
A LARGE-SCALE UAV AUDIO DATASET AND
AUDIO-BASED UAV CLASSIFICATION USING CNN

by

Yaqin Wang

A Dissertation

Submitted to the Faculty of Purdue University

In Partial Fulfillment of the Requirements for the degree of

Doctor of Philosophy

Polytechnic Institute

West Lafayette, Indiana

August 2023



THE PURDUE UNIVERSITY GRADUATE SCHOOL
STATEMENT OF COMMITTEE APPROVAL

Dr. Eric T Matson, Chair

Department of Computer and Information Technology

Dr. Jin Wei-Kocsis

Department of Computer and Information Technology

Dr. John A Springer

Department of Computer and Information Technology

Dr. Piotr Artiemjew

Department of Mathematics and Computer Science, University of Warmia and Mazury

2



Dedicated to my grandma.

3



ACKNOWLEDGMENTS

I wish to thank my dissertation committee, without their guidance and mentoring, I

would not have made it. Dr. Jin Wei-Kocsis, Dr. John A Springer, and Dr. Piotr Artiemjew

served as supportive committee members, and Dr. Eric T Matson, my Chair, went above

and beyond to help me reach my goal.

4



TABLE OF CONTENTS

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  8 

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  9 

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  11 

1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  12 

1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  12 

1.2 Research Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  14 

1.3 Significance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  15 

1.4 Limitations and Future Works . . . . . . . . . . . . . . . . . . . . . . . . . .  15 

1.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  17 

2 REVIEW OF LITERATURE . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  18 

2.1 Background of Machine Learning and Deep Learning . . . . . . . . . . . . .  18 

2.1.1 Machine Learning in General . . . . . . . . . . . . . . . . . . . . . .  18 

2.1.2 Deep Learning Models in Audio-based Applications . . . . . . . . . .  19 

2.2 DRL Algorithms for Audio Classification . . . . . . . . . . . . . . . . . . . .  22 

2.2.1 Model-based DRL . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  22 

2.2.2 Policy Gradient-based DRL . . . . . . . . . . . . . . . . . . . . . . .  23 

2.2.3 Value-based DRL . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  24 

2.3 Audio Data Pre-Processing and Augmentation . . . . . . . . . . . . . . . . .  24 

2.3.1 Data Pre-Processing . . . . . . . . . . . . . . . . . . . . . . . . . . .  24 

2.3.2 Data Augmentation . . . . . . . . . . . . . . . . . . . . . . . . . . . .  25 

2.4 Recent Research on DL-based Audio Application . . . . . . . . . . . . . . .  26 

2.5 Evolution of Audio Features . . . . . . . . . . . . . . . . . . . . . . . . . . .  28 

2.6 Feature Extraction Methods for Audio . . . . . . . . . . . . . . . . . . . . .  29 

2.6.1 Window Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  29 

2.6.2 Time Domain Features . . . . . . . . . . . . . . . . . . . . . . . . . .  31 

Zero-crossing rate (ZCR) . . . . . . . . . . . . . . . . . . . . . . . . .  31 

5



Amplitude Descriptor (AD) . . . . . . . . . . . . . . . . . . . . . . .  32 

Attach Delay Sustain Release (ADSR) Envelop . . . . . . . . . . . .  32 

Log Attack Time (LAT) . . . . . . . . . . . . . . . . . . . . . . . . .  32 

Shimmer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  32 

Short Time Energy (STE) . . . . . . . . . . . . . . . . . . . . . . . .  33 

Volume . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  33 

Temporal Centroid (TC) . . . . . . . . . . . . . . . . . . . . . . . . .  33 

Auto-correlation Based Features . . . . . . . . . . . . . . . . . . . . .  33 

Rhythm-based Features . . . . . . . . . . . . . . . . . . . . . . . . .  33 

2.6.3 Frequency Domain Features . . . . . . . . . . . . . . . . . . . . . . .  34 

Linear Predictive Coding (LPC) Coe�cients . . . . . . . . . . . . . .  34 

Code Excited Linear Prediction (CELP) . . . . . . . . . . . . . . . .  35 

Linear Spectral Frequency . . . . . . . . . . . . . . . . . . . . . . . .  35 

Peak Frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  35 

Spectrum Envelope . . . . . . . . . . . . . . . . . . . . . . . . . . . .  36 

Chroma Based Features . . . . . . . . . . . . . . . . . . . . . . . . .  36 

Spectral Centroid . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  36 

2.6.4 Cepstral Domain Features . . . . . . . . . . . . . . . . . . . . . . . .  38 

Mel Frequency Cepstral Coe�cients (MFCCs) . . . . . . . . . . . . .  38 

Linear Prediction Cepstral Coe�cients (LPCCs) . . . . . . . . . . . .  38 

Perceptual Linear Prediction (PLP) Cepstral Coe�cients . . . . . . .  39 

Relative-spectral PLP (RASTA-PLP) feature . . . . . . . . . . . . .  39 

Greenwood function cepstral coe�cients (GFCC) . . . . . . . . . . .  39 

Gammatone cepstral coe�cients (GTCCs) . . . . . . . . . . . . . . .  40 

2.7 Feature Extraction Tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  40 

2.8 ML-Based UAV Classification with Computer Vision . . . . . . . . . . . . .  41 

2.9 ML-Based UAV Classification with Radar . . . . . . . . . . . . . . . . . . .  45 

2.10 ML-Based UAV Classification with Radio-Frequency . . . . . . . . . . . . .  48 

2.11 ML-Based UAV Classification with Audio . . . . . . . . . . . . . . . . . . .  51 

2.12 ML-based UAV Payload Detection . . . . . . . . . . . . . . . . . . . . . . .  53 

6



2.13 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  55 

3 METHODOLOGY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  56 

3.1 Data Collection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  56 

3.2 UAVs Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  57 

3.3 Overall System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  69 

3.4 Audio Feature Extraction . . . . . . . . . . . . . . . . . . . . . . . . . . . .  70 

3.5 Choice of Neural Network . . . . . . . . . . . . . . . . . . . . . . . . . . . .  72 

3.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  75 

4 EXPERIMENT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  76 

4.1 First Phase of the Experiment . . . . . . . . . . . . . . . . . . . . . . . . . .  76 

4.1.1 UAV Audio Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . .  76 

4.1.2 Data Collection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  76 

4.1.3 Dataset Evaluation for 10 Classes . . . . . . . . . . . . . . . . . . . .  77 

4.1.4 Convolutional Neural Network Training . . . . . . . . . . . . . . . . .  78 

4.1.5 Results Evaluation and Analysis . . . . . . . . . . . . . . . . . . . . .  79 

4.2 Second Phase of the Experiment . . . . . . . . . . . . . . . . . . . . . . . . .  81 

4.2.1 Data Collection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  81 

4.2.2 Dataset Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . .  81 

4.2.3 Convolutional Neural Network Training . . . . . . . . . . . . . . . . .  82 

4.2.4 Result Evaluation and Analysis . . . . . . . . . . . . . . . . . . . . .  83 

4.3 Third Phase of the Experiment . . . . . . . . . . . . . . . . . . . . . . . . .  87 

4.3.1 Data Collection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  87 

4.3.2 Dataset Evaluation for 22 Classes . . . . . . . . . . . . . . . . . . . .  87 

4.3.3 Convolutional Nerual Network Training . . . . . . . . . . . . . . . . .  87 

4.3.4 Result Evaluation and Analysis . . . . . . . . . . . . . . . . . . . . .  91 

4.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  94 

5 CONCLUSION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  96 

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  101 

7



LIST OF TABLES

1.1 Solutions for UAV detection using vision, radar, radio-frequency, and acoustic .  13 

2.1 Time Domain Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  30 

2.2 Frequency Domain Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  34 

2.3 Cepstral Domain Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  37 

2.4 Research Papers on ML-based UAV detection with Computer Vision . . . . . .  42 

2.5 Research Papers on ML-based UAV detection with Radar . . . . . . . . . . . .  44 

2.6 Research Papers on ML-based UAV detection with Radio Frequency . . . . . . .  47 

2.7 Research Papers on ML-based UAV detection with Audio . . . . . . . . . . . . .  50 

2.8 Research Papers on ML-based UAV payload detection . . . . . . . . . . . . . .  53 

3.1 UAVs Included in the Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . .  57 

4.1 UAV Audio Dataset 10 Classes . . . . . . . . . . . . . . . . . . . . . . . . . . .  77 

4.2 Benchmark Evaluation Results with ML Models for 10 Classes . . . . . . . . . .  77 

4.3 Accuracy, Precision, Recall, and F1-scores for 10 Classes Dataset . . . . . . . . .  79 

4.4 UAV Audio Dataset 15 Classes . . . . . . . . . . . . . . . . . . . . . . . . . . .  80 

4.5 Benchmark Evaluation Results with ML Models for 15 Classes . . . . . . . . . .  81 

4.6 Accuracy, Precision, Recall, and F1-scores for 15 Classes Dataset . . . . . . . . .  85 

4.7 UAV Audio Dataset 22 Classes . . . . . . . . . . . . . . . . . . . . . . . . . . .  86 

4.8 Benchmark Evaluation Results with ML Models for 22 Classes . . . . . . . . . .  88 

4.9 Accuracy, Precision, Recall, and F1-scores for 22 Classes Dataset . . . . . . . . .  91 

4.10 UAV Models and Labels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  95 

8



LIST OF FIGURES

1.1 ML structure for audio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  14 

2.1 Di�erent structures of deep learning models[  6 ] . . . . . . . . . . . . . . . . . . .  20 

2.2 Di�erent DRL Structures [  6 ] . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  23 

2.3 Evolution of Audio Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  29 

3.1 Outdoor Data Collection Site . . . . . . . . . . . . . . . . . . . . . . . . . . . .  56 

3.2 Self-build David Tricopter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  58 

3.3 Self-build PhenoBee . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  59 

3.4 Autel Evo 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  59 

3.5 Yuneec Typhoon H Plus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  60 

3.6 Swellpro Splash 3 Plus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  60 

3.7 DJI Matrice 200 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  61 

3.8 DJI Matrice 200 V2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  61 

3.9 DJI Mavic Air 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  62 

3.10 DJI Mavic Mini . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  62 

3.11 DJI Mini 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  63 

3.12 DJI Mavic 2 Pro . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  63 

3.13 DJI Air 2s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  64 

3.14 DJI Phantom 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  64 

3.15 DJI Phantom 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  65 

3.16 DJI RoboMaster TT Tello Talent . . . . . . . . . . . . . . . . . . . . . . . . . .  65 

3.17 Hasakee Q11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  66 

3.18 Syma X5SW . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  66 

3.19 Syma X5UW . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  67 

3.20 Syma X20 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  67 

3.21 Syma X20P . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  68 

3.22 Syma X26 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  68 

3.23 UDI U46 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  69 

3.24 Audio-based UAV Classification System Overview . . . . . . . . . . . . . . . . .  70 

9



3.25 MFCC Features Extraction Process. . . . . . . . . . . . . . . . . . . . . . . . .  72 

3.26 CNN Structure for 10 Classes . . . . . . . . . . . . . . . . . . . . . . . . . . . .  74 

4.1 Evaluation Results for 10 Classes . . . . . . . . . . . . . . . . . . . . . . . . . .  78 

4.2 CNN Structure for 15 Classes . . . . . . . . . . . . . . . . . . . . . . . . . . . .  82 

4.3 Evaluation Results for 15 Classes . . . . . . . . . . . . . . . . . . . . . . . . . .  84 

4.4 CNN Structure for 22 Classes . . . . . . . . . . . . . . . . . . . . . . . . . . . .  88 

4.5 Evaluation Results for 22 Classes . . . . . . . . . . . . . . . . . . . . . . . . . .  90 

4.6 Accuracy Score for Each Class . . . . . . . . . . . . . . . . . . . . . . . . . . . .  90 

4.7 Confusion Matrix for 22 Classes . . . . . . . . . . . . . . . . . . . . . . . . . .  93 

4.8 OvR ROC Curve . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  94 

10



ABSTRACT

The growing popularity and increased accessibility of unmanned aerial vehicles (UAVs)

have raised concerns about potential threats they may pose. In response, researchers

have devoted significant e�orts to developing UAV detection and classification systems,

utilizing diverse methodologies such as computer vision, radar, radio frequency, and audio-

based approaches. However, the availability of publicly accessible UAV audio datasets

remains limited. Consequently, this research endeavor was undertaken to address this gap by

undertaking the collection of a comprehensive UAV audio dataset, alongside the development

of a precise and e�cient audio-based UAV classification system.

This research project is structured into three distinct phases, each serving a unique

purpose in data collection and training the proposed UAV classifier. These phases encompass

data collection, dataset evaluation, the implementation of a proposed convolutional neural

network, training procedures, as well as an in-depth analysis and evaluation of the obtained

results. To assess the e�ectiveness of the model, several evaluation metrics are employed,

including training accuracy, loss rate, the confusion matrix, and ROC curves.

The findings from this study conclusively demonstrate that the proposed CNN classi-

fier exhibits nearly flawless performance in accurately classifying UAVs across 22 distinct

categories.
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1. INTRODUCTION

1.1 Background

Unmanned Air Vehicles (UAVs), commonly referred to as drones, have gained significant

popularity in recent years, finding applications in both amateur sports events and homeland

security. However, this surge in popularity has also given rise to a number of issues, including

concerns surrounding privacy, as well as threats to airspace security and safety[ 1 ]. Despite the

diverse intentions behind UAV usage, the potential threats they pose can result in significant

damage, whether due to human error or intentional malicious activities. Disturbing incidents

involving UAV threats have been reported worldwide, underscoring the seriousness of the

issue. For instance, on January 18th, 2023, a deadly drone attack occurred in the heart of

Abu Dhabi, claiming the lives of three individuals [ 2 ]. Furthermore, in 2019, a series of drone

harassment incidents took place outside a firehouse in Salem, Virginia, which was located

in close proximity to a memorial composed of steel beams retrieved from the wreckage of

the North Tower of the World Trade Center, destroyed in the 9/11 terrorist attacks[ 3 ]. The

harassment persisted and extended to the first responders’ garage, intensifying the concerns

surrounding these incidents.

Air control authorities worldwide are actively engaged in mitigating and potentially

eradicating the risks associated with unmanned aerial vehicles (UAVs). However, it is

crucial to acknowledge that regulatory frameworks and guidelines alone may not su�ce in

preventing intentional and criminal attacks. In addressing this concern, the development and

implementation of cutting-edge technologies for the detection and classification of UAVs o�er

e�cient solutions [  4 ].

Within the realm of technological advancements, machine learning has emerged as a

prominent tool across various domains, particularly in the realm of object detection and

classification [  5 ]. Machine learning algorithms possess the capacity to autonomously acquire

knowledge and identify patterns without requiring constant human intervention. Moreover,

they are capable of capturing information that may evade human perception, including

radio frequencies and audio signals within specific ranges. Extensive research has been

undertaken to explore visual, radar, radio-frequency, and audio-based methodologies, each

12



Table 1.1. Solutions for UAV detection using vision, radar, radio-frequency, and acoustic
Method Applications Advantages Disadvantages
Vision Object detection,

autonomous driv-
ing,
facial recognition,
object detection

Popular in recent
years

Lack of publicly
available datasets,
Noise in visual
data

Radar Aviation and mar-
itime tra�c

Traditional, well-
studied

Small radar cross-
section, Low flying
altitude

Radio frequency Industrial, scien-
tific,
medical radio
band (ISM band)
at 2.4 GHz

Works in day and
night, low cost,
large detection
range

Lack of RF signa-
ture database
Frequency hop-
ping

Acoustic Smart micro-
phones, Shazam
app

Works day and
night, low cost

Lack of robust
datasets
Background noise

yielding promising outcomes. Nonetheless, it is vital to recognize that each approach possesses

its own set of strengths and limitations, which are succinctly summarized in Table ??.

Audio processing technology plays a ubiquitous role in our daily lives, as exemplified by

the prevalence of popular products like Apple’s Siri, Amazon’s Alexa, and Google Home

Mini Dot, which leverage audio processing and artificial intelligence (AI). AI serves as the

underlying mechanism enabling computers and smartphones to comprehend human speech,

thus facilitating e�ective interaction between humans and machines [ 6 ]. At the core of

audio-based intelligent systems lies the ability to listen to and interact with the environment,

continuously learning and enhancing their responses. Such intelligent systems find applications

in various domains, including smartphone applications that engage users through natural

language interfaces, or computer software capable of identifying bird species based on their

vocalizations in a backyard setting. Figure  1.1 presents an overview of the fundamental

processing structure of an audio-based machine learning (ML) system, encompassing key

steps such as audio data pre-processing, windowing, feature selection and extraction, and

13



classification[ 7 ]. Initially, the system receives raw audio data samples as input, which then

undergo a pre-processing step to address concerns such as noise reduction, cancellation,

or normalization. Subsequently, a windowing function is applied to facilitate analysis and

comprehensive examination of the entire audio sample. The choice of windowing methods

may vary depending on the specific characteristics of the audio data. Feature extraction and

selection represent the subsequent phase, where relevant features are identified to serve as

input for training the ML model. Finally, the trained classifier leverages these features to

make accurate predictions.

