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Abstract
In human-robot collaboration, one challenging task is to teach a robot new yet unknown objects

enabling it to interact with them. Thereby, gaze can contain valuable information. We investigate
if it is possible to detect objects (object or no object) merely from gaze data and determine their
bounding box parameters. For this purpose, we explore different sizes of temporal windows, which
serve as a basis for the computation of heatmaps, i.e., the spatial distribution of the gaze data.
Additionally, we analyze different grid sizes of these heatmaps, and demonstrate the functionality
in a proof of concept using different machine learning techniques. Our method is characterized by
its speed and resource efficiency compared to conventional object detectors. In order to generate
the required data, we conducted a study with five subjects who could move freely and thus, turn
towards arbitrary objects. This way, we chose a scenario for our data collection that is as realistic
as possible. Since the subjects move while facing objects, the heatmaps also contain gaze data
trajectories, complicating the detection and parameter regression. We make our data set publicly
available to the research community for download.

1 Introduction
Recent research has shown that eye tracking has becoming increasingly relevant for a variety of
applications. These include even dynamic real-world scenarios, such as driving [22], [2], [39], medicine
[35], [9], [33], and sports [8], [11], [24]. Especially the combination with computer vision problems [34],
[29], has in turn great potential for the employment of eye tracking in other fields, such as robotics
[23],[3], [37]. In the field of robotics, the focus is often on the interaction with the environment, for
example, detecting and grasping objects [14], [21]. In such settings, however, the interaction entities
are often unknown due to the enormous amount of potentially existing objects. For this purpose,
a semantic understanding of scenes must be present. In conveying this understanding, humans can
play an important role and provide assistance to the robot. One modality that has proven to be
particularly suitable and helpful for such human-robot collaboration settings is the human gaze [36].
Gaze allows objects to be intuitively selected by the human and communicated (e.g., gaze pointing) to
the interaction partner (e.g., robot). An additional advantage of the gaze modality is that it is far more
unambiguous than gestures and, unlike speech, can also be used effortlessly in the case of unknown
objects whose class name may not be known at all.

In this work, we address the problem of unknown object detection in real-world scenarios based
on gaze. This is an essential challenge for human-robot collaboration, as an example. After all, if the
robot could detect an unknown object by the fact that the human is looking at it, this paves the way
for further interaction possibilities. We refer to object detection in a similar manner to face detection.
In face detection, the task is to estimate whether there is a face or not. In our task, the challenge is to
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find out whether the current gaze pattern belongs to a perceived object or not. While there is work
investigating unknown object detection on static imagery, there is little research addressing unknown
object detection on videos and settings in the wild. Along this line, [16] and [38] used fixations to
infer the saliency of objects. A gaze map was used by [30], who combined it with candidate regions to
segment objects. In addition, the authors in [40] investigated the relationship between fixations made
while observing an image and the object categories it contains. The finding was that machine learning
models can benefit from human fixations for detection and classification tasks. In the work by [20],
gaze points were grouped into clusters to determine whether a cluster belonged to an object of interest
and whether it was looked at intentionally or unintentionally. However, all these related works used
multiple gaze points on one image, which is only possible if the stimulus (image of the observed scene)
is static or if, for instance, eye tracking data from multiple people is used, as in [29]. In the latter, it
was possible to extract attentionally important objects from videos. Contrary to all aforementioned
related works, we present a method capable of using gaze data from a single person in dynamic scenes,
i.e., with non-static stimuli, to detect unknown objects.

Our way to meet this challenge is by considering and analyzing gaze data across multiple frames
and constructing a heatmap from it. In contrast, [37] significantly reduced the amount of candidate
bounding boxes of unknown objects on a static image using only one gaze point. In another recent
work in a human-robot collaboration scenario, [36] achieved segmentation of unknown objects and
calculated corresponding bounding boxes in 3D space in real time. Although only one gaze point
was required here, the scene image including depth information was needed. Some other approaches
dispense with the gaze altogether, but focus rather on single-class images [25], [15], or use additional
information, e.g., from a depth sensor [1]. While robots typically have many sensors, they often have
limited computing power and, in some cases, not even a graphics processor, so using large amounts of
image data, especially depth images, puts a lot of strain on them. Additionally, there is often only one
object of interest at a time, obviating the need to detect all objects at once. By completely omitting
image data and employing gaze data instead, we can accomplish the task of detecting unknown objects
of interest and still saving large amounts of required computer resources.

