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Abstract—Current state of the art solutions in the control of an
autonomous vehicle mainly use supervised end-to-end learning,
or decoupled perception, planning and action pipelines. Another
possible solution is deep reinforcement learning, but such a
method requires that the agent interacts with its surroundings in
a simulated environment. In this paper we introduce GridSim,
which is an autonomous driving simulator engine running a
car-like robot architecture to generate occupancy grids from
simulated sensors. We use GridSim to study the performance of
two deep learning approaches, deep reinforcement learning and
driving behavioral learning through genetic algorithms. The deep
network encodes the desired behavior in a two elements fitness
function describing a maximum travel distance and a maximum
forward speed, bounded to a specific interval. The algorithms
are evaluated on simulated highways, curved roads and inner-
city scenarios, all including different driving limitations.

I. INTRODUCTION AND RELATED WORK

The ability of an autonomous car to navigate without
human input has become a mainstream research topic in the
quest for autonomous driving. In this paper we propose a
simulated environment engine for learning autonomous driving
behaviors, entitled GridSim (see Fig. 1). The simulator uses
an Occupancy Grid (OG) sensor model for interacting with
the simulated environment. As shown in Fig. 1, we used
GridSim synthetic information to train two types of learning
algorithms commonly used in Autonomous Driving: a Deep
Q-Network (DQN Agent) [1] and a Deep Neuroevolutionary
Agent evolved via an evolutionary training method [2].

An AV must be able to sense its own surroundings and form
an environment model consisting of moving and stationary
objects [3], and to further use this information in order to learn
long term driving strategies. These driving policies govern the
vehicle’s motion [4] and automatically output control signals
for steering wheel, throttle and brake. Reinforcement learning
has been applied to a wide variety of robotics related tasks,
such as robot locomotion and autonomous driving [5]. How-
ever, DRL requires the agent to interact with its environment.
The reward is used as a pseudo label for training a DNN which
is then used to estimate an action-value function, also known
as a Q-value function, for approximating the next best driving
actions. This is in contrast to end2end learning, where labeled
training data has to be provided. The DeepTraffic competition
from MIT [6] is a good example of RL in simulated environ-
ments, because the control system for the ego-car is handled
by a DQN agent, which uses a discrete occupancy grid as a
simplified representation of the environment.

Fig. 1. GridSim and two possible pipelines for deep neural control of a
simulated car. (top) GridSim driving scenarios. (middle) DQN Agent pipeline
using the input OGs for interacting with the simulated environment in order to
maximize its reward function. (bottom) Neuroevolutionary Agent: the DNN’s
weights are evolved using genetic algorithms with altered breeding rules, in
order to maximize a two elements fitness function.

II. SIMULATION ENGINE, METHODS AND EXPERIMENTS

The developed simulation engine is coined GridSim and it
is described as an autonomous driving simulator which uses
the non-holonomic robot car kinematics [7]. The steering is
modelled through angle δ as an extra degree of freedom on
the front wheel, while the ”non-holonomic” assumption is
expressed as a differential constraint on the motion of the car,
which restricts the vehicle from making lateral displacements,
without simultaneously moving forward.

The simulator has been developed from scratch, using
Python and PyGame library, in order to support development
and validation of autonomous driving systems, and it can
be used in both CPU and GPU configurations. Snapshots of
GridSim’s possible scenarios can be seen at the top of the
Fig. 1. The simulated sensors have a field of view (FOV)
of 120 degrees, and they react when an obstacle is sensed,
by marking it as an occupied area. The dynamic obstacles
are represented by traffic cars, which have their trajectory
randomly generated from a uniform distribution of the possible
free spaces inside the given scenario. We use GridSim to study
the performance of two simulation based autonomous driving
approaches: deep reinforcement learning and the control of a
deep neuroevolutionary agent.
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Fig. 2. Comparison of the DQN and Neuroevolutionary agents in
the five GridSim scenarios. Performance comparison in regards to overall
velocity error percentage and average training time of both models with
different scenarios in GridSim. We observe that the velocity error of the
neuroevolutionary approach is smaller in all scenarios, while keeping its
training time low.

The neuroevolutionary part of the algorithm represents the
evolution of the weights of a deep neural network by using
a population-based genetic algorithm, with altered breeding
rules (custom tournament selection). The training is performed
against a multi-objective fitness function which maximizes
two elements: the traveled path and the longitudinal speed.
This learning procedure was first proposed by the authors for
training a generative one-shot learning classifier [8]. It aims to
compute optimal weights for a collection of K deep networks:

ϕϕϕ(·;ΘΘΘ) =
[
ϕ1(·;Θ1), ...,ϕi(·;Θi), ...,ϕK(·;ΘK),

]T (1)

The weights of a single deep network are stored in a so-
called solution vector Θ =

[
θ1,θ2, ...,θn,

]T , composed of n
decision variables θi, with i= 1, ...,n and θ ∈Rn. θi represents
a weight parameter in a single network. The agent controls
the ego-car using the elite individual DNN from the given
generation, while the custom tournament selection algorithm
ensures that the best accuracy individuals carry on to the next
generation unmodified.

As a comparison to our Neuroevolutionary Agent, we have
implemented a DQN agent, which uses a decision space of
eight actions. The algorithm starts from an initial state and
proceeds until the the agent has collided with its surroundings.
In every step, the agent is described by the current state s, it
follows policy p(s) and observes the next state together with
the reward received from the environment. The reward policy
is constructed in the following way:

ρt = f (δt)∗0.15+ f (vt)∗0.15+ f (St)∗0.7 (2)

S =
[
s1,s2, ...,sn

]T (3)

f (S) = min(S) (4)

where ρ is the total normalized reward, f (δ ) is the distance
travelled, f (v) is the current velocity of the vehicle, f (S) is

Fig. 3. Seamless generated model scenario velocity and steering
errors when compared with human control reference. The absolute
values obtained with the Neuroevolutionary Agent: mean(ev f ) = 1.692ppu,
max(ev f ) = 8.988ppu, (mean(eδ ) = 4.726deg, max(eδ ) = 21.619deg. The
neuroevolutionary approach delivers a higher accuracy when compared to the
DQN network, which is tailored to operate on simulation data.

the sensor policy and S is the sensor action-value vector. The
algorithm continues until the convergence of the Q function,
or until a certain number of episodes is reached, while also
ensuring a sanity check of 15 actions.

III. CONCLUSION AND FUTURE WORK

In summary, this paper presents two possible approaches
for controlling a simulated kinematic model, namely the
Neuroevolutionary and DQN Agents. For this purpose, we
have implemented GridSim, which is a multiple-scenario,
two dimensional birds’ eye view driving simulator. We have
reached the conclusion that the genetic evolution of a deep
network’s weights converges faster and achieves better results
than the DQN Agent in the virtual driving scenarios in which
the algorithms were tested. As future work, we would like to
extend the control algorithms for the simulated car, together
with using a more complex kinematic model.
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