Pre-
processing Windowing

Feature 
Extraction 

and 
Selection

Classifier

Figure 1.1. ML structure for audio

Artificial Intelligence (AI) refers to the intelligence exhibited by machines, such as

computers, enabling them to mimic human behavior. Various techniques are employed in AI,

including machine learning, computer vision, natural language processing (NLP), and robotics

[ 8 ]. One prominent approach to achieving AI is through Machine Learning (ML), which

involves training computer systems to learn from experience and enhance their performance

over time. Neural Networks (NN) form a significant subset of ML, simulating the functioning

of the human brain by processing input data through interconnected neurons or nodes. On

the other hand, Deep Learning (DL) is a specialized branch of NN that necessitates the

inclusion of multiple layers within the network’s structure. The focus of this paper revolves

around the exploration of deep learning architectures and their applications in the field of

audio classification.

1.2 Research Questions

The goal of this paper is to find solutions or answers to the following research questions.

14



• What are the current solutions for UAV detection and classification systems? What

are the advantages and disadvantages of each approach?

• How well does the proposed solution perform for the audio-based UAV classification

system?

• What are the limitations of the audio-based UAV classification system?

1.3 Significance

This paper makes a significant contribution in three key aspects. Firstly, it presents a

comprehensive literature review of machine learning (ML) methodologies and architectures

employed in audio-based UAV detection and classification systems. This review provides an

extensive understanding of the existing knowledge in the field.

Secondly, a benchmark UAV audio dataset comprising 22 distinct types of UAVs is

meticulously collected. This dataset serves as a valuable resource for future research and

benchmarking purposes, facilitating advancements in the field of UAV audio classification.

Thirdly, a state-of-the-art UAV audio classifier is developed and trained using the aforemen-

tioned dataset. The classifier is based on the proposed methodology and exhibits impressive

performance. The evaluation of the convolutional neural network (CNN) model showcases

promising results, further validating its e�cacy in accurately classifying UAV audio samples.

Overall, this paper’s contributions lie in its comprehensive literature review, the creation

of a benchmark UAV audio dataset, and the successful training and evaluation of a CNN-

based UAV audio classifier, which collectively pave the way for advancements in the field of

audio-based UAV detection and classification systems.

1.4 Limitations and Future Works

The limitations of this research can be summarized as follows:

• The dataset used in this study only includes Class I UAVs. Other classes of UAVs are

not represented in the dataset, which may restrict the generalizability of the findings.
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• Data collection for the dataset was limited to the period between sunrise and sunset.

This restriction was imposed in accordance with regulations and for reasons of personal

safety. Consequently, the dataset may not capture the full range of environmental

conditions in which UAVs operate.

• The outdoor data collected for the dataset incorporates various noises inherent to

countryside environments, including air tra�c, ground tra�c, birds, insects, wind,

human conversation, and other factors. These ambient noises can introduce variability

and potential interference in the audio recordings.

• The dataset encompasses 22 classes, each representing a distinct UAV model. Although

this collection is currently one of the largest audio datasets available for UAVs, it

is important to note that it does not encompass all possible UAVs from di�erent

manufacturers and models, indicating the potential for further dataset expansion.

• Each class within the dataset consists of a variable number of data entries, ranging from

100 to 138, with each entry being 5 seconds long. While this provides a foundation for

analysis, the inclusion of a greater number of data entries per class would contribute to

the robustness of the findings.

• The proposed classifier is based on a convolutional neural network (CNN) structure.

This choice of architecture forms the basis of the classification system and may influence

the performance and outcomes of the model.

All the aforementioned limitations represent potential avenues for future research. An

essential objective of subsequent studies involves the ongoing expansion of the dataset to

encompass a broader range of UAV types, as well as an increased volume of data for each

class. Another significant goal is the incorporation of additional deep learning architectures,

such as self-supervised learning and semi-supervised learning, leveraging the extensive dataset

that has been amassed. Furthermore, conducting a comparative analysis of the performance

achieved by di�erent model structures would yield valuable insights into the classification of

UAVs.
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1.5 Summary

This chapter provides an extensive overview of the background information (Section  1.1 )

pertaining to recent unmanned aerial vehicle (UAV) threats and their potential implications.

It also delves into the research questions (Section  1.2 ) that guide this study, elucidating the

fundamental inquiries that underpin the investigation. Additionally, the chapter discusses

the significance of this research (Section  1.3 ), highlighting its relevance and contributions to

the field. Furthermore, it outlines the limitations encountered during the course of the study

and o�ers insights into potential avenues for future research (Section  1.4 ).
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2. REVIEW OF LITERATURE

2.1 Background of Machine Learning and Deep Learning

2.1.1 Machine Learning in General

Data needs to be prepared and preprocessed before the training phase. Various methods

can be employed for data preparation, including feature engineering, exploratory data analysis

(EDA), and data transformation. These methods can be further classified into subsets. Feature

engineering encompasses feature selection, feature extraction methods, feature transformation,

and more. EDA includes dimensional reduction, linear methods, and other techniques. Data

transformation involves normalization, integration, and other procedures [ 8 ][ 9 ]. To address

the issue of overfitting, several algorithms can be applied, such as the addition of dropout

layers, pruning, and regularization techniques [  6 ][ 10 ].

According to the assigned task, machine learning (ML) algorithms can be categorized

into three groups: supervised learning, unsupervised learning, and reinforcement learning

[ 11 ]. Supervised learning refers to a specific type of machine learning that utilizes labeled

datasets to train models for solving classification or prediction problems [ 12 ]. The model’s

weights are adjusted iteratively until it fits the input data accurately. Supervised learning

finds applications in various fields and domains. For instance, in the context of a mobile

phone, supervised learning can enable the identification of the music being played on the

radio by analyzing a few seconds of audio.

On the other hand, unsupervised learning involves the utilization of unlabeled datasets,

typically for the purposes of analysis and clustering [  13 ]. These algorithms are capable of dis-

covering patterns and categorizing data without requiring human intervention. Unsupervised

learning algorithms are particularly valuable for uncovering hidden di�erences and similarities

within the data. This capability enables the solution of real-world problems such as pattern

recognition and anomaly detection.

Reinforcement learning, another important category of ML, places a strong emphasis on

the concepts of reward and action. It involves rewarding desired behaviors and/or penalizing

errors [ 14 ]. Reinforcement learning has been extensively studied and applied across various
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domains, including control theory, multi-agent systems, and statistics. Notably, it has also

found wide-ranging applications in autonomous driving scenarios [ 15 ].

2.1.2 Deep Learning Models in Audio-based Applications

Deep neural networks (DNNs) have gained popularity in audio-based research and ap-

plications due to their remarkable performance and ability to handle large datasets. In the

subsequent paragraphs, we will delve into several significant DNN architectures, including

Convolutional Neural Networks (CNNs), Recurrent Neural Networks (RNNs), Sequence-to-

Sequence (Seq2Seq) models, and Generative Models [ 16 ]. Figure  2.1 illustrates the diverse

structures of deep learning models.

CNNs are commonly used in audio processing tasks, particularly for tasks like speech

recognition and audio classification. These networks excel at capturing local dependencies

through convolutional layers, enabling them to extract meaningful features from audio signals

e�ectively [  16 ]. RNNs, on the other hand, are designed to handle sequential data, making

them suitable for tasks involving temporal dependencies. In audio applications, RNNs are

extensively used for tasks such as speech synthesis and music generation. The recurrent

connections in RNNs enable them to retain and utilize information from previous time steps.

Seq2Seq models, built upon the foundation of RNNs, are employed for tasks such as speech

recognition, machine translation, and voice conversion. These models excel at mapping

input sequences to output sequences, making them well-suited for tasks requiring sequential

information processing. Generative models, such as Variational Autoencoders (VAEs) and

Generative Adversarial Networks (GANs), have shown great potential in audio synthesis and

audio generation tasks. These models learn the underlying data distribution and generate

new audio samples that exhibit similar characteristics to the training data.

The versatility and adaptability of these DNN architectures have greatly advanced audio-

based research and applications, revolutionizing areas such as speech processing, music

analysis, and sound synthesis.

Convolutional neural networks (CNNs) are feed-forward networks consisting of multiple

layers of neurons/nodes. They were specifically designed to process data with grid-like
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Figure 2.1. Di�erent structures of deep learning models[  6 ]

topologies, such as images [  17 ]. CNNs, in conjunction with computer vision techniques, have

consistently achieved state-of-the-art results in various image processing tasks, including

classification, detection, segmentation, and more [ 18 ].

Unlike traditional deep neural networks (DNNs), CNNs exhibit memory and parameter

e�ciency due to two key reasons: local receptive fields and shared weights. CNNs typically

comprise multiple convolutional layers followed by one or more dense layers. However, fully-

convolutional networks (FCNs) exclude the dense layers, resulting in even fewer parameters.

FCNs, along with their extensions, enable domain adaptation and enhance the robustness of

the network [ 19 ].

CNN models have found applications in various audio processing tasks, such as automatic

speech recognition (ASR) [ 20 ], music genre classification [ 21 ], and speech enhancement [ 22 ].

Nevertheless, when it comes to processing raw audio waveforms with high sample rates, the

limited receptive fields of CNNs can present challenges [  6 ]. Dilated convolution layers have

emerged as a solution to address this issue. They expand the receptive field by inserting zero

values between the filter coe�cients, allowing for a larger e�ective receptive field [ 23 ].

In summary, CNNs have demonstrated their e�ectiveness in image processing tasks,

leveraging their ability to exploit local structures in grid-like data. In audio processing, CNN
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models have been successfully employed in various applications, but the limited receptive fields

of CNNs can pose challenges in handling high sample rate audio. Dilated convolution layers

o�er a solution by extending the receptive field to e�ectively process raw audio waveforms.

Recurrent neural networks (RNNs) have a di�erent approach to processing sequential

data [  24 ]. The use of recurrent connections between layers enables parameters to be shared

recurrently. This unique approach makes them e�cient and powerful in understanding and

learning temporal data structures from the sequential data input, such as audio and video

input [  6 ]. Compared to the traditional Hidden Markov model (HMM) models, RNNs have

produced better results in many audio and speech processing applications [  25 ]. Because of

these characteristics, two of the most popular RNN structures, Long-Short Term Memory

(LSTM) [  26 ] and Gated Recurrent Unit (GRU) network, significantly improved the audio and

speech processing applications and were used to build state-of-the-arts audio-based systems

[ 27 ]. In recent years, Time-Frequency LSTMs [  28 ] and Frequency-LSTMs [ 29 ] were created

based on previous RNN models with information in the frequency domain. To take advantage

of both neural networks, Convolutional Recurrent Neural networks (CRNN) were created

by combining CNNs and RNNs with convolutional layers followed by recurrent layers [  25 ].

CRNN has been used in music classification[  30 ], ASR [ 31 ], Speech Emotion Recognition

(SER) [  32 ], and more.

Sequence-to-sequence (Seq2Seq) models were created to solve problems with sequences of

unspecified length [ 33 ]. They were used in machine translation first and later applied to many

di�erent applications with sequence modeling tasks. A Seq2Seq model can be divided into two

parts: decoder and encoder. The encoder is one RNN that generates a vector representation

from the input, and the decoder is another RNN that generates output by inheriting those

learned features from the encoder. The structures of the Seq2Seq model can be unidirectional

or bidirectional, single-layer or multi-layer [ 34 ]. Seq2Seq models have become more popular

in audio and speech processing for their ability to convert the input to output sequences [ 6 ].

Di�erent Seq2Seq models have been created and investigated by research in audio, speech,

and language processing topics, including Recurrent Neural Aligner [  35 ], Recurrent Neural

Network Transducer [  36 ], Transformer Networks [  37 ], and more.
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The three most used types of Generative Models are Generative Adversarial Networks

(GANs) [  38 ], autoregressive models [  39 ], and Variational Autoencoders (VAEs) [  40 ]. These

models can read and learn the fundamental distributions in the speech dataset and have

been extensively studied and used by audio and speech processing researchers. GANs and

VAEs have been widely used in synthesizing speech. They have also been used to create more

training data by generating features or speech data [ 6 ]. In the autoregressive models, future

behavior is generated iteratively based on past behavior by using RNNs, such as LSTM or

GRU structures.

2.2 DRL Algorithms for Audio Classification

Reinforcement Learning (RL) is a well-established branch of Machine Learning (ML)

in which intelligent agents learn to take actions based on trial and error [ 41 ]. When RL is

combined with Deep Learning (DL), it gives rise to Deep Reinforcement Learning (DRL).

DRL has proven e�ective in handling more complex environments with high computational

requirements or large state spaces. DRL utilizes Deep Neural Networks (DNNs) to evaluate

models, policies, or values [ 16 ]. DRL can be categorized in various ways, such as policy-based

versus value-based, model-free versus model-based, or on-policy versus o�-policy DRL models.

Figure  2.2 illustrates the di�erent types of DRL models along with their main characteristics.

In the following paragraphs, we will delve into popular DRL models used in audio-based

systems and discuss their applications in three sub-categories: model-based DRL, policy

gradient-based DRL, and value-based DRL.

2.2.1 Model-based DRL

Model-based DRL algorithms depend on the environment, such as reward functions,

along with a planning algorithm. Model-free DRL algorithms usually require a large amount

of sample data to achieve acceptable results. Di�erently, model-based algorithms tend to

produce results with improved sample and time e�ciency [  42 ]. Simulated policy learning

(SimPLe) was proposed by [ 43 ]. It is a model-based DRL algorithm for video prediction.

Fewer interactions of agent-environment are needed for SimPle than model-free algorithms.
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Results show that SimPLe performs better than the state-of-the-art model-free algorithms

in the games of Atari. Another model-based DRL algorithm was proposed by [  44 ] called

TreeQN. It was designed for a more complicated environment without the presence of the

transition model. In TreeQN algorithm, Q-values are estimated by combining model-free and

model-based methods.

Figure 2.2. Di�erent DRL Structures [  6 ]

2.2.2 Policy Gradient-based DRL

Policy gradient-based DRL algorithm is another type of DRL that depend on optimizing

policies regarding the expected return, such as expected cumulative reward, by gradient

descent. This type of DRL utilizes gradient theorems to obtain optimal policy parameters.

The estimation of a value function from the current policy is usually required by policy

gradient, which can be achieved by utilizing actor-critic architecture. The policy structure

is the actor, for it is to select actions, and the estimated value function is the critic, as it

criticizes the actions conducted by the actor [  45 ]. [  46 ] demonstrated that even in a standard

CPU-based computer environment, asynchronous execution of multiple parallel agents can

learn e�ciently in terms of time and resources. They proposed asynchronous advantage

actor-critic (A3C) architecture, which is the asynchronous version of actor-critic. The results
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showed significant performance in both 2D and 3D games with continuous domains and

discrete action spaces.

2.2.3 Value-based DRL

[ 47 ] built the most well-known value-based DRL algorithm, the Deep Q-network (DQN),

that can take and learn from high-dimensional inputs directly. DQN adopts the structure of

CNNs to define a policy by estimating a value function Q(s, a). DQN improves the stability of

learning by using mainly four techniques: experience replay, target network, clipping rewards,

and skipping frames [  48 ]. [  49 ] introduced Double DQN (DDQN) to make up for the possible

upward bias caused by DQN with two estimators: one for selecting an action, and one for

evaluating an action [  6 ]. [  50 ] indicated that DQN and DDQN perform significantly better if

critical experience transitions are emphasized and replay them more frequently.

2.3 Audio Data Pre-Processing and Augmentation

2.3.1 Data Pre-Processing

Audio data needs to be pre-processed before feeding into the ML models. In gradient

descent-based algorithms, feature standardization is commonly used to accelerate the process

of convergence [  51 ][ 16 ]. Feature distribution is changed from feature standardization with

zero mean and unit variance. A large dynamic range usually appears in environmental

sound data. A commonly used solution is logarithmic scaling applied to spectrogram-based

features. Pre-processing methods for low-level audio signals include low-pass filtering and

speech dereverberation [  52 ].

