
RoboMal: Malware Detection for Robot Network
Systems

Accepted to IRC 2021

Upinder Kaur∗, Haozhe Zhou†, Xiaxin Shen‡, Byung-Cheol Min‡ and Richard M. Voyles∗
∗School of Engineering Technology,
†Department of Computer Science,

‡Department of Computer and Information Technology,
Purdue University,

West Lafayette, IN 47907, USA
Email: kauru, zhou929, shen452, minb, rvoyles@purdue.edu

Abstract—Robot systems are increasingly integrating into
numerous avenues of modern life. From cleaning houses to
providing guidance and emotional support, robots now work
directly with humans. Due to their far-reaching applications and
progressively complex architecture, they are being targeted by
adversarial attacks such as sensor-actuator attacks, data spoofing,
malware, and network intrusion. Therefore, security for robotic
systems has become crucial. In this paper, we address the under-
served area of malware detection in robotic software. Since
robots work in close proximity to humans, often with direct
interactions, malware could have life-threatening impacts. Hence,
we propose the RoboMal framework of static malware detection
on binary executables to detect malware before it gets a chance to
execute. Additionally, we address the great paucity of data in this
space by providing the RoboMal dataset1 comprising controller
executables of a small-scale autonomous car. The performance
of the framework is compared against widely used supervised
learning models: GRU, CNN, and ANN. Notably, the LSTM-
based RoboMal model outperforms the other models with an
accuracy of 85% and precision of 87% in 10-fold cross-validation,
hence proving the effectiveness of the proposed framework.

Index Terms—Robot Security, Robot Systems, malware, secu-
rity, dataset

I. INTRODUCTION

Robotic systems, much like other cyber physical systems
(CPS), are becoming increasingly integrated into modern life.
Robots are no longer limited to strict research or industrial
setting but are finding space in offices, homes, and schools.
Robots with enhanced sensing such as computer vision, audio
recognition, and autonomous decision-making capabilities are
making everyday life easier and safer for humans. From
autonomous cars to home cleaning, robots are shifting the
paradigm of modern living.

Due to their increasing adoption, robotic systems are becom-
ing an attractive target of malicious attacks [1]. From interrup-
tion of services, to falsification and theft of data, increasingly
sophisticated methods are being deployed to attack various
components of a robotic system [2, 3, 4]. Hence, security
for robotic systems has become an ever-evolving challenge
encompassing physical as well as communication and software
layers of the architecture.

1The RoboMal dataset is available at https://doi.org/10.4231/YN7G-H807.

Attacks on robotic systems target its core properties: confi-
dentiality, integrity, and availability [5]. Confidentiality attacks
include spoofing, unauthorized access, and password pilfering;
whereas tampering, malware, message relay, data injection,
and data modification attack the integrity of the system [6].
Further, a critical aspect of attacks on robotic systems could
be the intention to cause direct physical harm to humans.
Robots today work in close proximity with humans with direct
interactions. An attacker that can control such a robot can
potentially have life-threatening impacts [7, 8].

Malware attacks include injection of software which forces
the system to misbehave [9]. They can be injected by infiltrat-
ing the network or attacking nodes such as edge devices or
fog nodes. The key aspect of malware is its close resemblance
to actual good software that makes detection hard [10]. A
good example of this is Stuxnet [11], a malware that went
undetected for years and threatened the nuclear capability
of a country. This piece of code was not detected by anti-
virus software due to its similarity with usual good windows
software. This is even more critical for low-level embedded
devices such as those used in robotic systems. For example,
by just adjusting the gains, a Proportional–Integral–Derivative
(PID) controller can be made to misbehave entirely, thereby
threatening the integrity of the system. Since these changes
are so minute, they are challenging to detect by traditional
approaches.

Malware attacks not only threaten information security,
but since CPS involves physical actuation, they can cause
real-world life-threatening damage. For example, misbehaving
surgical robots [12], bricking autonomous cars [8], causing
disruption on a manufacturing floor with robots [13], are few
such attack vectors that have been studied. Hence, detection
and subsequent isolation of malware are critical for robust and
safe robotic systems. Moreover, due to the evolving and mim-
icking nature of malware, traditional rule-based approaches
prove to be unsuitable [14]. Further, traditional seed-key based
security is often too expensive and impractical to implement
in CPS devices due to their constrained resources. Therefore,
learning-based approaches can be a potential solution that
can be independently deployed on each device. Also, new

ar
X

iv
:2

20
1.