In this work, we build on existing work and pave the way for successful human-robot interaction
through the following main contributions:

• We present a method for detecting unknown objects in a scene without stimulus, based solely on
gaze information.

• We only use heatmaps instead of scene images, enabling thus for a significantly faster approach than
image-based object detection, while at the same time requiring considerably less computational
resources.

• In a proof of concept, we evaluate the accuracy of different machine learning techniques and
parameters, such as the time window size for the spatial distribution of the gaze data and the
grid size of the resulting heatmaps.

• We make our unique data set, which contains both gaze data and bounding boxes of the
observed objects, publicly available to the research community for download at https://cloud.
cs.uni-tuebingen.de/index.php/s/QPzJC48xDGsjnZK.

2 Method
In this work, we challenge object detection by means of gaze points. Here we follow two goals. First,
we classify which gaze points or ranges of gaze points belong to an object, and we assign temporal
windows to the gaze points, which belong to an annotated bounding box. This creates a classification
problem in which the gaze points windows with an associated bounding box are assigned to class one
and gaze points windows without a bounding box are assigned to class zero.

The second goal is to regress the bounding box parameters on the gaze points. These parameters
are the width and height, as well as the x and y position. For this task, we also assigned the gaze points
to temporal windows. For the regression, we used only temporal windows with associated bounding
box, since all other temporal windows have no parameters for the regression.

We decided to use a spatial distribution as a feature since this worked best in our initial evaluations.
This spatial distribution is a heatmap as previously proposed by [6] to classify gaze position data. To
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create such a heatmap, the gaze position data of a temporal window are used, and the individual gaze
positions are assigned to cells in the heatmap (grid). Each time window results in one heatmap. The
assignment procedure is illustrated in Fig. 1. After the assignment, the heatmap is divided by the sum

Figure 1: Creation of a 2D or 3D heatmap based on the gaze information and the stimulus resolution.

over all values to obtain a distribution. As an extension to the approach in [6], we extended the 2D
heatmap to 3D. This was possible because the software used for gaze determination generates 3D gaze
points [7] based on a k-nearest neighbor regression. In the case of the 3D heatmap, a cell is assigned to
each gaze point based on its spatial position with the difference to the 2D heatmap that the depth or
distance of the gaze points is additionally considered along the z-axis. An example of an assignment of
gaze points to a 3D heatmap can be seen in Fig. 1.

A formal description of the generation of the heatmap in 3D is given in Equation 1.

heat
(⌊

px

Rx
·Gx

⌉
,

⌊
py

Ry
·Gy

⌉
,

⌊
pz

Rz
·Gz

⌉)
+= 1. (1)

The gaze positions in x, y, and z coordinates in an Euclidean coordinate system are denoted by
px, py, and pz, respectively. The constants Rx, Ry, and Rz represent the maximum resolution of
the stimulus in x and y direction and the maximum depth supported by the software Pistol [7]. By
dividing the gaze points by the maximum resolution, these ranges are normalized between 0 and 1.
Subsequently, these values are multiplied by the number of grid cells (Gx, Gy, and Gz) and rounded to
the nearest integers, denoted by “b· e”. These new values correspond to the index in the heatmap and
the selected cell is incremented by one, denoted by “+=”. In the case of a 2D heatmap, the cell for
depth (z coordinate) is fixed at one.

Equation 2 describes the normalization of the heatmap in 3D and 2D since for the 2D case there
would be only one depth.

heat(x, y, z) = heat(x, y, z)∑Gx

i=1
∑Gy

j=1
∑Gz

k=1 heat(i, j, k)
. (2)

Our normalization sums up the entire heatmap and divides each value of the heatmap by this sum.
The variables x, y, and z are the indexes to the heatmap corresponding to the x-axis, y-axis, and z-axis.
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As in Equation 1, the variables Gx, Gy, and Gz are the maximum amount of grid cells in the heatmap.
Finally, the one-dimensional vector resulting from the flattening of the heat map can be used as an
input feature for various machine learning techniques.