In many audio-based applications, such as automatic speech recognition (ASR) and

acoustic event detection (AED), background noises sometimes overshadow the foreground

sound events. [ 53 ] proposed to use per-channel energy normalization (PCEN) to enhance

foreground sound events and reduce background noise in environmental audio data. The

proposed system adjusted the PCEN parameters with the temporal features of the noise to

reduce the noise level, while the foreground sound signal is enhanced. [  54 ] proposed to use

two edge detection methods from image processing to enhance the edge-like structures in
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spectrograms. Those two methods were based on the di�erence between Sobel filtering and

Gaussians (DoG). The Meidan filter is used to remove the drift of the mel spectrogram.

Commonly-used pre-processing methods for ASC applications are filtering methods. [  8 ]

proposed an ASC system that included a nearest neighbor filter based on the repeating

pattern extraction technique (REPET) to filter out repetitions appearing intermittently or

randomly. The most similar spectrogram frames were replaced by their median. On the other

hand, this filter can be used to highlight repetitive sound events in AED, such as horns and

sirens. Another commonly used filtering method is harmonic-percussive source separation

(HPSS). HPSS splits the spectrogram into horizontal and vertical modules that provide

additional features for ASC [ 55 ]. All the above pre-processing approaches were relatively

new, compared to the well-established and most-used logarithmic magnitude scaling among

the state-of-the-art ASC algorithms [ 51 ].

2.3.2 Data Augmentation

A large amount of training data is essential for deep learning models to learn. In recent

years, the datasets for audio classification are increasing, but still not as much as the image

datasets [  51 ], such as ImageNet [  56 ]. As far as today, the largest audio dataset is AudioSet,

which includes 632 audio classes and a collection of almost 2 million labeled 10s excerpts from

YouTube video [ 57 ]. But still, there is a need for more publicly available audio datasets. Many

researchers have been trying to compensate for this issue with data augmentation techniques.

There are mainly two di�erent approaches: to generate new data based on existing ones and

to generate synthetic data from scratch.

The first kind of data augmentation is to generate new training data based on existing ones

with added signal transformations. Commonly used audio signal transformation methods are

pitch shifting, time stretching, and adding noise [ 58 ]. [ 59 ] proposed to use spectral rolling and

mix-up to augment the audio data. The former technique randomly shifts the spectrogram

features over the time dimension, and the latter one works linearly by combining features from

the data and their targets with a given mixing ratio [  60 ] proposed a simple data augmentation

method called SpecAugment, which is applied directly to the feature (log mel spectrogram) of
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the audio data. The augmentation policy included warping the features, frequency masking,

and time masking. [  61 ] used various data augmentation techniques on both the time and

frequency domain. For the time domain data augmentation, there are mosaicking random

segments, time stretching, time interval dropout, and more. And for the frequency domain,

they used frequency shifting/stretching, piece-wise time, resizing filters, and color filters.

The other kind of data augmentation technique is to generate synthetic data from scratch.

The most popular approach for this kind is to use generative adversarial networks (GAN)

[ 38 ]. An adversarial training strategy was used to train synthesizing models by mimicking

the existing audio data. Most data synthesis techniques are applied to the audio signal [ 51 ].

2.4 Recent Research on DL-based Audio Application

This section reviews the literature on audio-based DL applications. The literature is

usually divided into di�erent categories: sound classification, automatic speech recognition,

spoken dialogue systems, emotions modeling, audio enhancement, music generation, and more

[ 16 ]. In this section, we will only focus on automatic speech recognition, audio enhancement,

music generation, and sound classification. Table ?? is a summary of reviewed research

papers in audio-based DL applications.

Automatic speech recognition (ASR) is to use algorithms to convert a speech, usually in

the form of audio, into text. Contemporary ASR systems have achieved significant results

because of the use of DL models, with extensive supervised training and a large number of

labeled training data. To explore more e�cient solutions, RL-based models were also used

in ASR, for their capability of learning from action. RL-based ASR systems can generate

positive or negative rewards instead of manually preparing these by human [  62 ][ 63 ][ 64 ]. [  62 ]

proposed a policy gradient-based RL system for ASR. They provided another angle for

existing training and modification methods. The proposed system achieved better recognition

performance and lower word error rate (WER) than unsupervised methods. The other

DL model, sequence-to-sequence models, has demonstrated significant success in ASR. But

the issue with the Seq2Seq model in ASR was the interference in real-world speech. [  63 ]

proposed a solution for this by using a sequence-to-sequence model trained with a policy
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gradient algorithm. The proposed system indicated remarkable improvement in real-world

scenarios with the combination of an RL-based and a maximum likelihood estimation (MLE)

objectives, instead of training with the MLE objective alone. There has always been an

issue of semi-supervised training with Seq2Seq ASR models. [ 64 ] proposed a REINFORCE

algorithm for ASR. The algorithm rewarded the ASR to produce more correct sentences for

the input data of both paired and unpaired speech. The proposed system achieved lower

character error rates of 8.7%.

Audio-based intelligent systems are extremely sensitive to environmental noise, and the

system’s accuracy decreases when the noise level goes up [ 65 ]. Audio enhancement is one of

the possible solutions for noise interference. Audio enhancement systems are supposed to

filter out the noise and generate an enhanced audio signal. DL-based models have achieved

significant performance in speech enhancement, compared to the traditional methods [  66 ].

[ 66 ] proposed an RL-based speech enhancement system to advance adaptivity. They designed

the noise-suppression module as a black box, that does not need to understand the algorithm

but provides simple feedback from the output. They achieved better performance with the

LSTM-based agent. [  67 ] proposed a DRL-based approach for hearing aid application. The

proposed system can tune the compression from noisy speech according to the individual’s

preference. Human hearing is non-linear. The system adopted DRL’s reward and punishment

rule and the DRL model receives preferences from the hearing aid user. Results indicated

that the proposed system improved the hearing experience and the user was satisfied with

the hearing outcome.

DL-based systems have also been used in generating more data content, such as images,

music, and text. DL models were first used in music generation because of their ability to

learn and compose (generate) any genre of music from existing music database [ 68 ][ 69 ]. The

DRL-based intelligent system can achieve more and provide more ways of learning directly

from music theory to compose music with structures that sound more like real ones [  68 ].

[ 69 ] proposed an LSTM-based model that can compose polyphonic music based on music

theory with better quality. [ 68 ] proposed a system of deep Q-learning structure with a reward

function that learns from the probabilistic outputs of an RNN and basic rules of music theory.
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The results indicated that the proposed model can learn to compose and keep the valuable

information of data from supervised training.

Sound classification is another application for DL-based audio systems. It can be used

in specific tasks, such as bird sound classification [  70 ], environmental sound classification

[ 58 ], music classification [  71 ], and more. [  70 ] proposed a DL-based bird sound classification

system. They utilized CNN for learning generalized features and dimension reduction, with a

conventional fully connected layer for classification. The proposed DL approach outperforms

the other methods, including acoustic and vision-based systems. But they achieved the best

result from combining all visual, acoustic, and DL learning. [ 58 ] proposed a deep CNN

structure for environmental sound classification. Furthermore, they used data augmentation

techniques to compensate for the lack of publicly available datasets and investigate the

performance of di�erent augmentation techniques with the proposed deep CNN structure.

With the data augmentation and proposed CNN network, they achieved state-of-the-art

classification results. [ 71 ] evaluated DL-based CNN models and feature engineering-based

models for music genre classification. CNN structures included VGG-16 CNN with transfer

learning, VGG-16 CNN with fine-tuning, and fully-connected NN. Feature engineering-based

models were logistic regression (LR), random forest (RF), support vector machines (SVM),

and extreme gradient boosting (XGB). They also built an ensemble classifier with CNN and

XGB. Results indicated that DL-based models had better classification accuracy, and the

best result was achieved by the ensemble classifier.

2.5 Evolution of Audio Features

Feature extraction is the procedure of articulating the most representative and refined

characteristics of audio data. Proper features can present the audio data in a considerably

compact manner [ 16 ]. The evolution of audio features can be divided into four categories: time

domain features, frequency domain features, joint time-frequency domain, and deep features

[ 7 ]. Figure  2.3 shows the evolution of audio features. The first kind of features extracted

from audio data is time domain features, which are also the simplest kinds. The time domain

features were discovered around the 1950s [  72 ][ 73 ]. Time domain features were widely used
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Figure 2.3. Evolution of Audio Features

in audio/acoustic analysis and audio-based classification since then [  7 ]. Between the 1950s to

1960s, frequency domain features, like formant and pitch, were discovered and adopted in

di�erent audio-based applications since then [  74 ][ 75 ]. From the late 1960s, the joint time-

frequency features were discovered and used in various audio-based systems and applications.

Examples include the short-time Fourier transform (STFT) and the wavelet transform [  76 ].

Because of the development of artificial intelligence (AI) and deep learning (DL), deep features

of audio data are widely studied and used in many audio-based applications, such as acoustic

scene classification [  77 ][ 78 ], audio/video analysis[  79 ], and speaker recognition [ 80 ], since 2010.

2.6 Feature Extraction Methods for Audio

2.6.1 Window Function

The most straightforward way to analyze an audio signal is via its original form [ 7 ] [  16 ].

All the audio signals discussed are time series signals, which means signals that develop over
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Table 2.1. Time Domain Features
Feature Popular audio-based applica-

tions
Paper

Zero-crossing rate (ZCR) music/speech discrimination,
music genre classification, voice
activity detection and vowel
detection and analysis

[ 81 ][ 82 ][ 83 ][ 84 ]

Amplitude descriptor (AD) environmental sound classifica-
tion

[ 85 ]

Attach Delay Sustain Re-
lease (ADSR) envelop

music genre classification [ 86 ]

Log attack time (LAT) music genre classification [ 87 ][ 88 ]
Shimmer stress and emotion classifica-

tion[ 89 ], speaker detection and
verification, music sound classifi-
cation

[ 89 ] [  90 ][ 91 ]

Short time energy (STE) environmental sound detection,
audio-based surveillance systems,
music onset detection, vowel de-
tection and analysis

[ 92 ][ 93 ][ 94 ][ 84 ]

Volume acoustic scene classification,
speech and music classification,
speech segmentation

[ 95 ][ 96 ]

Temporal centroid (TC) environmental sound classifica-
tion, acoustic scene classification

[ 97 ] [  98 ].

Auto-correlation based fea-
tures

acoustic scene classification, mu-
sic tempo and beats estimation

[ 99 ][ 100 ]

Rhythm-based features music genre classification, mu-
sic instrument classification,
speech/music discrimination,
analysis of pathological speech

[ 101 ][ 96 ][ 102 ]
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time. After we visualize a signal in the time domain, key characteristics of the signal can be

analyzed, which can be used in predicting and comparing with similar signals. However, the

real-time audio signals are non-stationary over time, which can not be analyzed by using time

domain analysis. Windowing techniques are required to analyze non-stationary signals, and

long non-stationary signals are analyzed in chunks of quasi-stationary signal [ 7 ]. Windowing

is to apply a window function on a signal. A window function is to apply zero to the area

that is outside of the interest time period of an audio signal. The area inside of the interest

time period is non-zeros [  103 ]. The outcome of a windowed signal is a subset of the original

signal that passed through the window, as the rest of the signal is zero.

The most basic type of window is a rectangular window. The problem with using a

rectangular window is the sudden change at the edges of the window, which might create

distortion when analyzing the signal. the distortion is caused by the Gibbs phenomenon [  104 ].

The more advanced window functions, such as hamming or hanning window, can reduce

or avoid the Gibbs phenomenon and smooth the curves of the signal [  103 ]. These window

functions are at 0 on the edge of the window but increase gradually to become 1 in the middle

of the window.

2.6.2 Time Domain Features

Table  2.1 is a summary of the selected time domain features, with their applications in

audio and sound processing.

Zero-crossing rate (ZCR)

The zero-crossing rate is the number of times in a given time frame/interval that the

amplitude of an audio signal passes through the value of 0 [ 105 ]. ZRC can be used to detect

voice activities, such as whether a frame of speech is voiced, silent, or unvoiced. The number

of ZCR is lower for voiced activity compared to the unvoiced ones. ZCR can also be used to

estimate the fundamental frequency (FF) of a frame of speech [  81 ]. Thus, ZCR can provide

indirect information about the frequency of the audio signal. ZCR has been used to develop
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classifier and discriminator [ 82 ], music genre classification, voice activity detection [  83 ], and

vowel detection and analysis [  84 ].

Amplitude Descriptor (AD)

The amplitude descriptor (AD) is one of the amplitude-based features, which are based

on basic analysis of the temporal envelop of the signal [  7 ]. AD distinguishes various types of

sound envelopes in the aspect of energy. It separates the signal into low and high amplitude

by an adaptive threshold (a level-crossing operation) [ 85 ]. AD has mainly been used in

environmental sound classification and animal sound classification.

Attach Delay Sustain Release (ADSR) Envelop

The Attach Delay Sustain Release (ADSR) envelop is another type of amplitude-based

feature. The ADSR envelope feature doesn’t work in real-time environmental sound classifi-

cation systems for the delay part is not clearly showing and its sustain part is not showing in

speech and environmental sounds. ADSR envelop features have been used in music analysis

and music genre classification [ 86 ].

Log Attack Time (LAT)

The log attack time feature is also a type of amplitude-based feature. It is logarithmic

with base 10 of the time duration from when the sound becomes perceptually audible to when

it reaches its maximum intensity[ 106 ]. It has been used in environmental sound classification

[ 87 ] and music onset detection [  88 ].

Shimmer

Another type of amplitude-based feature is shimmer. It calculates the average absolute

di�erence between the amplitudes of the continuous periods, divided by the average amplitude

[ 107 ]. It has been used in stress and emotion classification [ 89 ], speaker detection and

verification [ 90 ], and music sound classification [  91 ].
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Short Time Energy (STE)

The energy within the signal is constantly changing. Thus it is not useful to learn from

or to predict a value. Because of this, the energy from a frame is calculated and called the

short-time energy. STE is a type of energy-based feature. STE describes the envelope of a

signal [ 108 ]. The number of STE is high for the voiced segment and low for the unvoiced

segment. STE has been used in environmental sound detection [  92 ], audio-based surveillance

systems [  93 ], music onset detection [ 94 ], and vowel detection and analysis [  84 ].

Volume

Volume is another type of energy-based feature. The volume of a sound is one of the

most straightforward features of the human auditory system. It has been used in acoustic

scene classification [  95 ], speech and music classification [  96 ], and speech segmentation.

Temporal Centroid (TC)

The temporal Centroid indicates where the center of mass of the spectrum is located. It

has been used in environmental sound classification [ 97 ] and acoustic scene classification [  98 ].

Auto-correlation Based Features

The autocorrelation is the correlation of a signal with a delayed replica of itself, as a

function of delay [ 7 ]. In other words, it indicates the similarity between the signal and its

delayed version. Auto correlation-based features have been used in acoustic scene classification

[ 99 ], and music tempo and beats estimation [  100 ].

Rhythm-based Features

The rhythm defines as a strong, regular, repeated pattern of a sound over time [  109 ]. A

rhythm can be found in musical compositions, poetry, and environmental sound, like in bird

songs. Rhythm-based features include articulation rate, speech duration, pause ratio, total

vowel duration, beat histogram, and more [  7 ]. Rhythm-based features have been used in
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Table 2.2. Frequency Domain Features
Feature Popular audio-based applica-

tions
Paper

Linear Predictive Coding
(LPC) Coe�cients

audio retrieval and audio segmen-
tation

[ 110 ]

Code Excited Linear Predic-
tion (CELP)

environmental sound classifica-
tion

[ 111 ]

Linear spectral frequency speaker segmentation, voiced/un-
voiced detection, speech/music
classification

[ 112 ][ 96 ]

Peak frequency music and speech classification,
gender classification

[ 101 ][ 113 ]

Spectrum envelope music genre classification, envi-
ronmental sound classification

[ 114 ][ 92 ]

Chroma based features music genre classification [ 115 ]
Spectral Centroid music classification, music mood

classification
[ 114 ][ 116 ]

music genre classification [  101 ], music instrument classification, speech/music discrimination

[ 96 ], and analysis of pathological speech [ 102 ].

2.6.3 Frequency Domain Features

The time domain features indicate the change of audio signal in terms of time. To analyze

the change of a signal in terms of frequency, we convert the time domain signal to a frequency

domain signal by using Fourier transform or auto-regression analysis [  117 ]. Frequency domain

features are the most important ones in audio signal analysis and processing [  7 ]. Table  2.2 

shows the selected frequency domain features and their applications.

Linear Predictive Coding (LPC) Coe�cients

The linear Predictive Coding (LPC) Coe�cients is one of the auto regression-based

features, which are extracted from linear prediction analysis of a signal. LPC eliminates

the redundancy from a signal and makes predictions on the next value by combining the
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previous known coe�cients [ 7 ]. LPC is an all-pole filter that uses a linear prediction model

to represent the spectral envelope of digital speech in compressed form. It has been used in

audio retrieval and audio segmentation [  110 ].