08
47

0v
1

 [
cs

.R
O

]
 2

0
Ja

n
20

22

https://doi.org/10.4231/YN7G-H807

innovations in lighter, more optimized learning models for em-
bedded systems (e.g., TinyML, Tensorflow Lite [15]) further
strengthens the case for using machine learning.

In this paper, we address this need for malware detection in
robotic systems by presenting a learning-enabled framework.
The aim of this work is to detect malware before it even
has a chance to install or execute, thereby greatly limiting
the impact that malware can have. While such static malware
detection has been studied for personal computers and android-
based devices, the area is under-served for low-level embedded
devices. Yet, as more robots are now connected to networks,
the need is for fast and optimized malware detection attuned
for the limited resources of embedded devices.

The contributions of this paper are:
• The RoboMal dataset which comprises binary executables

of controllers of a small-scale multi-sensor autonomous
car. This dataset is made available to the public for
fostering further research in the area.

• The RoboMal framework which processes sequential in-
formation at the byte level to detect malware in executa-
bles of the robot software.

• A detailed comparison and analysis of the performance of
the proposed framework along with other state-of-the-art
models on the RoboMal dataset.

The organization of this paper is as follows: Section II
describes the previous works in malware detection in robot
systems. The RoboMal dataset is described in Section III.
The proposed RoboMal framework for malware detection is
presented in Section IV. The experiments and results are
presented in Section V. Section VI presents the conclusion
of this work along with its future scope.

II. MALWARE IN ROBOT NETWORKS

Robot systems can be attacked through multiple modali-
ties. While numerous works have been published for sensor-
actuator attacks [16, 17], data spoofing [18], and fraud and
intrusion detection [19, 20] which manipulate data being
exchanged, few have addressed malware detection in robotics.
Malicious software, or malware, is an ever-evolving threat
faced by most computing systems today [21]. Anti-virus
companies detect malware by matching unseen code against
massive libraries of identified malware. While this approach
works for most malware, it often proves to be an expensive
endeavor due to the high cost of updating and maintaining
such libraries. Further, as seen in recent times, malware attacks
have become increasingly sophisticated, often outmatching
traditional malware detection systems [22]. Robot systems are
particularly vulnerable to malware not only due to the paucity
of available protections, but also due to the fact that even a
change of a single byte can completely change the behavior
of a robot [7]. As more and more robots come online, connect
to large networks, there is an imminent need for malware
detection and isolation in robotic systems.

In this work, we consider the threat model of malicious code
executables being communicated to an autonomous robot.
Such code is often sent for remote updates and due to limited

Fig. 1: The RoboMal Dataset; (a) The F1/10 autonomous car
with multiple sensors [23], (b) The wall follower track in
Gazebo simulator, and (c) The distribution of malware and
good software in RoboMal dataset.

protection, it can be spoofed to inject malware. Autonomous
robots often do not have the resources to afford traditional
encryption-based security. Hence, this makes them vulnerable
to malware. Malware detection in computer systems has seen
numerous works using learning-based approaches to identify
maliciousness in code as such models can evolve with time.
Learning-based malware detection systems are of two main
types - dynamic and static. In dynamic analytical systems,
runtime behaviors such as API calls, execution behavior,
instructions, etc. are analyzed to classify programs as malware
[24, 25]. This approach captures behavioral patterns and while
it may seem more intuitive to develop, it demands an isolated
environment for the identification of behavior. Customized
virtual machine testbeds needed for such analysis are not only
expensive but accrue significant computational costs. Also,
intelligent malware might have the ability to recognize such
testbeds and could potentially avoid discovery [26].

Static analysis based on supervised approaches using neu-
ral networks on portable executables (PE) has shown better
performance [27, 28, 29, 30]. Deep learning on metadata
features, contextual byte features, and 2D histograms from the
PE files resulted in a detection rate of 95% [27]. Long Short-
term Memory (LSTM) models have also been used to learn
from domain knowledge extracted using n-gram methods [29].
This work was further extended using convolutional neural
networks (CNN) with temporal max-pooling in the MalConv
model [28] which resulted in state-of-the-art performance.
Moreover, visualization techniques that convert binary exe-
cutable into images for identifying malware have also been
attempted [31, 32, 33]. Such systems employed CNN and
deep neural networks to identify textural patterns in malware
images. Although these methods achieved high detection rates,
they still rely on large labeled datasets.