3 Study Design & Data Acquisition
In this section, we describe the dataset we used. In order to evaluate our approach, a dataset was
required which contains not only eye tracking information but also, in addition to the gaze points, the
bounding boxes of the objects that the participants were looking at. Since, to the best of our knowledge,
no such dataset exists or is publicly available, we collected a novel data set. In the beginning, we gave
each of the five subjects an introduction to the recording procedure. Each recording started with a
calibration. To this end, the participants were instructed to stand 0.5 m in front of the calibration
marker and look at its center. They were then asked to walk backward for about five meters, slowly
circling their head while fixating on the center of the marker throughout. Subsequently, the subjects
were allowed to move freely around the site, both inside and outside the building, a university complex
with several floors, corridors, and offices on the inside and a street, parking lots, and green areas on the
outside. In this course, they should look at arbitrary objects they encountered, such as first aid kits, fire
extinguishers, light switches, door signs, street signs, trees, and bicycles, among others. There was no
specification as to how long they were supposed to look at the objects. To evaluate gaze accuracy, the
participants were asked to look at the calibration marker again at the end of each recording. Initially,
five meters away, they had to move towards the marker with head rotations until they were standing
directly in front of it. Due to the different distances, we are able to estimate depth information in both
calibration and evaluation data via the tool Pistol [7]. All recordings were conducted with the Pupil
Invisible eye tracker, a head-mounted eye tracker developed by Pupil Labs [26], whose scene camera
provides RGB images with a resolution of 1088 × 1080. Each participant captured three recordings
(each recording was about five minutes long, including calibration and evaluation), resulting in 15
videos in total. Only one recording could not be used due to an incorrectly performed calibration,
where the marker was in the image of the scene for a while without the subject looking at it. Even
though the tool Pistol filters out a certain amount of erroneous data, the incorrect portion was too
large during the calibration phase. This led to a total length of about one hour of recording, consisting
of 102 620 frames of which 27 946 contained objects.

Finally, we labeled the obtained data with DarkLabel [4]. The objects in the dataset, respectively
their bounding boxes, have the characteristics shown in Table 1.

Table 1: Size distribution of the objects in the dataset. The numbers indicate the size of the respective
bounding box in pixels. Note that the columns do not have to originate from the same bounding box.
The mean is denoted by µ and the standard deviation by σ.

Width Height Size
min 16 18 288
max 1056 955 830 484
µ 177 227 61 456
σ 154 185 103 384

Fig. 2 shows individual example moments from the recordings. Due to the errors related to the
gaze estimation, the gaze points are not always on the labeled object, even though the participant
was actually looking at it. In fact, even for a human, it is not always easy to determine the target
object, and sometimes only possible considering the context and the observation of an image sequence.
This demonstrates quite clearly the difficulties and challenges associated with this task. Our final,
publicly available dataset only contains the gaze information and bounding boxes, yet no stimuli-related
information.
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(a) (b) (c)

(d) (e) (f)

Figure 2: The images show exemplary moments of our data, where the objects that were consciously
observed are labeled with a bounding box. The first two images (a) and (b) show the entire field of
view of the scene camera (1088 × 1080), while the other images (c)–(f) have been zoomed in to better
show the bounding box and the various estimated gaze points. The gaze points are colored depending
on the estimation method used by Pistol [7]. In (b) and (d), the gaze points do not lie within the
bounding boxes since the gaze estimation is — especially for smaller objects — not always completely
accurate. As in the last image (f), there may also be occasionally no gaze points in between. In light of
these challenges, gaze-based object detection is a non-trivial problem.

4 Evaluation
In this section, we evaluate the classification of the gaze points with respect to the affiliation to an
object, and we try to extract the position and the size of the object from those. To this end, we applied
a variety of different, well-established machine learning methods and list here a selection comprising
the best of them. For easy reproducibility of our approach, we restrict ourselves to Matlab’s standard
parameters of the used machine learning methods. In the classification experiments, we always specify
the mean accuracy of a 5-fold cross validation. For the regression experiments, the mean error as
a percentage of the image resolution from a 5-fold cross validation is given. We evaluated different
heatmap grid sizes as well as different time window sizes. Furthermore, we investigate the runtime and
memory requirements of our method and compare it to state-of-the-art object detectors. We conducted
our evaluations on a computer system with Windows 10 as the operating system, an AMD Ryzen 9
3950X 16-core processor with 3.50 GHz, and 64 GB DDR4 Ram. All machine learning methods were
implemented on the Matlab version 2021b.