Code Excited Linear Prediction (CELP)

The code excited linear prediction (CELP) is another type of auto regression-based feature.

There are three techniques supported CELP. The first one is to use a linear prediction model

to imitate the vocal tract. The second one is to use adaptive or fixed codebook entries as

stimulation signals to the linear prediction model. The last one is to search in a closed-loop

and perceptually weighted environment. CELP is a speech coding algorithm that provides

better quality than lower bitrate algorithms such as linear predictive coding vocoders and

residual dropout linear prediction algorithms. It has been used in environmental sound

classification [ 111 ].

Linear Spectral Frequency

The linear spectral frequency is also a type of auto regression-based feature. It has another

name called linear spectral pairs. LSF is used to indicate the linear prediction coe�cients

for the signal transmission on the channel. The linear prediction polynomial is expressed as

the average of the palindrome polynomial and the inverse palindrome polynomial. The roots

of the palindromic and anti-palindromic polynomials are conjugate in nature, so half of the

roots are transmitted. The LSF characterization of a linear prediction polynomial contains

only the locations of the roots. LSF indicates the variation in numbers when the glottis is

open or closed. It can be used in speaker segmentation [  112 ], voiced/unvoiced detection, and

speech/music classification [  96 ].

Peak Frequency

The peak frequency is simply the frequency of maximum energy. It estimates the most

dominant frequencies present in the signal and helps to calculate the fundamental frequency of
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the signal [  7 ]. It has been used in music and speech classification [  101 ] and gender classification

[ 113 ].

Spectrum Envelope

The spectrum envelope is the logarithmic frequency power spectrum of a signal and can be

used to generate a simplified spectrogram of an audio signal. The spectral envelope generated

by the linear prediction method is called the linear prediction spectral envelope. The spectral

peaks of the audio signal are more accurate due to the error optimized by linear prediction

and the envelope is emphasized as in the auditory system. The spectrum envelope has been

used in music genre classification [  114 ] and environmental sound classification [ 92 ].

Chroma Based Features

Chroma features are interesting and powerful representations of music audio, where the

entire spectrum is divided into 12 parts, representing the 12 semitones, or 12 chromatic tones,

of an octave in music notation. It can be calculated from the logarithmic short-time Fourier

transform of the sound signal. It is also called a chromatogram. Another chroma-based

feature is the chroma energy distribution normalized statistics. This feature is used to identify

similarities between di�erent interpretations of a given piece of music. Chroma-based features

have been used in music genre classification [  115 ].

Spectral Centroid

The spectral centroid indicates where the spectral centroid is located. It represents the

brightness of the sound signal, so it is also called the brightness characteristic of the sound.

The calculation of spectral centroid treats the spectrum as a distribution where the values are

frequencies and the probability of observing those values is the normalized amplitude. The

spectral centroid feature has been used in music classification [ 114 ], music mood classification

[ 116 ].
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Table 2.3. Cepstral Domain Features

Feature Popular audio-based applica-
tions

Paper

Mel Frequency Cepstral Co-
e�cients (MFCCs)

surveillance-related events, envi-
ronmental sound classification,
speech recognition, speech en-
hancement, speaker recognition,
music genre classification

[ 1 ][ 118 ][ 119 ][ 120 ][ 121 ][ 122 ]

Linear Prediction Cepstral
Coe�cients (LPCCs)

noise removal, music classifica-
tion, speech recognition, speech
analysis

[ 123 ][ 124 ][ 125 ][ 126 ]

Perceptual Linear Predic-
tion (PLP) Cepstral Coef-
ficients

speech recognition, environmen-
tal sound classification, emotion
recognition

[ 127 ][ 128 ][ 129 ]

Relative-spectral PLP
(RASTA-PLP) feature

peech recognition, speaker verifi-
cation, gender classification

[ 130 ][ 131 ][ 132 ]

Greenwood function cep-
stral coe�cients (GFCC)

environmental sound classifica-
tion

[ 133 ]

Gammatone cepstral coe�-
cients (GTCCs)

environmental sound classifica-
tion, speech recognition

[ 134 ][ 135 ]
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2.6.4 Cepstral Domain Features

The cepstrum is calculated by taking the inverse Fourier transform of the logarithm of the

signal spectrum. There are complex, power, phase, and real cepstrums. Of all these, the power

cepstrum is the most relevant feature to speech and audio signal processing. Cepstral features

have been widely used in di�erent audio processing applications and systems. Table  2.3 shows

the selected cepstral features and their applications.

Mel Frequency Cepstral Coe�cients (MFCCs)

The Mel Scale is a logarithmic transformation of a signal’s frequency. The main idea of

this transformation is that sounds that are equidistant on the Mel scale are considered to

be equidistant from human hearing. The Mel spectrograms are spectrograms that use Mel

scale to visualize sound. To obtain MFCCs from an audio sample, first, we need to convert

the audio from Hertz to Mel scale. And then we need to take the logarithm of the Mel

representation of audio, followed by taking the logarithmic magnitude and applying discrete

cosine transformation. From the above steps, a cepstrum created over Mel frequencies is

called MFCCs [  136 ].

MFCC is one of the most widely used features in audio processing applications like

surveillance-related events [  1 ], environmental sound classification [ 118 ], speech recognition

[ 119 ], speech enhancement [  120 ], speaker recognition [ 121 ], music genre classification [  122 ],

and more.

Linear Prediction Cepstral Coe�cients (LPCCs)

Cepstrals have many great properties, such as source filter separation, orthogonality,

compactness, and more. These make cepstral coe�cients reliable and suitable for machine

learning. In addition, the Linear Prediction Coe�cient (LPC) is very sensitive to numerical

precision, so it’s necessary to transform the LPC to the cepstral domain. The transformed

coe�cients are called Linear Prediction Cepstral Coe�cients (LPCCs). LPCC has been used
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in noise removal [  123 ], music classification [ 124 ], speech recognition [ 125 ], speech analysis

[ 126 ], and more.

Perceptual Linear Prediction (PLP) Cepstral Coe�cients

The Perceptual Linear Prediction (PLP) coe�cients originated from Linear Prediction

Coe�cients (LPC). PLP Coe�cients are proceeded by perceptual processing before au-

toregressive modeling. From the above process, the linear coe�cients are converted to

cepstral coe�cients. PLP cepstral coe�cients have been used in speech recognition [  127 ],

environmental sound classification [  128 ], and emotion recognition [ 129 ].

Relative-spectral PLP (RASTA-PLP) feature

The RASTA-PLP is an extended version of perceptual linear prediction (PLP). RASTA-

PLP is obtained by applying a bandpass filter to each subband. The added filter helps to

smooth out short-term noise variations and remove any constant shifts in the speech signal

caused by static spectral coloration [  137 ]. This feature has been used in speech recognition

[ 130 ], speaker verification [  131 ], and gender classification [  132 ].

Greenwood function cepstral coe�cients (GFCC)

GFCCs were introduced as a generalized form of MFCCs. GFCC uses mel-scale features

and it is theoretically applicable to almost all land mammals and provides good vocal

performance for almost all species. GFCC can be implemented using very basic knowledge of

the minimum and maximum frequency ranges for a particular species and is derived from

Greenwood’s equations. The Greenwood equation maps the cochlear frequency locations in

almost all species. This feature has been used in environmental sound recognition, especially

for animal and bird sound classification [ 133 ].
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Gammatone cepstral coe�cients (GTCCs)

Noise reduction or cancellation is still the main challenge for automatic speech recognition

(ASR) systems. Recent studies indicated that Gammatone cepstral coe�cients (GTCCs)

shows robust performance against noise in many ASR systems and applications. GTCC is

based on gamma-pass filter banks that take as output a cochlear map, which is actually a

frequency-time representation of the sound signal. The extraction process of GTCCs is similar

to MFCCs, except that the gamma tone filter bank is used instead of the mel-filter bank.

GTCCs have been used in environmental sound classification [  134 ] and speech recognition

[ 135 ].

2.7 Feature Extraction Tools

There are many tools available for audio feature extraction that comes in di�erent

formats. There are mainly three di�erent kinds: software function libraries, plug-ins for a

host application, and stand-alone software applications.

Librosa is a Python library for music and audio processing. There are four di�erent

categories under feature extraction when using Librosa, which are spectral features, rhythmic

features, feature manipulation, and feature inversion [  138 ].

Marsyas (Music Analysis, Retrieval and Synthesis for Audio Signals) is an open-source

software framework for music and audio processing with an emphasis on music information

retrieval. It is a C++ library. One of the most powerful executables provided by Marsyas is

bextract, which can be used in real-time music classification [  139 ].

jAudio is a software package for audio feature extraction that is designed to make the

process of feature calculation and extraction easier and faster. jAudio is a java-based software

and it supports various types of outputs, such as XML format and the ARFF format [  140 ].

Aubio is a software designed for high-level feature extraction in audio and music processing.

The functions include file segmentation, pitch detection, beat tapping, and more [ 141 ].

Essentia is an open-source C++ library for audio analysis and audio-based music

information retrieval. It provides a large number of reusable algorithms that implement audio

input/output functions, standard digital signal processing modules, statistical representations
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of data, and a large number of spectral, temporal, tonal, and high-level musical descriptors

[ 142 ].

Libxtract is an open-source software library for feature extraction in audio processing.

The purpose of creating this library is to provide a superset of the MPEG-7 and Cuidado

audio features. Libxtract is written in C, but can be used in many other platforms and

computer languages [  143 ].

YAAFE is an audio feature extraction software written in C++. YAAFE is known for

its e�ciency in feature calculation with low computation cost. It is easy to configure and

each feature can be set independently [  144 ].

Meyda Web Audio API based low-level feature extraction tool, written in Javascript.

Designed for web browser-based e�cient real-time processing [27].

MIRToolbox is a Matlab toolbox that extracts musical features from audio files. It can

be used for statistical analysis, segmentation, and clustering [  145 ].

The Timbre Toolbox is another toolbox in Matlab for audio and music processing. It

extracts di�erent kinds of features that can be used in machine learning methods for music

information retrieval, perception research, and content-based retrieval using large sound

databases [  146 ].

2.8 ML-Based UAV Classification with Computer Vision

In recent years, machine learning-based computer vision has been a popular approach

used in many research fields and applications, such as autonomous driving, medical diagnosis,

facial recognition, and object detection and classification. Vision-based machine learning has

also been adopted in UAV detection and classification with promising results [ 4 ]. Depending

on which kind of feature extraction methods the researchers choose to use, vision-based UAV

detection and classification can be divided into two categories: the first one is to feed the

machine learning models with learned features that are extracted from image or video data,

and the second one is to use hand-crafted low-level features. Research papers on ML-based

UAV detection using computer vision are summarized in Table  2.4 .
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Table 2.4. Research Papers on ML-based UAV detection with Computer Vision
Research Database Classification

objects
Feature types ML models Results

[ 147 ] Artificial
dataset

UAVs Learned fea-
tures

CNN,
YOLO

0.9 of preci-
sion and re-
call scores

[ 148 ] UAV and Air-
craft database

UAVs and Air-
craft

Learned fea-
tures

CNN,
boosted
trees

0.849 and
0.864 of preci-
sion score for
UAV and Air-
craft databse,
respectively

[ 149 ] 10000 Google
images

UAVs Learned fea-
tures

CNN 89% and
91.6% in
detection and
identification,
respectively

[ 150 ] Bird-Vs-
Drone dataset

UAVs Learned fea-
tures

CNN,
VGG and
ZF

0.66 of mean
average preci-
sion

[ 151 ] UAV and
video-based
bird database

UAVs and
Birds

Learned fea-
tures

Recurrent
Corre-
lational
Networks

0.540 of miss-
ing rate

[ 152 ] Synthetic
database us-
ing Physically
Based Ren-
dering Toolkit
(PBRT)

UAVs Learned fea-
tures

Faster
R-CNN,
ResNet-
101

80.69% of
mean average
precision

[ 153 ] Self-collected
UAV and bird
dataset

UAV vs Birds Hand-crafted
features,
Generic
Fourier De-
scriptor

Neural Net-
work

85.3% of accu-
racy
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[ 147 ] proposed an end-to-end object detection model based on CNN to detect UAVs.

They used YOLO, which is an extension of the existing CNN model and the state-of-the-art

real-time, single-shot object detection network. They combined real drone and bird images

with di�erent background videos to create a large artificial dataset to train and evaluate their

model. They achieved high precision and recall scores of 0.9 at the same time.

[ 148 ] proposed a regression-based approach for object-centric motion stabilization of image

patches that outperforms state-of-the-art techniques. Their method provided an e�ective

classification of spatiotemporal image cubes. They applied two di�erent methods to detect

UAVs from a single moving camera: one based on boosted trees and the other one based

on CNN. The authors collected their own database with two categories: UAV and Aircraft

datasets, to train and evaluate their models. They achieved average precision of 0.849 and

0.864 for UAV and Aircraft categories, respectively.

[ 149 ] proposed a UAV detection system using UAVs with cameras. Their dataset includes

about 7000 UAV images from Google and about 3000 non-UAV images. Their system consists

of two parts: a drone detection module and a drone identifier module. The drone detection

module used HARR feature-based classifier from the OpenCV library, and the drone identifier

module used a simple CNN with two convolutional layers and two fully connected layers.

They achieved 89% accuracy in detection and 91.6% in identification.

[ 150 ] compared di�erent CNN-based network architectures, such as Zeiler and Fergus

(ZF) and Visual Geometry Group (VGG16) to detect UAVs from video data. They used

transfer learning to train their networks with pre-trained models for insu�cient training data.

They used the Bird-Vs-Drone dataset to train and evaluate their models. 5 MPEG4-coded

videos are included in the dataset, with total 2727 frames. Their results show that VGG16

with Faster R-CNN has the best performance and achieved 0.66 of average precision.

[ 151 ] proposed a single, trainable, end-to-end neural network called Recurrent Correlational

Network that detects and tracks small birds and UAVs. They used a video-based bird dataset

and the UAV database collected by [  148 ]. The proposed network is divided into four modules:

convolutional layers, ConvLSTM layers, a cross-correlation layer, and a fully-connected layer

for object scoring. It is worth mentioning that instead of training from scratch, they adopted
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Table 2.5. Research Papers on ML-based UAV detection with Radar
Research Radar

System
Data Classi-

fication
objects

Feature
types

ML models Results

[ 154 ] S-band
CW
Doppler
radar

280 images UAVs Spectral
correlation
function
(SCF)

Deep
Belief
Network
(DBN)

above 90%
in accuracy

[ 155 ] Ku-band
FMCW
radar

50000/10000
in-
door/out-
door
images

UAVs Conta-
tendated
MDS and
CVD

CNN 94.7% in
accuracy

[ 156 ] K-band
and
X-band
CW
radar

720 sam-
ples per
radar

UAVs PCA-
based
features

SVM 94.7%

[ 157 ] Ka-band
CW
radar

30*10 sec-
onds trials
per UAV,
simulated
bird MDS

UAVs vs
Birds

Mean spec-
trogram,
SVD, CVD

SVM 96% to
100% in
accuracy

[ 158 ] S-band
BirdRad

800 trail
samples

UAVs vs
Birds

9 polari-
metric
features

Nearest-
neighbour
classifier

100% in ac-
curacy
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a fine-tuning approach by using AlexNet and VGG16. They reported the results in ROC

curves, and their approach outperformed the existing methods.

[ 152 ] proposed to use of the Physically Based Rendering Toolkit (PBRT) to render a

large number of synthetic UAV images with variations. In a way, the UAV images in their

dataset are indistinguishable from the real ones. The rendered image provides the bounding

boxes, the locations of important parts, and the locations of all pixels of UAVs. They trained

the Faster R-CNN for UAV detection with the rendered dataset and evaluated it on a test

dataset that contains manually annotated real UAV images. The Faster R-CNN they trained

achieved 80.69% of average precision, which is much higher than the one trained PASCAL

VOC 2012 dataset.

[ 153 ] proposed a vision-based feature, Generic Fourier Descriptor (GFD), with a neural

network to classify UAVs versus birds. They created their own dataset with 930 bird and 410

UAV images from open source and used 5-fold cross-validation. They created a neural network

with about 10000 neurons to classify GFD features for birds and UAVs. They achieved an

85.3% classification rate with the whole dataset and 93.1% with the subset of 162 images

from the whole dataset.

Vision-based UAV detection and classification usually require a camera that is relatively

low cost, and computer vision with machine learning has been a popular and fast-growing

research area. Current research shows promising results. Most of them rely on learned

features along with di�erent machine learning models [  147 ]–[ 152 ]. But the problem remains

that there is few publicly available dataset for training and evaluation. The other challenge

for vision-based UAV detection is the noise in visual data caused by heavy rain, snow, or

other types of natural factors.