In embedded systems, malware detection has been studied

for Android systems [34, 35] wherein system calls and two-
dimensional features were used, respectively. While these
approaches have shown good precision, they fail to work at
the granularity needed for robotic code. The features used in
these methods result in too much information loss for small
embedded code files written for robotic systems. Further, they
rely on massive datasets (for example, the Embers dataset has
200,000 samples) that do not yet exist for robotic systems.
Moreover, they are constrained to the environment such as
windows or android and do not take into account the generaliz-
ability needed for robotic software. Hence, for robot systems,
the need is to examine the code with greater granularity to
capture the finest of details. Further, the approach needs to be
language agnostic as robotic code can be developed in various
environments and systems using different tools and languages.

III. THE ROBOMAL DATASET

The RoboMal dataset (https://doi.org/10.4231/YN7G-H807)
was created to facilitate research in the area of detecting
malware from binary executable for not only robotic systems,
but also simpler embedded actuator-based CPS. We consider
the paradigm of small-scale autonomous cars network as
shown. These cars have a variety of sensors, such as LiDARs,
ultrasonic sensors, and cameras. They also have motors as
actuators. The F1/10 car is one such example, as shown in
Fig. 1(a). The controller of such cars manages both steering
and velocity control. These cars are being increasingly used
for education, research, and even racing purposes. Hence, we
developed the dataset using the controller files of one such
publicly available autonomous car [23]. The provided F1/10
code repository was updated and modified for this analysis.

The RoboMal dataset uses the wall following controller for
the small-scale autonomous cars. The track of the car is shown
in Fig. 1(b). To inject malicious behavior, variables such as
gains and scalars were modified in a way that the performance
of the car degraded drastically. We aimed to see clear deviation
from expected behavior of the car. We also manipulated
the Proportional–Derivative (PD) control structure to generate
malware files. All these approaches are potential methods that
hackers can deploy to inject malware in such devices. The
Gazebo-based simulation was used to ascertain the behavior of
the cars with the modified code. Also, good code samples were
created by tweaking the parameters in a way that the change
in performance was within acceptable bounds. Notably, one
realizes that there is no explicit definition of malware in such
systems as the decision boundary can be fuzzy. The intention
of the program matters as poor performance could just be a
result of sub-optimal programming. Keeping this in mind, we
utilized multiple samples created by different programmers to
build this dataset.

The distribution of the dataset is shown in Fig. 1(c). A total
of 450 binary executable ELF files are provided in this dataset
with 232 malware files and 218 good software files. The
malware files are the ones that showed erratic behavior such
as the car crashing into the wall, car not moving, car moving
in the wrong direction, etc. On the other hand, good software

files result in expected performance but the different values
of gains can interfere with the speed and the overall time the
car takes around the track. Each file has different changes
and these changes have been documented in the detailed label
excel file included with the dataset. Binary executables are
language-agnostic and are widely used in detecting malware
in the case of Windows and Android platforms. Binary ex-
ecutables occupy less memory and are independent software
with all necessary libraries already packed. Hence, they are
atomic units that can be analyzed without additional resources.
The value of this dataset lies in the fact that it provides a
distribution of samples for both good and malicious software
for an embedded system.

IV. THE ROBOMAL FRAMEWORK

Static analysis of code requires identification of patterns in
the binary executable, rather than relying on the behavior of
the code at runtime. In robotic systems, the ability to stop the
execution of malware is particularly useful since a malware
might cause life-threatening harm.

In this model, we use the dataset D with n number of
samples [D1,D2, ...,Dn], each belong to class malware (label
= 1) or good software (label = 0). Each sample Di, where
i ∈ (1,n), represents a raw binary executable, which is then
parsed for identification of malware. The workflow of the
entire RoboMal framework is shown in Figure 2.