The assignment of classes (object or no object) to time windows was done based on the presence of
an annotated object in the time window. This means that if there was an annotated object in the time
window, the class was set to one. If this was not the case and there was no annotated object in the time
window, the class was assigned zero. In the regression, only time windows with an existing annotated
object were used. Here, the parameters of the annotated object closest to the central timestamp of
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the time window were chosen. This was assigned because, in most cases, our subjects moved while
looking at an object. Thus, there are usually different positions and sizes of bounding boxes in a time
window. To compensate for this, the most central object in time was always chosen. The conversion of
the time windows into seconds can be roughly calculated using the formula Sec = T/(6.66 · 30), where
T is the size of the respective time window in frames (eye camera). This is due to the recording rates
of the scene camera (30 frames per second) and the recording rate of the eye camera (200 frames per
second) of the Pupil Invisible [26] eye tracker. The 6.66 is the number of eye frames per scene image.
An alternative formulation is to divide the time window size T by the number of eye frames per second,
which is 200.

Fig. 3 and Table 2 show the results of our classification experiment. Comparing the results of the

Figure 3: Classification results of the 2D and 3D heatmap features for different time window sizes (in
ms), number of grid cells, and machine learning methods illustrated in a heatmap. The results are the
average accuracy of a 5-fold cross validation.

Table 2: Best and worst classification results of the 2D and 3D heatmap features. The mean is denoted
by µ and the standard deviation by σ.

Feature ML Accuracy
µ± σWorst Best

2D heatmap
KNN 68 88 83.2± 3.8

Bagged Trees 79 89 86.3± 1.9
Gaussian SVM 73 84 79.4± 2.6

3D heatmap
KNN 73 92 87.8± 3.3

Bagged Trees 80 89 86.8± 1.3
Gaussian SVM 72 83 76.5± 3.6

three methods, i.e., KNN, bagged trees, and Gaussian SVM, it can be seen that for the 2D heatmap
feature, the approach based on bagged trees achieves the best results. Looking at the progression over
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the grid size and the time window size, we can see that the KNN and the bagged trees perform best
with a high number of grid cells and large time windows. In the case of the Gaussian SVM, this is
different, as this method performs best at a small number of grid cells but still large time windows.
Moving on to the 3D heatmaps, the accuracy of the KNN method improves by 4 percent to 92 percent,
which is also significantly better than the bagged trees. The bagged trees do not improve overall and
remain at 89 percent.

The results of our regression experiment are shown in Table 3. To calculate a reasonable pixel
value from the results, one must multiply them by ten. This is because the results are entered relative
to the screen resolution (values between zero and one) and the mean absolute error was multiplied
by 100 to obtain the percentage. Since the scene resolution is approximately 1000 × 1000 pixels,
multiplying by ten is sufficient. Looking at the individual methods (Gaussian process regression, bagged
trees, and Gaussian SVM), we see that all methods perform similarly well.As expected, based on the
spatial heatmap feature, the position estimation is the most accurate. In contrast, the regression of
the bounding box size, using only gaze data an no stimuli, is even more difficult than the position
estimation and therefore less accurate. Comparing the results for the 2D and the 3D heatmap feature,
the position results remain about the same, with some overall improvement. In terms of bounding box
size, the best results improve significantly for all of the three methods. All in all, the Gaussian process
method combined with the 3D heatmap feature performs best.

Fig. 4 shows a small part of the results of the Gaussian process regression in comparison to the
ground truth. As can be seen, the determination of the X and Y position is quite accurate, whereas
there are some outliers in the determination of the bounding box size. This is mainly due to the fact
that in many cases the entire object was annotated, but not the whole object was observed. For this
reason, the actual size cannot be estimated from the gaze data in these cases. Nevertheless, this is the
way humans naturally look at objects in their environment, and it can be seen from the plots of the
width and height of the bounding box that the method still works very well overall.

In the following, we will compare our approach with a baseline to better classify its performance.
It should be borne in mind that classical object detectors, such as FCOS [32] or Faster R-CNN [27],
pursue a slightly different goal than we do. Whereas in their case all objects are usually to be detected,
we are primarily interested in the existence of an object of interest, that is, the one that the human is
looking at. Since classical object detectors only use images of the scene and do not obtain information
about human gaze behavior, they cannot know whether a human has looked at an object and, if so,
which object. Thus it would be basically a matter of chance whether the statement that a person looks
at an object is true or false.