2.9 ML-Based UAV Classification with Radar

Radars are devices that radiate electromagnetic energy and detect the echo returned from

reflecting objects (target)[ 159 ]. Based on the echo returned, radars collect information about

the position and nature of the target. The capacity of these devices to detect an object is

highly conditioned by the targets Radar Cross-Section (RCS), an attribute of objects that
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describes the intensity of the echo they return when exposed to an electromagnetic wave,

and which depends on the physical attributes of the object, such as composition, size, shape,

radiation, and polarization, among others [  159 ].

So far, the most popular approach for UAV detection is radar recognition [ 4 ]. Current

and previous research applied di�erent radar front ends, feature extraction methods, and ML

models in radar UAV detection, and their detection and classification results are promising.

Research papers on ML-based UAV detection using radar are summarized in Table  2.5 .

[ 154 ] proposed a system using S-band continuous wave (CW) radar with a deep belief

network (DBN). From the micro-Doppler signature (MDS), the system first extracts the

spectral correlation function (SCF), which is used to train the DBN to classify UAVs. Three

micro-drones are used in their research, which are an artificial bird, a helicopter, and a

quad-copter. There are a total of four classification classes with three UAV classes and

a reference class. The DBN extracted 70 SCF images from each class. As for the data

augmentation, they added di�erent levels of Gaussian noise to 50 out of 70 images for each

class. They achieved above 90% in accuracy.

[ 155 ] proposed a UAV classification system by using CNN and MDS. They adopted a

pre-trained CNN, GoogleNet, for training and testing. They used a frequency-modulated

continuous-wave (FMCW) radar and two UAVs, an Inspire I and an F820, in their experiments.

The dataset consists of images that merged from MDS and CVD, which are generated by

Ku-band FMCW signal. 53410 and 13560 images are generated from an anechoic chamber

(indoor) and outdoor environment, respectively. They tested their system with di�erent

motors and di�erent angles of a UAV. Their system achieved 94.7% in accuracy. Classification

of two di�erent UAVs at two di�erent heights f 50 and 100 meters results in 100% accuracy.

[ 156 ] proposed a dual-band radar classification system with a K-band and an X-band CW

radar. Three di�erent UAVs are used in the experiment: a quadcopter, a helicopter, and a

hexacopter. The two radar sensors collected the time-frequency spectrogram by conducting

a short-time Fourier Transform (STFT) on the radar data. Then PCA-based (principal

components analysis) features are extracted from the spectrogram by the two radar sensors.

The features from the two sensors are then merged together. The extracted and merged

features are used to train the SVM. Their system has collected 720 samples from each radar
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Table 2.6. Research Papers on ML-based UAV detection with Radio Frequency
Research Classification

objects
Feature types ML models Results

[ 160 ] UAVs Hash fingerprint SDVV Positive detection
results in indoor
environment

[ 161 ] Parrot Bebop,
DJI Phantom

UVAs Reflected
signal from pro-
pellers, the signal
between the con-
troller and the
UAVs, and body
vibration

Wavelet analysis
and maximum
PSD

Positive detection
results

[ 162 ] UAVs vs non-
UAVs

Skewness variance,
entropy and kurto-
sis with NCA

SVM, DA, ANN,
and KNN

96.3% with KNN,
96.84% with SVM
in classification ac-
curacy

[ 163 ] UAVs Self-adaptive
threshold

GMM Above 97% in clas-
sification accuracy

sensor for each UAV. Their results proved that the dual-band classification system performs

better than the radar system with only one sensor. The dual-band system achieved up to

94.7% in classification accuracy.

[ 157 ] proposed a Ka-band CW radar system to classify UAVs versus birds and di�erent

UAVs. Their system used di�erent UAVs to collect data: four quadcopters of di�erent sizes,

an octocopter, a small helicopter and a fixed-wing plane (Multiplex Funcub). The radar

system extracts three di�erent kinds of features, which are a time-averaged spectrogram,

the first left singular vector of singular value decomposition (SVD), and a mean cadence

velocity diagram (CVD). They generated the bird flying data by using the same CW radar

configuration to collect UAV data. They used SVM to train and test the proposed system.

They achieved 96% to 100% in classification accuracy.

[ 158 ] proposed to use polarimetric features to classify UAVs versus large birds. Sometimes,

the radar system confuses those two because of their similar RCS and motion patterns.
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They collected 8000 data points from two UAVs by using BirdRAD, which is an S-band

radar system at 3.25 GHz. The nine features extracted include linear depolarization ratio,

di�erential depolarization ratio, co-polarized correlation coe�cient, cross-polarized correlation

coe�cient, entropy, anisotropy, polarimetric eigenvector, and orientation angle. The features

are used to train and test on a nearest-neighbor classifier. The system achieved nearly 100%

in classification accuracy for close-range tests (300-400 meters).

With di�erent types of radars, di�erent features extracted, and ML models, the ML-based

radar approach for UAV detection and classification shows promising results. However, the

problem remains whether the systems can be applied to di�erent types of UAVs, di�erent

types of radar sensors, or to cover longer distances of detection environment. Also, radar

system has di�culty detecting a certain type of UAVs, such as micro-UAVs, because of their

small Radar Cross-Section (RCS) and low altitudes flying patterns [  164 ].

2.10 ML-Based UAV Classification with Radio-Frequency

Radio-frequency is another approach used in ML-based UAV detection and classification.

UAVs and their controllers communicate and exchange signals via control signals at the

well-known 2.4GHz radio band (ISM band). Radio frequency signals can be used to detect

not only the UAVs but also the controller of the UAVs [ 4 ]. Research papers on ML-based

UAV detection and classification using radio-frequency are summarized in Table  2.6 .

[ 160 ] proposed a distance-based support vector data description (SVDD) system to classify

low, slow, and small UAVs that use 2.4GHz frequency. The system generates features called

hash fingerprints to train the SVDD. They have collected the data themselves to train and

evaluate their system. The results show that the system can successfully detect UAVs in the

indoor environment. However, the detection false rate increases in the outdoor environment,

because they added the white Gaussian noise (WGN) to the original signal.

[ 161 ] proposed a UAV detection system that includes active and passive modes. The

active mode detects UAVs by constantly listening to the reflected wireless signal, and the

passive mode is to observe the communication between the controller and the UAVs. Instead

of transmitted signals, the proposed system is based on physical features: the reflected signal
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from UAV’s rotating propellers, the communication between the controller and the UAVs,

and the vibration from UAV’s main body. They used two UAVs, Parrot Bebop and DJI

Phantom, to evaluate the system. Their results show that the proposed system can detect

UAVs by listening to the wireless signal in the area that it passes through.

[ 162 ] proposed to use radio frequency fingerprints of the signal transmitted between

the controller and the UAV to detect and classify UAVs. The detection system adopted a

Bayesian approach based on the Markov models to classify UAVs versus non-UAVs. And

the classification system used the radio frequency signal to classify 14 di�erent UAVs. The

features extracted from the RF signals are skewness, variance, energy spectral entropy, and

kurtosis. They used neighborhood component analysis (NCA) as the feature selection method.

The selected features then were fed into several ML models, including KNN, discriminant

analysis (DA), SVM, and neural networks (NN). They evaluated the proposed method on a

dataset of 100 RF signals collected by 14 di�erent UAV controllers. They achieved 96.3%

and 96.84% in classification accuracy with KNN and SVM, respectively.

[ 163 ] proposed a UAV detection system with an adaptive threshold based on Gaussian

mixture model(GMM). The system can detect the start point of the signal source. They used

7 di�erent UAVs to collect data, which are DJI 3 pro, DJI 4, DJI Mavic pro, Mi, Hubson,

Xiro, and Phantom 4 pro. They collected 2000 data samples per UAV. GMMs of the collected

signal are calculated by using Expectation Maximization Algorithm (EM). Then the threshold

· is obtained by selecting the proper Gaussian destitution. If the sampling points are greater

than the threshold · , the start-point of the UAV signal is detected. Their results show 97%

detection accuracy.

The radio-frequency signal is an important feature of UAVs that can be used to in UAV

detection, classification, and localization. But RF-based UAV detection system has a very

low or zero accuracies rate when the UAV is in autonomous flying mode [  4 ]. When UAVs fly

autonomously, they usually follow the pre-calculated GPS points. Thus, there will be limited

RF-based signal communication between the controller and UAV. Also, applying machine

learning techniques with RF-based data is not very common, and there hasn’t been much

done in this area of research. RF-based research also needs a more publicly available dataset.
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Table 2.7. Research Papers on ML-based UAV detection with Audio
Research Classification ob-

jects
Feature types ML models Results

[ 165 ] UAV vs nature
daytime vs street
with tra�c vs
train passing vs
crowd

Short-time en-
ergy, temporal
centroid, Zero
Crossing Rate
(ZCR), spectral
centroid, spectral
roll-o�, and Mel
Frequency Cep-
stral Coe�cients
(MFCCs)

SVM 96.4% in classifi-
cation accuracy

[ 166 ] UAVs vs non-
UAVs

Normalized
STFT

CNN 98.97% in classifi-
cation accuracy

[ 167 ] UAVs vs nature
background vs
rain

Power spectrum
density (PSD)

SVM Best performance
with signal-to-
interference ratio
(SIR) greater
than 10 dB

[ 168 ] UAVs MFCC, STFT SVM, CNN promising detec-
tion results re-
ported in color
map

[ 1 ] UAVs MFCCs, chroma,
mel, contrast, ton-
netz

SVM, Gaussian
Naive Bayes
(GNB), KNN,
Neural Network
(NN)

Above 95% with
combination fea-
tures

[ 169 ] UAVs MFCCs Gaussian Mixture
Model (GMM),
CNN, RNN

80% in classifi-
cation accuracy
with RNN

[ 170 ] UAVs Spectrum images,
Fast Fourier
Transform (FFT)

Correlation, KNN 80% in classifi-
cation accuracy
with image corre-
lation

The other challenge is whether others can reproduce from the existing work with di�erent

models of UAVs.
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2.11 ML-Based UAV Classification with Audio

When a UAV is flying, it emits a continuous humming sound. Ideally, di�erent types and

models of UAV project di�erent sounds that can be identified as audio fingerprint [  4 ]. Many

researchers have used the sound of the UAV in detection and classification. Research papers

on ML-based UAV detection using audio data are summarized in Table  2.7 .

[ 165 ] proposed a multi-class SVM structure to detect UAV and other signals using audio

data. The other classes include the sound of nature daytime, street with tra�c, train passing,

and crowd. They collected their own dataset focusing on the audio input that is higher

than 48kHz. The dataset consists of seventy minutes of audio for each class. Six features

were extracted from the collected audio data, including short-time energy, temporal centroid,

Zero Crossing Rate (ZCR), spectral centroid, spectral roll-o�, Mel Frequency Cepstral

Coe�cients (MFCCs). The extracted features were used to train SVM. They achieved 96.4%

in classification accuracy in detecting UAVs.

[ 166 ] proposed to detect UAVs by using the normalized STFT from UAVs audio data.

The normalized STFT was extracted as the feature of the audio data. They also collected

their own dataset by using two UAVs, a DJI Phantom 3 and a Phantom 4. The feature

extracted from the collected dataset were used to train a CNN and data for evaluation used

the collected dataset with Additive white Gaussian noise (AWGN). The dataset consisted of

68931 UAV audio frames and 41958 non-UAV frames. They achieved 98.97% in classification

accuracy, and they reported a false alarm rate of 1.28.

[ 167 ] proposed an acoustic wireless sensor network (WSN) to detect and localize UAVs.

Authors discovered that a unique feature of UAV from other natural sounds is power spectrum

density. They collected their own dataset for three di�erent classes which are UAVs, natural

background, and rain. Each class consisted of 2000 audio samples. They added additional

Gaussian noise to the data during testing. They reported that their system can successfully

detect UAVs and the best performance with a signal-to-interference ratio (SIR) greater than

10 decibels.

[ 168 ] proposed a multi-node acoustic system to detect UAVs. The UAV used to collect

data was Parrot AR Drone 2.0. Two features extracted from the audio data are MFCCs
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and STFT. The authors collected data in two categories: UAVs flying from 0 to 10 meters

above the acoustic system; environmental noise from the same location where the UAV data

was collected. They trained two ML models, SVM and CNN, with extracted features. They

reported positive classification results in the form of color maps.

[ 1 ] evaluated di�erent feature extraction methods for audio data and proposed a feature-

based UAV classification system. The authors evaluated five feature extraction methods,

available in the Python Librosa library, including MFCCs, chroma, Mel-spectrogram(mel),

contrast, and tonnetz. A DJI Phantom 4 and an EVO 2 Pro were used to collect audio

recordings. They collected 300 samples for each type of UAV, and 600 samples for the

environmental noise, with each sample about 10 seconds. Five individual features and one

combination of five were used to train four machine learning models, which are NN, SVM,

Gaussian Naive Bayes (GNB), and KNN. The results showed that the use of a combination

of features improves the accuracy greatly, compared to individual features. They achieved

above 95% in classification accuracy with combination features.

[ 169 ] proposed to use GMM, CNN, and RNN models to detect UAVs in real-time that

are within 150 meters. They used the augmentation technique to enlarge the dataset by

adding di�erent environmental sounds to the raw UAV audio data. Di�erent UAVs were

used in training and testing. The two features extracted from the audio data were MFCCs

and mel-spectrogram. The results showed that the audio data collected from more than

150 meters away did not provide much useful features/information. They achieved 80% in

classification accuracy with RNN, and the processing time was 240 milliseconds.

[ 170 ] proposed a real-time UAV detection and monitoring system. The system used Fast

Fourier Transform (FFT) and generated spectrum images of the audio data. They used two

UAVs, Phantom 1 and 2, to collect UAV audio data. The dataset included 70 audio samples

from each UAV. They used the FFT to train two ML models, which were Plotted Image

Machine Learning (PIL) and KNN. PIL used the spectrum image data from FFT, and KNN

used csv files with FFT-format data. They achieved 83% classification accuracy with PIL

and 61% with KNN.

There have been an increasing number of research in ML-based UAV detection using

audio data. Current and previous research showed promising results by using an audio
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Table 2.8. Research Papers on ML-based UAV payload detection
Research Payload

Detec-
tion
System

Data Classi-
fication
Objects

Feature
Types

ML Models Results

[ 171 ] Audio
classifica-
tion

2544
samples

UAV with
three
di�erent
payloads

MFCC,
Mel,
Chroma,
Tonnetz,
and Con-
trast

CNN,
RNN,
CRNN

94.9% in
with CNN
and MFCC

[ 5 ] Audio
classifica-
tion

1200
samples

loaded vs
unloaded
UAVs

chroma,
mel,
MFCCs,
contrast,
and ton-
netz

SVM,
GNB,
KNN, NN

98% in
average
accuracy
with com-
bination
features

[ 172 ] S-band
pulsed
radar
(Ne-
tRAD)

45 sam-
ples per
category

UAV with
three
di�erent
payloads

Centroid
and band-
width of
MDS

Naive
Bayes
and Dis-
criminant
analysis

90% to
100% in
accuracy

[ 173 ] NetRAD
radar
system

45 sam-
ples for
each
payload
class

UAVs
with five
di�erent
payloads

MDS, spec-
tral kurto-
sis, PCA

KNN 92.61% in
average
classifi-
cation
accuracy

approach. However, the publicly available dataset is missing, which caused every individual

researcher to collect their own dataset with di�erent types of UAVs. The proposed system

produced promising results and may not work on a di�erent dataset. The other challenge for

an audio-based detection system is environmental noise.

2.12 ML-based UAV Payload Detection

There is only a limited number of research on the topic of payload detection for UAVs.

Radar [  172 ], [ 173 ] and audio [ 171 ][ 5 ] are the main approaches to classifying loaded and
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unloaded drones. Research papers on ML-based UAV payload detection are summarized in

Table  2.8 .

[ 171 ] trained and evaluated three deep learning models to classify three di�erent payloads

on two di�erent drones using audio data. In this research, Ku et al. collected audio data

from two di�erent UAVs, DJI Phantom 4 and Autel Evo2. They also used data augmentation

techniques on the collected dataset. The feature extraction method used in their research

includes MFCC, Mel, Chroma, Tonnetz, and Contrast. The trained systems can classify

three di�erent payloads, which are no payload, 1 payload, and 2 payloads. The deep learning

models used in this research include CNN, RNN, AND CRNN. All three models achieved

remarkable performance with MFCC, which the combination of MFCC and CNN has the

highedt accuracy of 94.9%.

[ 5 ] explored five di�erent feature extraction methods and a combination to classify whether

a drone carries a payload. The five selected feature extraction methods were chroma, mel,

mfcc, contrast, and tonnetz, and the combinations of all five were also applied and evaluated.