A. Pre-Processing

Since the computing power on robotic systems is very
limited, we would like to minimize the size of our malware
detector. The ELF files of the robot controller are around
18 MB, which hinders the practicability to directly apply
deep learning to the raw bytes, especially sequence-based
models, for malware detection. Therefore, we pre-processed
the executables in order to reduce the input size based on
the following two intuitions. First, the controlling logic of the
robot only occupies a small proportion of the executable file,
while the rest are mostly library and utility functions. Second,
since the controller programs are for the same model of robot,
we expect that the majority of the variation in the ELF files
reside in only a small proportion of the file, which corresponds
to the script that describes the controller logic. Therefore, if
we know the address of the controller script in the ELF, we can
extract the bytes that are projected from the controller script
which greatly reduces the input size to the learning models.

To implement our solution, we first used the readel f
command line tool to identify the address of each section
header, out of which, we are interested in the .pydata section
that covers the controller script written in Python. Then, we
extract the hexadecimal version of the file. We observed that
the parts corresponding to the controller scripts always have
the same starting address, but vary in lengths within the range
of 1,000 to 1,300 bytes. Finally, based on the starting address
and the compressed file size that we identified, we dumped
the binary at the corresponding proportion of the ELF files
using xxd command. To make sure our analyses covers the

https://doi.org/10.4231/YN7G-H807

Fig. 2: The flow diagram of the RoboMal framework.

entire program, we capped the length that we extract to 2,000
bytes. We regard each unique byte value as one categorical
value. Thus, the pre-processed malware can be viewed as a
2000-word sequence that has a vocabulary size of 256.

B. Long Short-Term Memory

LSTM models are a type of recurrent neural networks which
possess the ability to retain short term memory. They are
capable of learning complex and inter-related input features
and predict output sequences [36]. LSTMs are useful in
processing long sequences as they are able to comprehend
and retain the overall global distribution as well as map that
to local changes.

In the malware detection application, we input the dataset
feature stack X during the training phase. The model first adds
an embedding around the input and processes the sequence
using the bidirectional LSTM layer. LSTMs usually operate
on the time axis, but here we adapt them on the feature space.
The bidirectional LSTM captures both past context as well
as future context, thereby enabling it to fully comprehend the
similarities and differences of the sequences of each binary
executable. Given a sequence X = {x1,x2,x3, ...,xl} for a set
of length l, the model with memory ct and hidden state ht are
defined as: [it

ft
ot
ct

]
=

[
σ
σ
σ

tanh

]
W [ht−1,xt], (1)

where i, f , and o are the input gate activation, forget gate
activation, and output gate activation, respectively [37]. The
LSTM layer is connected to a fully connected neural network
layer with sigmoid activation,

ŷ = sigmoid(Wf M′+b f), (2)

where Wf and b f are the weights of the fully connected layer.
The loss function used for this model is binary cross entropy,
defined as

loss =−
e

∑
i=1

yilog(ŷi). (3)

Notably, in the code the sigmoid activation layer and binary
cross entropy loss is combined into a single BCEwithLogit-
Loss layer.

C. Comparison with Baselines

The task of learning the distribution of malware and good
software in the RoboMal dataset is primarily an exercise in
understanding the distribution of key sequences in the exe-
cutable. Hence, to evaluate the performance of the RoboMal
framework, we present three baselines using Gated Recurrent
Units (GRUs), Convolutional Neural Networks (CNNs), and
Artificial Neural Networks (ANN) models. GRUs are another
form of recurrent neural networks (RNNs) and unlike LSTMs,
their retention and removal of memory is controlled by a single
gate. GRUs also lack a cell state. While GRUs are faster, they
tend to overfit the dataset more than LSTMs.

CNN are widely used for many machine learning applica-
tions, and are good at finding patterns in a file or sequence.
While they are good at understanding the local distribution,
they falter in mapping the global distribution of the dataset.
Further, fully connected deep neural networks can be used for
processing sequences, but they have not achieved state-of-the-
art performance in most cases.