With the regression task, the detection of all objects would be possible. Here, however, we encounter
a different real-world problem, outside of laboratory conditions, which also makes our method so
appealing. Since we are in a wild world, the objects of interest are extremely diverse and their number
tremendous. The vast majority of objects in our dataset, such as doorknobs, light switches, and fire
extinguishers, are simply not part of any publicly available data sets, such as Microsoft COCO [18] or
ImageNet [5], that are typically used for training. Since the methods differ too much in this respect, we
need a benchmark that covers more the commonalities. Therefore, in the remainder of this section, we
will establish a baseline comparison in terms of speed and computing resources. As a baseline, we use
state-of-the-art object detectors. These include Faster R-CNN [27], FCOS [32], and RetinaNet [17], each
with a ResNet-50-FPN backbone [10], SSDlite320 [19] and Faster R-CNN both with a MobileNetV3
Large backbone [28, 12], as well as SSD300 [19] with a VGG16 backbone [31]. These are supplemented
by the YOLOv5 [13] variants YOLOv5n, YOLOv5s, YOLOv5m, YOLOv5l and YOLOv5x. All of these
object detectors were trained on Microsoft COCO and all backbones were trained on ImageNet. In order
to test the speed, we measured the runtime of all methods on the CPU for 1000 individual predictions,
i.e. 1000 different inputs with a batch size of 1. The resource consumption was determined by measuring
the amount of memory required for a single input. For our method with the heatmap input features,
we used a time window size of 250ms. For the classic object detectors, the 1088× 1080× 3 RGB images
were used as input. The results are shown in Table 4.

The fastest is the Gaussian SVM with the 2D heatmap feature and a grid cell number of 10, taking
less than 1 second for all 1000 predictions. The KNN is similarly fast with 2.2 seconds. Both methods
increase with the number of grid cells as the grid cell size becomes smaller and thus the input features
become larger. The Bagged Trees are slower than KNN and Gaussian SVM for a small number of grid
cells, but the runtime increases proportionally less as the number of grid cells increases. Consequently,
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Table 3: Regression error results as the average absolute error (· 102) of a 5-fold cross validation,
normalized to the image resolution. The columns X and Y denote the position of the bounding box, W
is the width, and H is the height of the bounding box. The best values per method are highlighted in
bold.

Time window size (in ms)
Feat.MLGrid 100 200 300 400 500

X Y W H X Y W H X Y W H X Y W H X Y W H
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30 9.1 10.8 14.3 17.4 9.110.8 14.2 17.3 9.311.1 14.3 17.7 8.710.6 14.1 17.3 9.110.3 14.4 17.5
35 9.1 10.8 14.3 17.4 9.110.8 14.2 17.3 9.311.1 14.3 17.7 8.710.6 14.1 17.3 9.110.3 14.4 17.5
40 9.1 10.8 14.3 17.4 9.110.8 14.2 17.3 9.311.1 14.3 17.7 8.710.6 14.1 17.3 9.110.3 14.4 17.5
45 9.1 10.8 14.3 17.4 9.110.8 14.2 17.3 9.311.1 14.3 17.7 8.710.6 14.1 17.3 9.110.3 14.4 17.5
50 9.1 10.8 14.3 17.4 9.110.8 14.2 17.3 9.311.1 14.3 17.7 8.710.6 14.1 17.3 9.110.3 14.4 17.5