Features of each audio recording under each category (loaded and unloaded) are calculated

and saved. The four machine learning models used for training are SVM, GNB, KNN, and a

Neural Network. Those saved features are used as input to train ML models. The dataset

was collected and labeled by using two di�erent brands and models of drones, DJI Phantom 4

and EVO 2 Pro. The dataset consisted of 1232 audio samples of loaded and unloaded drones.

The results showed that the combination of features has a better performance than individual

ones. The combination feature achieved about 99% average accuracy in all four ML models.

[ 172 ] proposed a multi-static radar system, NetRAD, to classify di�erent payloads of

UAVs, including 0 gram (g), 200g, and 500g. They used quadcopter DJI Phantom Vision

2+ in collecting data. NetRAD extracted two features of centroid and the bandwidth of the

MDS in 2-second windows. Three NetRAD nodes were used to collect data, and each node

collected 15 samples per payload. The two classifiers they used are the Naïve Bayes and the

diagonal-linear variant of the discriminant analysis. The proposed radar system achieved

90% to 100% in classification accuracy.

[ 173 ] proposed payload detection and classification system using NetRAD. The system

used a new micro-Doppler feature extraction method to extract features including MDS,
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and spectral kurtosis to classify five di�erent payloads on UAVs. The extracted features

were processed by PCA for dimensional reduction and then were fed into KNN model for

training. They collected data with flying and hovering UAVs. Their system achieved 92.6%

classification accuracy.

2.13 Summary

In this chapter, important architectures of Deep Learning are discussed, including CNNs,

RNNs, Seq2Seq, and more. In addition, this chapter covers some popular DRL algorithms

related to audio classification, including model-based DRL, policy gradient-based DRL,

and value-based DRL. To overcome the lack of publicly available audio datasets, di�erent

approaches to data augmentation techniques are discussed in Section  2.3 . Reviewed literature

in Section  2.4 shows the advantages of using DL in audio and speech processing applications.

A thorough review is presented in ML-based UAV detection and classification using di�erent

approaches, including radar, computer vision, radio-frequency, and audio. Papers on UAV

payload detection are also discussed. Each approach has its advantages and disadvantages,

but all with promising results. Furthermore, this chapter discusses the audio features that are

usually used to train ML models from the time domain, frequency domain, time-frequency

domain, and cepstral domain, including the evolution, characteristics, and applications of

di�erent features. Varies feature extraction tools in di�erent formats are also discussed,

which include software function library, plug-ins for a host application, and stand-alone

software applications. Most of the tools are open-source and can be used on many modern

architectures and platforms.
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3. METHODOLOGY

3.1 Data Collection

In the data collection process, I fly and collect audio data from 22 di�erent UAVs, as

shown in Table  3.1 . For each UAV, at least 100 audio entries are recorded and each audio

entry includes 5 seconds of recording of the flying drone audio data. The manufacturers of

the UAVs include most of the DJI, Autel, Syma, Yuneec, UDI, Hasakee, and self-build ones.

Among the 22 UAVs, 20 of them are quadcopters. I operate and record UAVs by DJI, Autel

Robotics, Yuneec, and self-built ones in the outdoor environment. All the UAVs by Syma,

UDI, Hasakee, and 1 of DJI ones in the indoor environment. Figure  3.1 shows the estimated

area where most of the outdoor data collection takes place. Most of the outdoor operation

of drones took place in an open area in New Richmond, Indiana, and the coordinate is

(40.2227062, -87.0000169). The indoor recordings took place in K-SW at Purdue University.

Figure 3.1. Outdoor Data Collection Site
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This research also includes 1 tricopter and 1 hexacopter. There are two self-build UAVs

included in the dataset, which are David Tricopter and PhenoBee[  174 ]. David Tricopter is

designed and built by my friend David Windestal. The flight control used for David Tricopter

is AfroFlight Naze32. The weight of the tricopter including the battery is 2.6 lbs, and the

diameter is 34 inches. As for the PhenoBee, it is built by my colleague, Ziling Chen, and

it is the largest UAV in the dataset. PhenoBee weighs about 23kg, and the height and the

diameter are 1.35 meters. The framework used for PhenoBee is Ardupilot, and the hardware

is the Cubepilot Cube Orange.

Table 3.1. UAVs Included in the Dataset
Index Manufacture Model Drone Type Data Type

0 Self-build David Tricopter Tricopter Outdoor
1 Self-build PhenoBee Quadcopter Outdoor
2 Autel Evo 2 Pro Quadcopter Outdoor
3 Yuneec Typhoon H Plus Hexacopter Outdoor
4 Swellpro Splash 3 Plus Quadcopter Outdoor
5 DJI Matrice 200 Quadcopter Outdoor
6 DJI Matrice 200 V2 Quadcopter Outdoor
7 DJI Mavic Air 2 Quadcopter Outdoor
8 DJI Mavic Mini 1 Quadcopter Outdoor
9 DJI Mini 2 Quadcopter Outdoor
10 DJI Mavic 2 Pro Quadcopter Outdoor
11 DJI Air 2s Quadcopter Outdoor
12 DJI Phantom 2 Quadcopter Outdoor
13 DJI Phantom 4 Quadcopter Outdoor
14 DJI RoboMaster TT Tello Quadcopter Indoor
15 Hasakee Q11 Quadcopter Indoor
16 Syma X5SW Quadcopter Indoor
17 Syma X5UW Quadcopter Indoor
18 Syma X20 Quadcopter Indoor
19 Syma X20P Quadcopter Indoor
20 Syma X26 Quadcopter Indoor
21 UDI RC U46 Quadcopter Indoor

3.2 UAVs Specifications

There are two self-built drones that are included in the dataset. David tricopter is built

based on the design of David Windestal, which is shown in Figure  3.2 . It uses a 3-propeller
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design. The weight of the tricopter including the battery is 1.180 kg, and the diameter is

863.6 mm. The tricopter controls roll by rotating the rear propeller with a servo. The flight

control used for David Tricopter is AfroFlight Naze32. h from David Tricopter is conducted

in an outdoor environment in Columbus, IN.

Figure 3.2. Self-build David Tricopter

Figure  3.3 shows the other self-built drone, PhenoBee, built by my colleague, Ziling Chen.

It is so far the largest UAV in the dataset. PhenoBee weighs 23.000 kg, and the height and the

diameter are 1350.0 mm. The framework used for PhenoBee is Ardupilot, and the hardware

is the Cubepilot Cube Orange. The experiment of collecting audio data from PhenoBee and

collected is conducted in Agronomy Center for Research and Education in West Lafayette,

IN.

Autel Evo 2 [  175 ] is shown in Figure  3.4 . Evo 2 weighs about 1.130 kg, and the maximum

take-o� weight is 2.000 kg. The diagonal length of the wheelbase is about 396.0 mm. The

experiment of collecting audio data from Evo 2 is conducted in the outdoor environment

(Figure  3.1 ) in New Richmond, IN.

Figure  3.4 shows the Yuneec Typhoon H Plus [  176 ], which is the only hexacopter in the

dataset. Typhoon H Plus weighs about 1.645 kg without the camera and 1.995 kg with

the camera. The diagonal length without propellers is about 520.0 mm. The experiment

of collecting audio data from Typhoon H Plus is conducted in the outdoor environment

(Figure  3.1 ) in New Richmond, IN
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Figure 3.3. Self-build PhenoBee

Figure 3.4. Autel Evo 2

Swellpro Splash 3 Plus [  177 ] is the only waterproof UAV in the dataset. It can land and

fly on the water, with a waterproof level up to 23.6 inches deep for a short amount of time.

Splash 3 Plus weighs about 1.447 kg without a battery, and the diagonal length is about

450.0 mm. The experiment of collecting audio data from Splash 3 Plus is conducted in the

outdoor environment (Figure  3.1 ) in New Richmond, IN

DJI Matrice 200 [  178 ] is a professional quadcopter, which is shown in Figure  3.7 . Matrice

200 weighs about 3.800 kg with two standard batteries. The diagonal length of the wheelbase

is about 643.0 mm. The experiment of collecting audio data from Matrice 200 is conducted
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Figure 3.5. Yuneec Typhoon H Plus

Figure 3.6. Swellpro Splash 3 Plus

in the outdoor environment (Figure  3.1 ) in New Richmond, IN. Due to the expected wind

condition, Matrice 200 crashed into tree bushes when landing.

Figure  3.8 shows the DJI Matrice 200 V2 [ 179 ]. Matrice 200 V2 is the improved version

of 200. Matrice 200 V2 weighs about 4.69 with two standard batteries, which are heavier

than 200. The diagonal length of the wheelbase is about 643.0 mm, which is about the same

as 200. The experiment of collecting audio data from Matrice 200 V2 is conducted in the

outdoor environment (Figure  3.1 ) in New Richmond, IN.
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Figure 3.7. DJI Matrice 200

Figure 3.8. DJI Matrice 200 V2

DJI Mavic Air 2 [  180 ] is shown in Figure  3.9 . Air 2 weighs about o.570 kg, and the

diagonal length of the wheelbase is about 302.0 mm. The experiment of collecting audio data

from Air 2 is conducted in the outdoor environment (Figure  3.1 ) in New Richmond, IN.

Figure  3.10 shows the DJI Mavic Mini [  181 ]. Mavic Mini weighs about 0.249 kg, and the

diagonal length of the wheelbase is about 213.0 mm. The experiment of collecting audio data

from Mavic Mini is conducted in the outdoor environment (Figure  3.1 ) in New Richmond, IN.

Figure  3.11 shows the DJI Mini 2 [  182 ]. Mini 2 weighs a little less than 0.242 kg, and

the diagonal length of the wheelbase is about 213.0 mm. The appearance of the Mini 2 and
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Figure 3.9. DJI Mavic Air 2

Figure 3.10. DJI Mavic Mini

Mavic Mini are very similar. When detecting and classifying these two types, audio data

would be the ideal approach, for the appearance are too similar for a classifier trained with

image data. The experiment of collecting audio data from Mini 2 is conducted in the outdoor

environment (Figure  3.1 ) in New Richmond, IN.

Figure  3.12 shows the DJI Mavic 2 Pro [ 183 ]. Mavic 2 Pro weighs about 0.907 kg, and the

diagonal length of the wheelbase is about 354.0 mm. The experiment of collecting audio data

from Mavic 2 Pro is conducted in the outdoor environment (Figure  3.1 ) in New Richmond,

IN.
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Figure 3.11. DJI Mini 2

Figure 3.12. DJI Mavic 2 Pro

Figure  3.12 shows the DJI Air 2s [ 184 ]. Air 2s weighs about 0.595 kg, and the diagonal

length of the wheelbase is about 302.0 mm. The experiment of collecting audio data from

Air 2s is conducted in the outdoor environment (Figure  3.1 ) in New Richmond, IN.

Figure  3.14 shows the DJI Phantom 2 [  185 ]. Phantom 2 weighs about 1.000 kg with

batteries and propellers installed, and the diagonal length of the wheelbase is about 350.0

mm. The experiment of collecting audio data from Phantom 2 is conducted in the outdoor

environment (Figure  3.1 ) in New Richmond, IN.
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Figure 3.13. DJI Air 2s

Figure 3.14. DJI Phantom 2

Figure  3.15 shows the DJI Phantom 4 [  186 ]. Phantom 4 weighs about 1.380 kg with

batteries and propellers installed, and the diagonal length of the wheelbase is about 350.0

mm. The experiment of collecting audio data from Phantom 4 is conducted in the outdoor

environment (Figure  3.1 ) in New Richmond, IN.

Figure  3.16 shows the DJI RoboMaster TT Tello Talent [ 187 ]. Tello Talent weighs about

0.087 kg with batteries and propellers installed. The dimensions are 98.0*92.5*41.0 mm.

RoboMaster TT is based on open source with a built-in ESP32 chip. Tello TT is developed

and improved based on the previous model Tello EDU. The experiment of collecting audio
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Figure 3.15. DJI Phantom 4

data from Tello Talent is conducted in the indoor environment in K-SW at Purdue University

West Lafayette, IN.

Figure 3.16. DJI RoboMaster TT Tello Talent

Figure  3.17 shows the Hasakee Q11 [  188 ]. Q11 weighs about 0.010 kg with batteries

installed. The diagonal length of the wheelbase is about 228.6 mm. The experiment of

collecting audio data from Q11 is conducted in the indoor environment in K-SW at Purdue

University West Lafayette, IN.

Figure  3.18 shows the Syma X5SW [ 189 ]. X5SW weighs about 0.119 kg with batteries

installed, and the dimensions are 315.0*315.0*105.0 mm. The experiment of collecting audio
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Figure 3.17. Hasakee Q11

data from X5SW is conducted in the indoor environment in K-SW at Purdue University

West Lafayette, IN.

Figure 3.18. Syma X5SW

Figure  3.19 shows the Syma X5UW [  189 ]. X5UW weighs about 0.127 kg with batteries

installed, and the diagonal length of the wheelbase is about 368.3 mm. The experiment of

collecting audio data from X5UW is conducted in the indoor environment in K-SW at Purdue

University West Lafayette, IN.

Figure  3.20 shows the Syma X20 [  190 ]. X20 weighs about 0.181 kg with a battery, and

the diagonal length of the wheelbase is about 127 mm. The experiment of collecting audio
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Figure 3.19. Syma X5UW

data from X20 is conducted in the indoor environment in K-SW at Purdue University West

Lafayette, IN.

Figure 3.20. Syma X20

Figure  3.21 shows the Syma X20P [  191 ]. X20P weighs about 0.181 kg with battery, and

the dimensions are 105.0*105.0*25.0 mm. The experiment of collecting audio data from X20P

is conducted in the indoor environment in K-SW at Purdue University West Lafayette, IN.

Figure  3.22 shows the Syma X26 [  192 ]. X26 weighs about 0.450 kg with a battery, and

the dimensions are 44.0*131.0mm*131.0 mm. The experiment of collecting audio data from
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Figure 3.21. Syma X20P

X26 is conducted in the indoor environment in K-SW at Purdue University West Lafayette,

IN.

Figure 3.22. Syma X26

Figure  3.23 shows the UDI U46 [  193 ]. U46 weighs about 0.200 kg with battery, and the

dimensions are 91.4*81.2*33.0 mm. The experiment of collecting audio data from U46 is

conducted in the indoor environment in K-SW at Purdue University West Lafayette, IN.
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Figure 3.23. UDI U46

3.3 Overall System

Figure  3.24 presents the overall process for the proposed UAV audio classification system.

Firstly, the audio data is recorded and labeled with UAV manufacture, model, and data/time

information. Then, feature extraction is performed to obtain MFCCs from an audio sample,

firstly, the audio file is converted from a time domain signal to a frequency domain signal

by using Discrete Fourier Transform. Secondly, we calculate the logarithm of the Mel

representation of audio, followed by taking logarithmic magnitude and applying discrete

cosine transformation. From the above steps, a cepstrum feature created from Mel frequencies

is the MFCC feature. The next step is to evaluate and verify the dataset by training di�erent

machine learning models, including Gradient Boosting, KNN, Decision Tree, Random Forest,

and Gaussian Naive Bayes. After evaluating the dataset, the extracted features then are

used to feed into the CNN model to train a UAV classification system. After the training, an

evaluation is performed to test how the system reacts to the data it never saw before. Lastly,

the model is assessed with accuracy and loss in training and testing and confusion matrix.
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Figure 3.24. Audio-based UAV Classification System Overview

3.4 Audio Feature Extraction

Similar to common practice in audio-based ML, instead of feeding a whole audio dataset

to ML models, I use the compact representation of the audio signal, instead of the raw

audio files. With that, the proposed system reduces the form of feature representation

in both size and dimensions of the audio data. In this research, MFCCs are chosen (mel

frequency cepstral coe�cients) as the feature extraction method. MFCC is one of the most

widely used feature in audio processing applications such as surveillance-related events[ 1 ],

environmental sound classification[  118 ], speech recognition[ 119 ], speech enhancement [  120 ],

speaker recognition[ 121 ], music genre classification[  122 ], and more.

When extracting MFCC features from audio data, the first step is to frame the signal,

in which the signal is segmented into overlapping frames. The second step is to apply a

window function to prepare and smooth the signal to compute Discrete Fourier Transform

(DFT). This step helps to minimize the signal discontinuities at the beginning and end of

each frame. A typical window is a Hamming window. The third step is to use DFT to convert

the waveform to the spectrogram, which is also a conversion from time domain feature to

frequency domain signals. For each k, DFT is defined as follows:

x̂(k) =
N≠1ÿ

n=0
x(n)exp(≠i2pkn

N
) (3.1)
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where k is the index of DFT output in the frequency domain. And k = ≠N
2 , ..., ≠1, 0, 1, ...,

N
2 ≠

1. x̂(k) is k th DFT output component. n is the time domain index of input samples, and

n = 0, 1, ..., N ≠ 1. x(n) is the discrete sequence of the original sound signal input. N is the

number of data samples in the discrete time domain and the number of bins in the discrete

frequency domain.