D. Evaluation Metrics

The performance of the models was measured based on the
metrics: accuracy, precision, recall, f1 score, false positive rate,
and false negative rate. Accuracy measures the ratio of correct
predictions over the total number of samples evaluated. It is
denoted as:

Accuracy =
t p+ tn

t p+ f p+ tn+ f n
, (4)

where t p, tn, f p, and f n are the number of true positives,
true negatives, false positive and false negatives samples, re-
spectively. Precision is the measure of correctly classified true
positive samples from all the samples classified as positive,

Precision =
t p

t p+ f p
. (5)

Recall is the measure of positive samples in all correctly
classified samples,

Recall =
t p

t p+ f n
. (6)

F1-Score is harmonic means between recall and precision.
The False Positive Rate (FPR) is ratio between the incorrectly
classified negative samples to the total number of negative
samples and False Negative Rate (FNR) is the measure of
positives samples that were incorrectly classified:

F1 Score =
2×Precision×Recall

Precision+Recall
, (7)

FPR =
f p

f p+ t p
, (8)

FNR =
f n

f n+ t p
. (9)

V. EXPERIMENTS AND RESULTS

A. Experimental Setup

The RoboMal dataset was used for the validation of the
performance of the RoboMal framework. Using a 10-fold
cross-validation, the dataset was split into training and test
sets. The training and testing were conducted on a PC with
NVIDIA 1080Ti GPU, Intel i7 processor, 16GB RAM, and
500TB memory.

The RoboMal framework uses a bidirectional LSTM with an
embedding layer of size 16 units. The hidden layer has 16 units
(8 each way), and the number of classes is two. The vocabulary
size is 256 characters. The Adam optimizer was used with
learning rate of 0.001. Binary cross-entropy with logit loss
was used as the loss function. The training was completed in

TABLE I: The performance results of the models on the
RoboMal Dataset.

Model Metrics
Accuracy Precision Recall F1 FPR FNR

GRU 0.78 0.81 0.83 0.83 0.17 0.19
CNN 0.76 0.79 0.73 0.75 0.19 0.27
ANN 0.70 0.71 0.70 0.71 0.31 0.30
RoboMal 0.85 0.87 0.87 0.87 0.13 0.17

batch size of 36 with 100,000 total maximum steps (therefore,
epochs = 100000/36) for each fold.

The GRU model has an embedding layer of 16 units with
a hidden layer with 16 units and dropout of 0.30. The Adam
optimizer with learning rate of 0.001 was used. The binary
cross-entropy with logit loss was used as the loss function.
The Adam optimizer was used with learning rate of 0.001.
The training was completed in batch size of 44 with 100,000
total maximum steps (therefore, epochs = 100000/44) for each
fold. The CNN model uses three 1D convolutional layers with
8/16/16 units and stride set as 1. A batch normalization layer
was used after each convolutional layer along with dropout
of 0.20. The fully connected layers with 480 input size was
used as an output layer with sigmoid activation. In this case,
we use the binary cross entropy loss and the Adam optimizer
(learning rate = 0.001, weight decay = 0.003). The batch size
was set to 32 with a maximum step size of 50,000 (epochs =
50000/32) for each fold.

The ANN model uses three fully connected layers with input
dimensions of 2000/200/200. The first two layers use rectified
linear units (ReLU) activation with the final activation being
sigmoid. We use the binary cross entropy loss and the Adam
optimizer (learning rate = 0.001, weight decay = 0.003). The
batch size was set to 32 with a maximum step size of 50,000
(epochs = 50000/32) for each fold.

B. Results

The models were compared based on their overall per-
formance on the RoboMal dataset. Table I shows the av-
erage performance metrics of the models in 10-fold cross
validation on the RoboMal dataset. The RoboMal framework
outperforms all other baseline models. This performance can
be attributed to the bidirectional LSTM as it holds both
past and future predictions while making the decision. The
training loss for the model is shown in Fig 3. Also, while
GRU model did better than the CNN and ANN models, the
lack of independence of gates did not help it achieve great
performance. Hence, we can conclude that while processing
sequences, the RoboMal framework was able to comprehend
the similarities in the samples as well as identify the specific
sequences that changed.

Further, CNN model achieved an accuracy of 0.76 with
a precision of 0.79. The model showed balanced behavior
with a false positive rate of 0.19 and false negative rate
of 0.27. The convolutional filters in this case caused loss
of granularity of information which might have resulted in
the observed performance. Also, CNN fails to learn global

Fig. 3: The training loss for RoboMal framework with number
of epochs.

distribution which could also be responsible for the sub-
optimal performance. The ANN model achieved an accuracy
of 0.7 which while lower than other models, highlights that
the distribution of the dataset is enough for all the models to
generalize and find decision boundaries. In this case, the false
positive and false negative rates were higher, 0.31 and 0.30,
respectively. This could be due to the simplicity of the model.

