waypoints center plus 2.5 times the standard deviation. This is 
assumed to be an outlier distance [18]. For the qualitative 
measure, after the experiments subjects were asked to rate
several statements shown in Table II to indicate their degree of 
agreement (from 1 to 7). The statements were intended to 
assess the level of immersion and the naturalness of the control
strategy.

A. Results
42 subjects (37 male, 5 female, age range 19-51 years, average 
age 28 years) participated in the experiment. 2 subjects felt 
nauseous (1 male, 1 female) and discontinued the experiment. 
Among the 40 valid subjects, 10 reported to already have 
directly or remotely piloted an aircraft for more than one hour. 
Out of the 40 subjects, 20 tested the RC remote controller and 
20 the Birdly . For both interface 10 were presented with the 
angular velocity controller and the other 10 were presented 
with the attitude controller, leading to four different 
combinations of interface and mapping strategy. Fig. 4
illustrates the performance of the subjects with the two 
interfaces and the two mapping strategies during the training 
phase. For ease of visualization, the curves represent an 
average window over 20 waypoints.

Fig. 4.  Training performance. Curves represent an average window over 20 
waypoints. The mean and standard deviation of the starting and ending 
performance are shown with error bars. Birdly with angular velocity 
controller (a) and with attitude controller (b). RC remote controller with 
angular velocity controller (c) and with attitude controller (d).

From Fig. 4, we notice that globally subjects improved their 
skills all along the training. For each combination, the Mann-
Whitney U-test confirmed that there is a significant difference 
between the starting and ending performance. According to 
Wigdor [19], a natural controller must make the user an expert 
in a short training period. From the training, we can see that the 
attitude controller using Birdly has an average starting and 
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ending performance higher than the other combinations. 
Indeed, its starting and ending performance are significantly 
higher than the attitude and angular velocity controller using 
the RC remote controller and the angular velocity controllers 
using Birdly (p < .001).

Fig. 5.  Average performances of each subject during the evaluation phase with 
their standard deviations. (a) Birdly with angular velocity controller. (b) 
Birdly with attitude controller (c) RC remote controller with angular velocity 
controller. (d) RC remote controller with attitude controller.

Fig. 5 shows the average performance levels for each subject 
during the evaluation phase. Table I shows the average 
performances of the subjects after the evaluation for each type 
of interface and control strategy. The results show that except 
the attitude controller using Birdly the other combination have 
a higher variability in term of performance and contain subjects 
with a performance below 50%. The attitude controller using 
Birdly presents an average performance which is significantly 
higher compared to other combination (p < .01). These data 
from the evaluation confirm that using Birdly with an attitude 
controller is more effective and more natural, according to 
Wigdor [19] as the level of expertise is higher. Interestingly, 
the performances of both mapping strategies using the RC 
remote controller are not significantly different (p > 0.1) in the 
case of using Birdly they are significantly different (p < .01). 
This demonstrates the difficulty encountered by the users using 
an RC remote controller independently of the mapping 
strategy.

The results of the questionnaire are presented in Fig. 6. The 
respective questions are shown in Table II. From the training 
and the evaluation, we saw that the angular velocity controller 
using the RC remote controller has in both cases the second 
best performance, see Table I. But regarding the questionnaire, 
people found that using Birdly with the attitude controller was 
giving a better sensation of controlling the flight trajectory 
(question index #2) (p < .5) and they enjoyed it more (question 
index #6) (p < .05). This confirmed that the attitude controller 
using Birdly is more immersive and natural. Indeed according 
to Wigdor [19], the enjoyability of the interface is another 
factor of its naturalness.

V. CONCLUSION

In this paper, we used of Birdly to fly like a drone exploiting 
embodied interactions. We found that using a fixed-wing drone
and a mapping between user gestures and drone’s commands
based on an attitude controller enable an immersive and natural 
flight experience. We also found that using a gestural control 

Fig. 6.  Questionnaire results. Mean and standard deviation. The questions 
are presented in Table II. Higher agreement is better, except for question 7.

Table II.  Questionnaire filled out by the subjects at the end of the experiment. 
Subjects provide ratings between 1 (Disagree) and 7 (Strongly agree).

# Question

1 I felt as if I was flying myself.

2 I had the sensation of controlling the flight trajectory.

3 I felt some physical discomfort.

4 If I could fly in the air, I would use the same gesture.

5 The proposed gesture control was natural for me.

6 I enjoyed the experiment.

7 I found the experiment tiring.

Table I.  Average performance during the evaluation phase

Control Mapping strategy
Average 

performance 
[mean ± SD]

Birdly
Angular velocity 

controller 63.2% ± 38.1

Attitude controller 97.3% ± 8.1

RC remote 
control

Angular velocity 
controller 74.7% ± 33.5

Attitude controller 71.1% ± 37.0
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based on Birdly is more natural and immersive than using 
standard RC remote controller.

Preliminary experiments with a real drone are available in an 
extended version of the paper available at arXiV1. In this 
extended version we also addressed the technical challenges of 
interfacing Birdly with a real drone.

One future challenge is to develop a system more portable than 
the Birdly platform but having similar gestural controls and 
feedback. A promising avenue is to use a lightweight exosuit 
for gesture recognition and haptic feedback [20], [21]. Another 
challenge is to add a shared control that adaptively shift the 
control between the user and the autopilot of the drone based 
on the skills or cognitive fatigue of the user.
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