The calculation of the Discrete Cosine Transform (DCT) is done using a Fast Fourier

transform. The power spectrum ps(f) is defined as follows [ 194 ]:

ps(f) =
Ò

Re(Hf )2 + Im(Hf )2 (3.2)

The next step is to apply Mel filter banks to the power spectrum using the Mel scale and

the result is called mel (melody) spectrogram. Mel scale is defined as follows, where m(f)

indicates the frequencies on the mel scale measured in mels and f is the normal frequencies

measured in Hz:

m(f) = 2595 · log10(1 + f

700) (3.3)

The number of filters is 2040 and 26 is a standard number to use. These 26 numbers indicate

the energy in each filter bank. The purpose of applying mel scale is that to mimic how human

hearing precepts sound. The name mel comes from the word ’melody".

The final step of extracting MFCCs is to calculate the cepstral coe�cients based on the

previous step, using Discrete Cosine Transformation (DCT) 26 log filter bank energies. The

calculation of cepstrum is defined as following [ 194 ], where x(t) is the time-domain signal:

cd = 1
M

M≠1ÿ

m=0
Cmcos(p(2d + 1)m

2M
) (3.4)

In the above formula, cd is the d
t
h cepstral coe�cient, and M is the total number of filter

banks. Cm indicates the log energy for filter bank m. Typically, c1 c12 constitute the MFCCs.

The above steps result in MFCC features, which is a Mel spectrum opposed to time.

Figure  3.25 is a comparison of the MFCC extraction process with two UAVs: DJI Mavic

Air 2 and DJI Mini 2. These two UAVs are similar in design and appearance, but Air 2 is

71



(a) DJI Mavic Air 2

(b) DJI Mini 2

Figure 3.25. MFCC Features Extraction Process.

about 330 grams heavier than Mini2. The very first image to the left in the process is the

visual representation of the waveform from the audio data. The x-axis is time, and the y-axis

is amplitude. The second to the left is the spectrogram using DFT, in which the x-axis is

time and the y-axis is frequency. The next image is the Mel Spectrogram, based on the mel

scale. The last step image the final results of MFCC features. From each step, we can see

the di�erences in visual representations of the two UAVs.

3.5 Choice of Neural Network

For the e�ectiveness of neural networks in processing a large amount of data, it has

been one of the widely adopted techniques for audio-based research and applications[  195 ].

Traditional machine learning models such as linear regression and K-nearest neighbors can

also be applied to audio classification. However, considering the scale of our dataset, which

contains more than 20 di�erent types of UAVs, and the model complexity of neural networks,

which often surpass traditional machine learning algorithms, I decide to use neural networks

as the training model to perform audio classification of UAVs.
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Frequently used neural networks include, but are not limited to, feed-forward neural

networks, Convolutional Neural Networks (CNNs), Multi-Layer Perceptron (MLP), and

Recurrent Neural Networks (RNNs). Among these models, this study uses CNN to perform

experiments. CNN is a feed-forward network that contains convolution layers and is specifically

designed to process data with grid-like topologies in images[  17 ]. In current and previous

studies, along with the use of computer vision techniques, CNN produces some of the

best results in the image processing areas, such as object detection, image classification,

image segmentation, etc [  18 ]. Recent works in the audio area prove that CNNs are also

e�ective with audio data, and have been used in di�erent audio-related tasks including audio

classification[ 195 ].

When comparing other neural networks, CNN can achieve a similar performance while

requiring less memory by reducing the number of parameters because of two reasons: local

receptive fields and weight sharing. CNN usually consists of multiple convolutional layers

with one or more dense layers existing afterward. In our study, the proposed CNN model

contains two convolutional layers, two dense layers, and one dropout layer.

Figure  3.26 shows the proposed CNN structure in the first phase of the experiment. The

model first contains a 1D convolutional layer with 16 filters as the input layer. Then, a

second 1D convolutional layer with 4 filters is added as the first hidden layer. After each

1D convolutional layer, a ReLU activation layer is added to introduce the non-linearity

for classifying multiple types of UAVs. The convolution kernel size is set to 3 for both

convolutional layers. After two layers of convolution, the model flattens the output from the

convolutional part of the network using a flatten layer. The flatten layer takes in the previous

convolutional layers multi-dimensional output and transforms it into one-dimensional. Then,

one dense layer is added to connect all the neurons for computing, and the dense layer outputs

shape is a one-dimensional array, which includes 32 elements. ReLU activation function is

also applied to this layers output. To overcome overfitting and improve model generalization,

one dropout layer is added before the output layer. Moreover, the dropout rate is set to 0.4.

Finally, a dense layer with softmax activation that has the same number of neurons/nodes as

the number of classes to be classified is added as the output layer to make the multi-class
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Figure 3.26. CNN Structure for 10 Classes
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classification. Our initial dataset contains 10 categories of UAVs, therefore, the output layer

is a 10 nodes softmax layer.

3.6 Summary

This chapter first presents the process of data collection  3.1 . Data collection is divided

into indoor and outdoor, depending on the UAVs’ availability. 14 out of 22 UAVs are flown

and the data is collected outdoors, and the location is shown in Figure  3.1 . The rest 8 UAVs

are flown and data are collected indoors in K-SW at Purdue University, West Lafayette, IN.

Section  3.2 provides detailed specifications of UAVs type, weight, size, and more. Section  3.3 

is the system overview for the proposed UAV classifier using audio data. Section  3.4 provides

a detailed explanation of how feature extraction works, and how to calculate MFCCs. Lastly,

Section  3.4 presents the proposed CNN structure for phase one. However, phase two and

three adopted a similar structure to the CNN, which is used in the first and second phase.

One more dropout layer is added between the two convolutional layers in phase three to

prevent overfitting. The details can be found in the next chapter.
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4. EXPERIMENT

4.1 First Phase of the Experiment

4.1.1 UAV Audio Dataset

In the first stage, 10 di�erent UAVs are used and 1043 audio files are collected, each

containing 5 seconds of recording of the flying drone audio data [ 196 ], as shown in Table  4.1 .

The entire dataset is 1.8GB in size. The manufacturers of the UAVs include DJI, Autel,

Syma, and Yuneec. I operate and record UAVs by DJI, Autel Robotics, and Yuneec in the

outdoor environment, and UAVs by Syma in the indoor environment. Syma UAVs could not

withstand well outdoors and usually drifted away in the wind. The outdoor operation of drones

takes place in an open area in New Richmond, Indiana, and the coordinate is (40.2227062,

-87.0000169). The indoor recordings are conducted in K-SW at Purdue University.

4.1.2 Data Collection

UAVs used in the first phase of the experiment include five UAVs from DJI, three UAVs

from Syma, one from Autel, and one from Yuneec. I use a MacBook Air to record all the

audio data. The MacBook Air has a 1.1GHz Quad-Core Intel Core i5 CPU and 8GB of

memory. Initially, I collect audio samples with di�erent duration, which are 3s, 5s, and 10s. I

trained a basic CNN model with one convolutional layer and a KNN (K-Nearest Neighbors)

model using di�erent lengths of audio data. The result indicates that 5s and 10s data samples

produced similar accuracy. Hence, I continued the data collection process with a length of 5s

for each audio file.

For indoor data collection, the Syma drones are used to fly around the room, with di�erent

movements, including hovering, ascending, and descending, rolling left or right, pitching

forwards or backward, and rotating left or right. The laptop is placed about 30 inches from

the ground on a table in the center of the room.

Besides, the DJI drones, Autel Evo, and the Yuneec Typhoon are used for outdoor audio

data collection. The maximum height is about 20 meters, and the maximum radius from

the recording station is about 20 meters. Audio data is recorded when drones were flying
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Table 4.1. UAV Audio Dataset 10 Classes
Manufacture Model Number of Files Duration
DJI Matrice 200 100 500
DJI Matrice 200 V2 105 525
DJI Mavic 2 Pro 100 500
DJI Phantom 2 106 530
DJI Phantom 4 100 500
Autel Evo 2 Pro 100 500
Syma X5SW 110 550
Syma X5UW 105 525
Syma X20P 104 520
Yuneec Typhoon H Plus 113 565
Total - 1043 5215 (sec)

Table 4.2. Benchmark Evaluation Results with ML Models for 10 Classes
ML Model Accuracy
Gradient Boosting Training 0.923
Gaussian Naive Bayes 0.92
Decision Tree 0.79
Random Forest 0.94
K-Nearest Neighbour 0.89

with di�erent movements, including hovering, ascending, and descending, rolling left or right,

pitching forwards or backward, and rotating left or right. The laptop is placed on a table

facing the open field. The height of the table is about 30 inches. No extra filtering is processed

on the audio data. Hence, the sound of the wind, birds chirping, and some tra�c noise are

also included in the recordings. Also, the weather condition during the outdoor recording

varied, which include sunny, cloudy, and foggy days. The wind speed is in the range of 3mph

to 13mph. The temperatures are between 65 to 90 degrees Fahrenheit. The relative humidity

for the days to collect data is between 73% and 84%.

4.1.3 Dataset Evaluation for 10 Classes

The 10-class dataset is evaluated by the results from five di�erent ML models trained with

the collected dataset. The selected ML models are Gradient Boosting, Gaussian Naive Bayes,
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Decision Tree, Random Forest, and K-Nearest Neighbour. Table  4.2 shows the accuracy score

from each model. The dataset is split into 75% training and 25% testing. For KNN, I choose

3 as the K value in training. I only use the default values for hyperparameters for all the

other ML models. Three out of five models achieve accuracy scores above 90%. Among them,

Random forest produces the highest accuracy of 94%. Decision Trees has the lowest of 79%.

These results provide a baseline for how well the ML model performs, which is trained with

the benchmark dataset.

4.1.4 Convolutional Neural Network Training

To train the proposed CNN model, as shown in Figure  3.26 , the dataset is split into

training and testing sets. 75% data are included in the training set while the rest 25% data

are used for testing. As a result, the training dataset contains 782 recordings and the test set

has 261 recordings. I choose Adam as the optimizer in training and the learning rate is set to

0.001. Categorical cross-entropy is selected for the loss function and the model is trained

with batch size 32. The model is trained on a server with an Intel Core i7-5930K CPU, 64GB

of memory, and an Nvidia GeForce RTX 2070 Super 8GB GPU. The server is installed with

(a) Training and Testing Accuracy Plot for 10
Classes (b) Training and Testing Loss Plot for 10 Classes

Figure 4.1. Evaluation Results for 10 Classes
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Tensorflow version 2.8.0 combined with Python 3.8.14 as the framework to implement the

CNN model.

The model is trained for 100 epochs and the average training time using the above

configuration is 17.31 seconds with a standard deviation of 0.44 seconds. This result is

collected from 10 i.i.d model training runs. The model accuracy history and loss history plots

are shown in Figure  4.1a and Figure  4.1b , respectively. In both plots, the line shown in blue

is the training accuracy and loss history, and the yellow line shows the test accuracy and loss

history. As shown in the history plots, the model converges after epoch 60 since the accuracy

is not increasing as well as the loss is not decreasing as the training continues. Also, we can

see from the plots that the accuracy and loss of the training dataset and testing dataset are

not parting away from each other after the model saturates. Therefore, no overfitting nor

underfitting is happening when training the model with 100 epochs.

Table 4.3. Accuracy, Precision, Recall, and F1-scores for 10 Classes Dataset
UAV Model Precision Recall F1 Score Support
DJI Matrice200 1.00 1.00 1.00 25
DJI Matrice200 V2 1.00 1.00 1.00 28
DJI Mavic2_Pro 1.00 0.96 0.98 26
DJI Phantom2 1.00 1.00 1.00 25
DJI Phantom4 0.83 1.00 0.91 25
Autel EvoII_Pro 0.96 0.83 0.89 29
Syma X5SW 1.00 1.00 1.00 23
Syma X5UW 1.00 1.00 1.00 21
Syma X20P 1.00 1.00 1.00 24
Typhoon H Plus 1.00 1.00 1.00 35

4.1.5 Results Evaluation and Analysis

After the training is finished, I evaluate the trained model using the classification results

from the test dataset. The test dataset is tested using the trained CNN model and the

precision, recall, and F1 score of each category are calculated. Table  4.3 shows the calculated

numbers of each score as well as the number of recordings used (column support) for all

types of UAVs. As the table shows, the precision of each type of UAV’s classification result is
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Table 4.4. UAV Audio Dataset 15 Classes
Manufacture Model Number of Files Duration
David Tricopter 102 510
DJI Matrice200 100 500
DJI Matrice200 V2 105 525
DJI Mavic Air 2 131 655
DJI Mavic Mini 1 120 600
DJI Mini 2 116 580
DJI Mavic 2 Pro 100 500
DJI Phantom 2 106 530
DJI Phantom 4 100 500
Autel Evo 2 Pro 100 500
Syma X5SW 110 550
Syma X5UW 105 525
Syma X20 112 560
Syma X20P 104 520
Yuneec Typhoon H Plus 113 565
Total - 1624 8120 (sec)

above 83%, from which 8 UAV models’ classification results reach a precision score of 100%.

Furthermore, all recall values are also above 83% with 8 of them equal to 100%. The high

precision values and high recall values indicate the model is a good classifier where not only

does the model’s classification result have a low number of false positives, but also has a low

false negative rate. What’s more, the calculated F1 scores further prove that the proposed

CNN model has great performance when classifying UAVs using audio data.

The overall test accuracy of the trained model is 97.7% and the test loss is 0.049. I trained

the same model 10 times using the proposed dataset and collected the test accuracy and

test loss results. The average test accuracy of 10 separate trained models is 97.43% and the

standard deviation is 0.9%, and the average test loss is 0.085 with a standard deviation of

0.051. The statistics show that the proposed CNN model and the training configuration have

a persistent overall performance and can be reproduced for further research.
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Table 4.5. Benchmark Evaluation Results with ML Models for 15 Classes
ML Model Accuracy
Gradient Boosting Training 0.94
Gaussian Naive Bayes 0.92
Decision Tree 0.79
Random Forest 0.95
K-Nearest Neighbour 0.89

4.2 Second Phase of the Experiment

I am planning to continue collecting more data, and eventually have at least 20 di�erent

classes in the UAV audio dataset. In the meantime, evaluate the dataset with di�erent

ML models. The CNN model needs to be tuned with more classes to achieve the expected

classification results.

4.2.1 Data Collection

In the second stage, I used 15 di�erent UAVs and collected 1624 audio files, each containing

5 seconds of recording of the flying drone audio data, as shown in Table  4.4 . The entire

dataset is 2.7GB in size. In addition to the dataset collected in the first phase, 3 more DJI

drones are recorded outside on the same farm as the rest of the drones, 1 Syma drone is

recorded in K-SW at Purdue University, and a tricopter built by a friend of mine is recorded

in Columbus, IN. All the data collection methods are the same as in the first phase. The

wind speed is between 5mph to 13mph on the days of data collecting. The temperatures are

between 39 and 79 degrees Fahrenheit. The average humidity is around 64%.

4.2.2 Dataset Evaluation

The 15-class dataset is evaluated by the results from five di�erent ML models trained with

the collected dataset. The selected ML models are Gradient Boosting, Gaussian Naive Bayes,

Decision Tree, Random Forest, and K-Nearest Neighbour. Figure  4.3 shows the accuracy

score from each model. The dataset is split into 75% training and 25% testing. For KNN, I
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choose 3 as the K value in training. I only use the default values for hyperparameters for all

the other ML models. Three out of five models achieve accuracy scores above 90%. Among

them, Random forest produces the highest accuracy of 95%. Decision Trees has the lowest of

79%. These results provide a baseline for how well the ML model performs, which is trained

with the benchmark dataset.

4.2.3 Convolutional Neural Network Training

Figure 4.2. CNN Structure for 15 Classes

Figure  4.2 illustrates the structure of CNN in the second phase. Compared to the one in

the first phase, the number of filters is increased in the second convolution layer from 4 to

8. I also adjust the number of elements in the dense layer after the two convolution layers,
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from 32 to 128. Finally, the last dense layer has the same number of neurons as the number

of classes to be classified as the output layer to perform multi-class classification tasks. In

the second phase, the dataset contains 15 categories of UAVs, thus, the output layer is a 15

nodes softmax layer.

To train the proposed CNN model, the dataset is split into training and testing sets. 75%

data are included in the training set while the rest 25% data are used for testing. As a result,

the training dataset has 1218 recordings included in the training set and 406 for the test set.