B
ag
ge
d
Tr

ee
s

5 6.7 7.4 12.7 15.2 7.1 7.5 12.3 15.0 7.9 7.9 12.5 15.2 7.6 7.7 12.5 15.0 7.8 7.5 12.6 15.2
10 6.4 6.7 11.8 13.8 7.0 7.2 11.5 14.0 7.6 8.1 11.9 14.7 7.3 8.2 11.6 14.1 7.7 7.8 11.4 14.3
15 6.4 6.8 11.1 12.8 7.1 7.3 11.0 13.0 7.8 8.3 11.4 13.6 7.3 8.3 11.6 13.3 8.2 7.7 11.1 13.4
20 6.7 7.0 11.0 12.7 7.2 7.3 11.0 13.1 7.9 8.2 11.1 13.4 7.5 8.2 11.2 13.5 8.1 7.8 10.9 13.6
25 6.6 7.1 10.9 12.6 7.2 7.6 11.0 12.6 7.8 8.6 10.9 13.2 7.5 8.4 11.1 13.1 8.2 7.9 10.5 12.8
30 6.8 7.2 10.8 12.3 7.5 7.8 11.0 12.7 8.1 8.6 10.9 13.4 7.8 8.7 11.1 13.3 8.4 8.2 10.8 12.9
35 7.0 7.3 11.0 13.0 7.4 7.8 11.2 13.1 8.1 8.7 11.0 13.8 7.7 8.6 11.0 13.8 8.3 8.2 10.8 13.3
40 7.1 7.5 10.7 12.6 7.5 8.0 10.9 12.8 8.1 8.8 11.0 13.5 7.7 8.8 10.6 13.4 8.5 8.3 10.513.3
45 7.2 7.6 10.7 12.6 7.6 7.9 11.0 13.1 8.3 8.8 11.1 13.7 7.8 8.9 11.0 13.4 8.5 8.5 10.9 13.3
50 7.2 7.7 10.9 12.9 7.6 8.1 11.1 13.2 8.2 9.0 11.0 13.6 7.8 9.0 11.0 13.5 8.3 8.7 10.9 13.9

G
au

ss
ia
n
SV

M

5 7.1 7.9 14.0 16.9 7.3 7.8 13.9 16.7 8.0 8.3 13.7 17.1 7.6 8.1 13.4 16.4 8.0 7.6 13.2 16.3
10 6.4 6.8 13.3 15.8 6.9 6.9 13.3 15.7 7.4 7.7 12.9 15.7 7.3 7.9 12.9 15.4 7.5 7.5 12.9 15.3
15 6.2 6.5 12.4 14.1 7.0 6.8 12.6 14.4 7.5 7.8 12.7 15.0 7.3 8.0 12.8 14.7 7.7 7.8 13.0 14.8
20 6.2 6.3 11.9 13.9 6.9 7.0 12.0 14.1 7.5 8.1 12.5 15.0 7.6 8.1 12.5 14.7 7.8 8.1 13.0 14.8
25 6.3 6.2 11.5 13.5 6.9 7.2 11.8 13.8 7.7 8.4 12.3 14.8 7.5 8.4 12.4 14.4 8.0 8.3 13.0 15.0
30 6.3 6.3 11.1 13.0 7.1 7.5 11.8 13.9 7.9 8.6 12.4 15.0 7.6 8.6 12.4 14.6 8.2 8.5 13.0 15.0
35 6.4 6.2 11.2 13.0 7.3 7.5 11.8 13.9 8.1 8.7 12.4 15.1 7.7 8.6 12.4 14.8 8.2 8.6 13.2 15.5
40 6.5 6.3 11.012.9 7.4 7.7 11.9 14.0 8.1 8.8 12.5 15.2 7.8 8.7 12.4 14.8 8.3 8.7 13.3 15.4
45 6.6 6.6 11.3 13.1 7.5 7.8 12.1 14.1 8.3 8.9 12.6 15.3 7.9 8.8 12.7 15.0 8.4 8.8 13.5 15.7
50 6.6 6.7 11.2 13.0 7.5 8.0 12.2 14.3 8.4 9.1 12.8 15.5 7.9 9.0 12.8 15.2 8.4 8.9 13.7 15.8
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Figure 4: Qualitative evaluation of the bounding box parameter regression. Ground truth in blue and
the prediction in red. The y-axis represents the value and the x-axis the sample number. The results
are from the Gaussian Process Regression with a time window size of 100, a grid cell number of 15 and
the 3D heatmap feature.

even with large input sizes, the runtime for the 3D heatmap feature is in the range of one minute for
the 1000 predictions while the runtime for KNN and Gaussian SVM increases considerably from a few
seconds to several minutes. Nonetheless, it is immediately apparent that the runtime is in general
significantly lower compared to the object detectors using the RGB images as input features. While
only the smaller models like YOLOv5n and SSDlite remain under three minutes, the other models
are much slower. In particular, the computation time required by the popular Faster R-CNN with a
ResNet-50 backbone exceeds that of the Bagged Trees by a factor of over 100, even with the largest 3D
heatmap input feature.