Hence, we conclude that for static analysis of binaries, the
model needs to understand the local distribution of characters
and map to the global distribution in the dataset. Also, the
baselines show the generalizability on the dataset.

VI. CONCLUSION

In this paper, we address the need for malware detection in
robotic systems by providing the novel RoboMal dataset and
the RoboMal framework. The RoboMal dataset is a collection
of 450 binary executables (232 malware files and 218 good
software files) of controllers of small-scale autonomous cars.
This publicly available dataset is truly unique since it is the
first of its kind, with validated working controller code and
malicious code executables.

The RoboMal framework analyzes patterns in static binary
executables using a bidirectional LSTM-based model with
embedding for identifying the maliciousness of the code. The
framework’s performance was compared against that of other
state-of-the-art models, such as GRU, CNN, and ANN. The
RoboMal framework outperforms all models with an accuracy
of 85% and precision of 87%. Notably, this performance was
achieved with a dataset of just 450 files and still resulted in
13% false positive rate and 17% false negative rates. This
shows that the model can generalize on the dataset and is not
overfitting the samples. Further, both GRU and CNN models
also resulted in an acceptable performance on the RoboMal
dataset, thereby proving the generalizability of the distribution
of samples in the dataset. Hence, we prove the effectiveness
of the framework on the RoboMal dataset.

In the future, we plan to further extend the RoboMal
dataset to enable more robust performance. The RoboMal

framework can be extended to more semi-supervised and
unsupervised approaches using the presented dataset. Further,
malware isolation strategies can be created and evaluated for
robotic networks by augmenting this framework.

ACKNOWLEDGMENT

The authors acknowledge the support of USDA Grant 2018-
67007-28439 in the fulfillment of this work. The authors
also acknowledge the help of Mythra VBS Balakunthala in
providing the initial setup of the autonomous rally cars. We
acknowledge the support of Shih Huan Hung in the develop-
ment of the RoboMal dataset.

REFERENCES

[1] S. Morante, J. G. Victores, and C. Balaguer, “Cryp-
tobotics: Why robots need cyber safety,” Frontiers in
Robotics and AI, vol. 2, p. 23, 2015.

[2] T. Bonaci and H. J. Chizeck, “On potential security
threats against rescue robotic systems,” in 2012 IEEE
International Symposium on Safety, Security, and Rescue
Robotics (SSRR), 2012, pp. 1–2.

[3] F. Gomez-Bravo, R. J. Naharro, J. M. Garcı́a, J. G. Galán,
and M. Raya, “Hardware attacks on mobile robots: I2c
clock attacking,” in Robot 2015: Second Iberian Robotics
Conference. Springer, 2016, pp. 147–159.

[4] G. Clark, M. Doran, and W. Glisson, “A malicious attack
on the machine learning policy of a robotic system,”
in 2018 17th IEEE International Conference On Trust,
Security And Privacy In Computing And Communica-
tions/ 12th IEEE International Conference On Big Data
Science And Engineering (TrustCom/BigDataSE), 2018,
pp. 516–521.

[5] S. Geris and H. Karimipour, “A feature selection-based
approach for joint cyber-attack detection and state es-
timation,” in IEEE International Conference on Smart
Energy Grid Engineering (SEGE), 2019, pp. 1–5.

[6] H. M. Rouzbahani, H. Karimipour, A. Rahimnejad,
A. Dehghantanha, and G. Srivastava, “Anomaly detection
in cyber-physical systems using machine learning,” in
Handbook of Big Data Privacy. Springer, 2020, pp.
219–235.

[7] K. Chung, X. Li, P. Tang, Z. Zhu, Z. T. Kalbarczyk, R. K.
Iyer, and T. Kesavadas, “Smart malware that uses leaked
control data of robotic applications: The case of raven-
ii surgical robots,” in 22nd International Symposium on
Research in Attacks, Intrusions and Defenses ({RAID}
2019), 2019, pp. 337–351.