A similar picture emerges with respect to the RAM allocated for one single prediction. The memory
requirements of the bagged trees are larger at the beginning, but do not increase as much in proportion
to the number of grid cells as for the KNN and the Gaussian SVM. These even require less than 1MB
of memory for small inputs and to some extent only a few 100KB. The demand by the bagged trees
is in the range of only one and two megabytes for all grid sizes. Even in the case with the narrowest
grid pattern. Here, KNN and Gaussian SVM require over 12MB and 15MB, respectively. However,
this is substantially less than the most frugal neural network YOLOv5n, which needs around 270MB.
Faster R-CNN with the ResNet-50 backbone requires the most memory with over 1.7GB. Again, the
factor is more than 100 times larger than for the Gaussian SVM with the maximum number of grid
cells. Compared to the Bagged Trees, it even exceeds 860 times.

In summary, our method is several orders of magnitude faster than conventional object detectors
while requiring only a fraction of their resources.
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Table 4: Comparison of the required resources for the different input features. The time column
indicates the execution time for 1000 different inputs at a batch size of one in seconds. The memory
column specifies the required memory of a single input in kilobytes. For the 2D and 3D heatmap
features, a time window size of 250ms was used.

Feature ML Time [s] Memory [KB]
Grid cells Grid cells

10 20 30 40 50 10 20 30 40 50

2D heatmap
KNN 2.2 4.8 10.8 18.4 27.0 116 259 424 607 810

Bagged Trees 52.1 56.6 57.8 58.9 60.0 954 1106 1134 1147 1164
Gaussian SVM 0.9 2.9 8.6 19.3 37.7 108 238 406 584 840

Grid cells Grid cells
10 20 30 40 50 10 20 30 40 50

3D heatmap
KNN 12.0 80.9 276.9 620.5 1137.2 328 1214 3045 6278 12769

Bagged Trees 58.1 61.9 64.7 66.9 74.2 1226 1318 1467 1699 2020
Gaussian SVM 11.9 154.9 610.6 1811.1 4061.6 325 1360 3650 7443 15368

RGB Image

Faster R-CNN [27] (RN50) 8 705.3 1 745 456
Faster R-CNN [27] (MN) 1 205.6 545 400

FCOS [32] 4 723.2 995 416
RetinaNet [17] 5 184.5 1 390 580
SSD300 [19] 900.8 529 744

SSDlite320 [19] 163.7 293 788
YOLOv5n [13] 200.6 270 168
YOLOv5s [13] 486.3 312 104
YOLOv5m [13] 1 127.6 421 904
YOLOv5l [13] 2 174.5 622 536
YOLOv5x [13] 3 677.9 940 508

5 Limitations
We have shown that the gaze data can be used to detect objects and their bounding boxes. What is
still missing for an actual application is the combinatorial use with, e.g., a robot, which learns to detect
these objects. This application, of course, still brings some challenges like inaccurate bounding boxes
or wrongly detected objects. However, with a robot or a machine learning the objects, there are more
possibilities like depth data and the image information from different perspectives. Thus, there are also
more possibilities for optimization in this application. Another limitation of our work is that we did
not perform a parameter search for the machine learning methods. This means that our results are
certainly far below the possible detection rates that can be achieved. However, our results are easy to
reproduce and might be considered rather as a proof-of-concept, yet conveying the potential of gaze in
such tasks.

6 Conclusion
In this work, we addressed object detection based on gaze data as well as the regression of the bounding
box parameters for the detected objects. Based on evaluations with different parameters of the size
of the time window and the grid size of the heatmap feature, our results show that it is possible to
detect objects and determine their bounding box based solely on gaze information. This problem is
not trivial since the subjects move, and thus, the parameters of the bounding box vary in the time
window itself. Additionally, we have used a variety of machine learning methods to show that they
work for solving such challenges. Besides, the functionality of several machine learning methods proves
that our heatmap feature, which we have extended to 3D, can be used efficiently for this problem.
In comparison to classical object detectors that use image input features, we have shown that object
detection by means of our heatmap features is significantly faster while only requiring a fraction of
the computational resources. This is of major relevance due to the fact that robots usually have only
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limited computing capacity at their disposal and cannot be equipped with powerful graphics units as
they consume a lot of power.

However, a significant amount of work remains for the future as we plan to extend our proof of
concept to a real robot by making the gaze of the human collaborator accessible to it. Our approach can
serve as a foundation for future applications in the field of human-machine interaction and collaboration,
where robots can learn new objects from humans through instant knowledge sharing. Hence, we hope
that our methods and our dataset can help to advance researchers in this challenging context.
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