[8] P. Dash, M. Karimibiuki, and K. Pattabiraman, “Out of
control: stealthy attacks against robotic vehicles protected
by control-based techniques,” in Proceedings of the
35th Annual Computer Security Applications Conference,
2019, pp. 660–672.

[9] S. Sharmeen, S. Huda, and J. Abawajy, “Identifying
malware on cyber physical systems by incorporating
semi-supervised approach and deep learning,” in IOP

Conference Series: Earth and Environmental Science,
vol. 322, no. 1. IOP Publishing, 2019, p. 012012.

[10] M. Brand, C. Valli, and A. Woodward, “Malware foren-
sics: Discovery of the intent of deception,” Journal of
Digital Forensics, Security and Law, vol. 5, no. 4, p. 2,
2010.

[11] C. Marr, “Cyberwarfare and applied just war theory:
Assessing the stuxnet worm through jus ad bellum and
jus in bello,” SPICE: Student Perspectives on Institutions,
Choices and Ethics, vol. 14, no. 1, p. 2, 2019.

[12] T. Bonaci, J. Herron, T. Yusuf, J. Yan, T. Kohno, and
H. J. Chizeck, “To make a robot secure: An experimental
analysis of cyber security threats against teleoperated
surgical robots,” arXiv preprint arXiv:1504.04339, 2015.

[13] F. Maggi, D. Quarta, M. Pogliani, M. Polino, A. M.
Zanchettin, and S. Zanero, “Rogue robots: Testing the
limits of an industrial robot’s security,” Trend Micro,
Politecnico di Milano, Tech. Rep, 2017.

[14] H. S. Anderson and P. Roth, “Ember: an open dataset
for training static pe malware machine learning models,”
arXiv preprint arXiv:1804.04637, 2018.

[15] C. R. Banbury, V. J. Reddi, M. Lam, W. Fu,
A. Fazel, J. Holleman, X. Huang, R. Hurtado, D. Kan-
ter, A. Lokhmotov et al., “Benchmarking tinyml
systems: Challenges and direction,” arXiv preprint
arXiv:2003.04821, 2020.

[16] Y. Gao, G. Sun, J. Liu, Y. Shi, and L. Wu, “State
estimation and self-triggered control of cpss against joint
sensor and actuator attacks,” Automatica, vol. 113, p.
108687, 2020.

[17] M. S. Ayas and S. M. Djouadi, “Undetectable sensor
and actuator attacks for observer based controlled cyber-
physical systems,” in 2016 IEEE Symposium Series on
Computational Intelligence (SSCI), 2016, pp. 1–7.

[18] A. Cardenas, S. Amin, B. Sinopoli, A. Giani, A. Perrig,
S. Sastry et al., “Challenges for securing cyber physical
systems,” in Workshop on future directions in cyber-
physical systems security, vol. 5, no. 1. Citeseer, 2009.

[19] R. Mitchell and I.-R. Chen, “A survey of intrusion
detection techniques for cyber-physical systems,” ACM
Comput. Surv., vol. 46, no. 4, Mar. 2014. [Online].
Available: https://doi.org/10.1145/2542049

[20] S. Han, M. Xie, H. Chen, and Y. Ling, “Intrusion de-
tection in cyber-physical systems: Techniques and chal-
lenges,” IEEE Systems Journal, vol. 8, no. 4, pp. 1052–
1062, 2014.

[21] I. Koren, “Detecting and counteracting benign faults and
malicious attacks in cyber physical systems,” in 2018
7th Mediterranean Conference on Embedded Computing
(MECO), 2018, pp. 2–2.

[22] O. Akinrolabu, I. Agrafiotis, and A. Erola, “The
challenge of detecting sophisticated attacks: Insights
from soc analysts,” in Proceedings of the 13th
International Conference on Availability, Reliability and
Security, ser. ARES 2018. New York, NY, USA:
Association for Computing Machinery, 2018. [Online].

Available: https://doi.org/10.1145/3230833.3233280
[23] M. O’Kelly, V. Sukhil, H. Abbas, J. Harkins, C. Kao,

Y. V. Pant, R. Mangharam, D. Agarwal, M. Behl, P. Bur-
gio et al., “F1/10: An open-source autonomous cyber-
physical platform,” arXiv preprint arXiv:1901.08567,
2019.

[24] K. Rieck, P. Trinius, C. Willems, and T. Holz,
“Automatic analysis of malware behavior using machine
learning.” Journal of Computer Security, vol. 19, no. 4,
pp. 639–668, 2011. [Online]. Available: http://dblp.
uni-trier.de/db/journals/jcs/jcs19.html#RieckTWH11

[25] B. Athiwaratkun and J. W. Stokes, “Malware classifica-
tion with lstm and gru language models and a character-
level cnn,” in 2017 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP),
2017, pp. 2482–2486.

[26] T. Raffetseder, C. Kruegel, and E. Kirda, “Detecting
system emulators,” in International Conference on In-
formation Security. Springer, 2007, pp. 1–18.

[27] J. Saxe and K. Berlin, “Deep neural network based
malware detection using two dimensional binary program
features,” in 2015 10th International Conference on
Malicious and Unwanted Software (MALWARE), 2015,
pp. 11–20.

[28] E. Raff, J. Sylvester, and C. Nicholas, “Learning the
pe header, malware detection with minimal domain
knowledge,” in Proceedings of the 10th ACM Workshop
on Artificial Intelligence and Security, ser. AISec ’17.
New York, NY, USA: Association for Computing
Machinery, 2017, p. 121–132. [Online]. Available:
https://doi.org/10.1145/3128572.3140442

[29] E. Raff, J. Barker, J. Sylvester, R. Brandon, B. Catanzaro,
and C. Nicholas, “Malware detection by eating a whole
exe,” in AAAI Workshop on Artificial Intelligence for
Cyber Security, 2018.

[30] R. Vinayakumar, M. Alazab, K. P. Soman, P. Poornachan-
dran, and S. Venkatraman, “Robust intelligent malware
detection using deep learning,” IEEE Access, vol. 7, pp.
46 717–46 738, 2019.

[31] L. Nataraj, S. Karthikeyan, G. Jacob, and B. S.
Manjunath, “Malware images: Visualization and
automatic classification,” in Proceedings of the 8th
International Symposium on Visualization for Cyber
Security, ser. VizSec ’11. New York, NY, USA:
Association for Computing Machinery, 2011. [Online].
Available: https://doi.org/10.1145/2016904.2016908

[32] S. Venkatraman and M. Alazab, “Use of data visual-
isation for zero-day malware detection,” Security and
Communication Networks, vol. 2018, 2018.

[33] S. Venkatraman, M. Alazab, and R. Vinayakumar, “A
hybrid deep learning image-based analysis for effective
malware detection,” Journal of Information Security and
Applications, vol. 47, pp. 377–389, 2019.

[34] J. Sahs and L. Khan, “A machine learning approach to an-
droid malware detection,” in 2012 European Intelligence
and Security Informatics Conference, 2012, pp. 141–147.

https://doi.org/10.1145/2542049
https://doi.org/10.1145/3230833.3233280
http://dblp.uni-trier.de/db/journals/jcs/jcs19.html#RieckTWH11
http://dblp.uni-trier.de/db/journals/jcs/jcs19.html#RieckTWH11
https://doi.org/10.1145/3128572.3140442
https://doi.org/10.1145/2016904.2016908

[35] Z. Ma, H. Ge, Y. Liu, M. Zhao, and J. Ma, “A combi-
nation method for android malware detection based on
control flow graphs and machine learning algorithms,”
IEEE Access, vol. 7, pp. 21 235–21 245, 2019.

[36] P. Malhotra, A. Ramakrishnan, G. Anand, L. Vig,
P. Agarwal, and G. Shroff, “Lstm-based encoder-decoder
for multi-sensor anomaly detection,” arXiv preprint
arXiv:1607.00148, 2016.

[37] P. Zhou, Z. Qi, S. Zheng, J. Xu, H. Bao, and B. Xu,
“Text classification improved by integrating bidirectional
lstm with two-dimensional max pooling,” arXiv preprint
arXiv:1611.06639, 2016.

	I Introduction
	II Malware in Robot Networks
	III The RoboMal Dataset
	IV The RoboMal Framework
	IV-A Pre-Processing
	IV-B Long Short-Term Memory
	IV-C Comparison with Baselines
	IV-D Evaluation Metrics

	V Experiments and Results
	V-A Experimental Setup
	V-B Results

	VI Conclusion