The training uses Adam as the optimizer and the learning rate is set to 0.001. Categorical

cross-entropy is used as the loss function and trained the model with batch size 32. The

model is trained on the same server used for the first phase experiment. Tensorflow version

2.8.0 and Python 3.8.14 are used as the framework to implement the CNN model.

I train the model for 100 epochs and the average training time using the above configuration

is 22.39 seconds with a standard deviation of 0.005 seconds. This result is collected from 10

i.i.d model training runs. The model accuracy history and loss history plots are shown in

Figure  4.3a and Figure  4.3b , respectively. In both plots, the line shown in blue is the training

accuracy and loss history, and the yellow line shows the test accuracy and loss history. As

shown in the history plots, the model converges after epoch 40 since the accuracy is not

increasing as well as the loss is not decreasing as the training continues. Also, we can see

from the plots that the accuracy and loss of the training dataset and testing dataset are

not parting away from each other after the model saturates. Therefore, no overfitting nor

underfitting is happening when training the model with 100 epochs.

4.2.4 Result Evaluation and Analysis

Same as the first stage experiment, I evaluate the trained model using the classification

results from the test dataset. The test dataset is classified using the trained CNN model

and precision, recall, and F1 score of each category are calculated. Table  4.6 illustrates the

calculated number of each score and the number of recordings used for all UAVs. We can

see that the precision of each type of UAV’s classification is above 88%, with 11 of them

achieving 100%. In addition, all the recall scores are above 88%, and also 11 of them are
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(a) Training and Testing Accuracy Plot for 15
Classes (b) Training and Testing Loss Plot for 15 Classes

Figure 4.3. Evaluation Results for 15 Classes
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Table 4.6. Accuracy, Precision, Recall, and F1-scores for 15 Classes Dataset
UAV Model Precision Recall F1 Score Support
David Tricopter 1.00 1.00 1.00 23
DJI Matrice 200 0.96 1.00 0.98 26
DJI Matrice 200 V2 0.96 1.00 0.98 22
DJI Mavic Air 2 1.00 0.88 0.94 33
DJI Mavic Mini 1 1.00 1.00 1.00 27
DJI Mini 2 1.00 1.00 1.00 24
DJI Mavic 2 Pro 1.00 1.00 1.00 29
DJI Phantom 2 1.00 1.00 1.00 32
DJI Phantom 4 1.00 1.00 1.00 25
Autel Evo 2 Pro 0.93 1.00 0.96 26
Syma X5SW 0.88 1.00 0.94 23
Syma X5UW 1.00 0.96 0.98 28
Syma X20 1.00 0.96 0.98 24
Syma X20P 1.00 0.94 0.97 32
Yuneec Typhoon H Plus 1.00 1.00 1.00 32

100%. Again, similar to the first stage experiment, the high precision values and high recall

values indicate our model is a good classifier where not only does the model’s classification

results have a low number of false positives and false negatives. Furthermore, the calculated

F1 scores indicate that the proposed CNN model has great performance when classifying

UAVs using audio data.

The overall test accuracy of the trained model is 98.7% and the test loss is 0.076. I

train the same model 10 times using the proposed dataset. The average test accuracy of 10

separate trained models is 98.2% and the standard deviation is 0.9%, and the average test

loss is 0.085 with a standard deviation of 0.0052. The statistics indicate that the proposed

CNN model and the training configuration have a persistent overall performance and can be

reproduced for further research.
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Table 4.7. UAV Audio Dataset 22 Classes
Manufacture Model Number of Files Duration
Self-build David Tricopter 102 510
Self-build PhenoBee 116 585
Autel Evo 2 Pro 100 500
DJI Matrice 200 100 500
DJI Matrice 200 V2 105 525
DJI Mavic Air 2 131 655
DJI Mavic Mini 1 120 600
DJI Mini 2 116 580
DJI Mavic 2 Pro 100 500
DJI Mavic 2s 115 580
DJI Phantom 2 106 530
DJI Phantom 4 100 500
DJI RoboMaster TT Tello 118 595
Hasakee Q11 108 545
Syma X5SW 110 550
Syma X5UW 105 525
Syma X20 112 560
Syma X20P 104 520
Syma X26 138 695
Swellpro Splash 3 plus 120 605
Yuneec Typhoon H Plus 113 8120
UDI RC U46 101 510
Total - 2440 12200 (sec)
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4.3 Third Phase of the Experiment

4.3.1 Data Collection

In the third stage, I used 22 di�erent UAVs and collected 2440 audio files, each containing

5 seconds of recording of the flying drone audio data, as shown in Table  4.7 . The entire

dataset is 6GB in size. In addition to the dataset collected in the second phase, DJI Mavic

Mini2, and Swellpro Splash 3 plus are recorded outside in the same location as the other

outdoor ones. Syma X26, Hasakee Q11, UDIRC U46 are recorded in K-SW at Purdue

University. We also included two self-build drones: 1 tricopter built by a friend of mine is

recorded in Columbus, IN, and an agriculture UAV is recorded near Agronomy Center for

Research and Education in West Lafayette, IN. All the data collection methods are the same

as in the first and second phases. The wind speed is between 5mph to 20mph on the days of

data collecting. The temperatures are between 30 and 79 degrees Fahrenheit. The average

humidity is around 72%.

4.3.2 Dataset Evaluation for 22 Classes

The 22-class dataset is evaluated by the results from five di�erent ML models trained with

the collected dataset. The selected ML models are Gradient Boosting, Gaussian Naive Bayes,

Decision Tree, Random Forest, and K-Nearest Neighbour. Figure  4.5 shows the accuracy

score from each model. The dataset is split into 80% training and 20% testing. For KNN, the

K value is set to 3 in training. I only use the default values for hyperparameters for all the

other ML models. Four out of five models achieve accuracy scores above 94%. Among them,

Random Forest performs the best with the highest accuracy of 97.5%. Decision Trees has the

lowest of 82.8%. These results provide a baseline for how well the ML model performs, which

is trained with the benchmark dataset.

4.3.3 Convolutional Nerual Network Training

Figure  4.4 illustrates the structure of CNN in the third phase. Compared to the one in

the second phase, the number of filters is increased in both convolution layers to 32. The
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Table 4.8. Benchmark Evaluation Results with ML Models for 22 Classes
ML Model Accuracy
Gradient Boosting Training 0.945
Gaussian Naive Bayes 0.957
Decision Tree 0.828
Random Forest 0.975
K-Nearest Neighbour 0.941

Figure 4.4. CNN Structure for 22 Classes
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number of elements in the dense layer after the two convolution layers are the same as in the

second stage, which is 128. Finally, the last dense layer has the same number of neurons as

the number of classes to be classified as the output layer to perform multi-class classification

tasks. In the third phase, the dataset contains 22 categories of UAVs, thus, the output layer is

a 22 nodes softmax layer. I also added another drop out layer in between the two convolution

layers to prevent overfitting.

To train the proposed CNN model, the dataset is split into training and testing sets. 80%

data are included in the training set while the rest 20% data are used for testing. As a result,

the training dataset has 1952 recordings included in the training set and 488 for the test set.

The training uses Adam as the optimizer and the learning rate is set to 0.001. Categorical

cross-entropy is used as the loss function and trained the model with batch size 32. The

model is trained on the same server used for the first phase experiment. Tensorflow version

2.8.0 and Python 3.8.14 are used as the framework to implement the CNN model.

I train the model for 100 epochs and the average training time using the above configuration

is 41.1 seconds with a standard deviation of 0.467 seconds. This result is collected from 10

i.i.d model training runs. The model accuracy history and loss history plots for the 10th

trained model are shown in Figure  4.5a and Figure  4.5b , respectively. In both plots, the line

shown in blue is the training accuracy and loss history, and the yellow line shows the test

accuracy and loss history. As shown in the history plots, the model converges after epoch

60 since the accuracy is not increasing as well as the loss is not decreasing as the training

continues. Also, we can see from the plots that the accuracy and loss of the training dataset

and testing dataset are not parting away from each other after the model saturates. Therefore,

no overfitting nor underfitting is happening when training the model with 100 epochs. In

addition, average accuracy scores from 10 training on the test set for each individual class are

presented in Figure  4.6 . The lowest accuracy score belongs to the class of Phenobee, which is

0.9465%.
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(a) Training and Testing Accuracy Plot for 22
Classes (b) Training and Testing Loss Plot for 22 Classes

Figure 4.5. Evaluation Results for 22 Classes

Figure 4.6. Accuracy Score for Each Class
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4.3.4 Result Evaluation and Analysis

I train the same model 10 times using the proposed dataset. The average test accuracy of

10 separate trained models is 99.1% and the standard deviation is 0.38%, and the average

test loss is 0.027 with a standard deviation of 0.8%. The overall test accuracy of the 10th

trained model is 99.1% and the test loss is 0.007. The statistics indicate that the proposed

CNN model and the training configuration have a persistent overall performance and can be

reproduced for further research.

Table 4.9. Accuracy, Precision, Recall, and F1-scores for 22 Classes Dataset
UAV Model Label Precision Recall F1 Score Support
David Tricopter 0 1.00 1.00 1.00 22
DJI Matrice 200 1 1.00 0.92 0.96 13
DJI Matrice 200 V2 2 0.94 1.00 0.97 15
DJI Mavic Air 2 3 1.00 0.95 0.98 22
DJI Mavic Mini 1 4 1.00 1.00 1.00 21
DJI Mini 2 5 1.00 1.00 1.00 23
DJI Mavic 2 Pro 6 0.95 1.00 0.97 19
DJI Mavic 2s 7 0.96 0.96 0.96 23
DJI Phantom 2 8 1.00 0.94 0.97 18
DJI Phantom 4 9 1.00 1.00 1.00 25
DJI TT Tello 10 1.00 1.00 1.00 21
Autel Evo 2 Pro 11 1.00 1.00 1.00 18
Hasakee Q11 12 1.00 1.00 1.00 29
PhenoBee 13 0.96 1.00 0.98 23
Swellpro Splash 3 plus 14 1.00 1.00 1.00 24
Syma X5SW 15 1.00 1.00 1.00 21
Syma X5UW 16 1.00 1.00 1.00 27
Syma X20 17 1.00 1.00 1.00 19
Syma X20P 18 1.00 1.00 1.00 27
Syma X26 19 1.00 1.00 1.00 27
UDI RC U46 20 1.00 1.00 1.00 18
Yuneec Typhoon H Plus 21 1.00 1.00 1.00 33

Same as in the first and the second phase experiment, I evaluate the trained model

using the classification results from the test dataset. The test dataset is classified using

the trained CNN model and precision, recall, and F1 score of each category are calculated.

Table  4.9 illustrates the calculated number of each score from the 10th training and the

91



number of recordings used for all UAVs. We can see that the precision of each type of UAV’s

classification is above 94%, with 18 of them achieving 100%. In addition, all the recall scores

are above 92%, and also 18 of them are 100%. Again, even better than the first and the

second stage experiment, the high precision values and high recall values indicate our model

is a good classifier, for the model’s classification results have a low number of false positives

and false negatives. Furthermore, the calculated F1 scores indicate that the proposed CNN

model has great performance when classifying UAVs using audio data.

The confusion matrix shown in Figure  4.7 is obtained by training the CNN classifier

and evaluating the trained model on the test set. Let assign the name “CM" to the matrix,

and each element in the matrix be indicated by “CM_truelabel, predictedlabel," where “true

label" is the row name which represents true labels), and “predicted label" is the column

name that represents the predicted class. For example, CM(Phantom4, Mavic2s) = 0.

Figure  4.7 provides valuable information about the model performance as follows:

• The diagonal numbers present the data samples that are predicted correctly by the

trained model. There are total of 484 data samples being correctly predicted among

488 test data samples, which results in 99.1% overall accuracy.

• CM(Matrice200, X26) = 0 indicates that the model does not confuse the data labeled

as X26 with Matrice200. The classification model learned the similarities and di�erences

between these two classes.

• CM(Mavic_Air2, Mavic2s) = 1 implies that the model predicted one data sample

that originally belonged to Mavic Air2 as Mavic2s. Thus, the accuracy in prediction

for Mavic2s is 95.65%.

The other important tool to evaluate a classification model is to use AUC-ROC curves,

which calculate the Area Under the Curve (AUC) of the Receiver Operating Characteristic

(ROC). The larger the area, the better the model. One vs rest (OvR) is one of the two

methods when utilizing the ROC curve, and the other one is called One vs One (OvO). In

this research, we only use OvR to evaluate the proposed classifier. OvR is often applied to

evaluate multi-class classifiers by comparing each class against all the others at once. This
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Figure 4.7. Confusion Matrix for 22 Classes
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method takes one class to evaluate as the positive class, while all the rest of the other classes

are the negative class. In this way, we simplify the output from the multi-class classification

and convert it into a binary classification result. When analyzing the ROC curve, the diagonal

dotted line indicates the random classifier, where the true positive rate and false positive

rate are almost the same. Our classifier shows a high true positive and low false positive

rate, as shown in Figure  4.8 , which again indicates that the proposed CNN classifier has

great performance when classifying UAVs using audio data. When plotting the ROC curve,

numeric labels are used instead of UAV model names. Table  4.10 show the corresponding

labels to the UAVs.

Figure 4.8. OvR ROC Curve

4.4 Summary

In this chapter, three phases of the experiments are presented. For each phase, a dataset

evaluation is conducted, in which five Machine Learning models are trained using the collected
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Table 4.10. UAV Models and Labels
0 David Tricopter 1 DJI Matrice 200 2 DJI Matrice 200 V2
3 DJI Mavic Air 2 4 DJI Mavic Mini 1 5 DJI Mini 2
6 DJI Mavic 2 Pro 7 DJI Mavic 2s 8 DJI Phantom 2
9 DJI Phantom 4 10 DJI TT Tello 11 Autel Evo 2 Pro
12 Hasakee Q11 13 PhenoBee 14 Swellpro Splash 3 plus
15 Syma X5SW 16 Syma X5UW 17 Syma X20
18 Syma X20P 19 Syma X26 20 UDI RC U46
21 Yuneec Typhoon H Plus

dataset. All the ML models are trained with default settings and parameters. This step is to

see how e�cient the dataset is and to provide a baseline for Deep Learning model training.

In the first phase (Section  4.1 ), audio data from 10 classes of UAVs are collected, and a CNN

classifier is trained using the collected dataset. The average of 10 separate training is 97.43%,

and the average test loss is 0.085. In the second phase of the experiment (Section  4.2 ), audio

data from 15 classes of UAVs are collected and a CNN classifier is trained with the collected

dataset. The CNN structure from the second phase is based on the first, but the number of

filters is increased in both the convolutional layer and the dense layer. The average of 10

separate training is 98.2%, and the average test loss is 0.085. In the third phase (Section  4.3 ),

audio data from 22 classes are collected and a CNN classifier is trained with the collected

dataset. The CNN structure in the third phase has an increased number of filters in both

convolutional layers, and another dropout layer is added between the two convolutional layers.

The average of 10 separate training is 99.1%, and the average test loss is 0.027. Besides

Accuracy, Precision, Recall, and F1-scores, additional evaluation metrics of the CNN structure

in the third phase are conducted, including a confusion matrix plot Figure  4.7 and OvR ROC

curves Figure  4.8 .
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5. CONCLUSION

The proliferation of unmanned aerial vehicles (UAVs), commonly known as drones, has

experienced an exponential surge in popularity in recent years. These UAVs have become

increasingly accessible to a wide range of users, encompassing both professionals and amateurs

alike. However, the potential for malicious misuse of UAVs poses a significant threat to public

safety. Presently, the regulation and enforcement of UAV guidelines primarily rely on self-

regulation measures. Consequently, ensuring robust detection systems for UAVs has become

paramount. Various methodologies, such as computer vision, radar, radio frequency, and

audio-based approaches, have been employed to develop UAV detection systems. Nevertheless,

each of these approaches possesses inherent advantages and disadvantages. In this research,

the audio-based method is adopted due to its notable precision and cost-e�ectiveness, as it

obviates the need for supplementary equipment. However, the paucity of publicly accessible

datasets stands as a major impediment to the development of an audio-based UAV detection

and classification system. To address this critical gap, the research is bifurcated into two

principal components: firstly, the acquisition of a comprehensive and extensive UAV audio

dataset, and secondly, the construction of a Deep Learning-based UAV classifier, which is

trained utilizing the amassed dataset.

Chapter 1 provides the foundational background and rationale for this research (Sec-

tion  1.1 ), which aims to address and mitigate the issue of malevolent unmanned aerial

vehicle (UAV) threats and attacks through the utilization of UAV audio data and Deep

Learning techniques. Moreover, Chapter 1 delves into the specifics of the research question

(Section  1.2 ), highlighting its intrinsic importance and relevance within the field. Additionally,

the chapter expounds upon the significance of this research (Section  1.3 ), shedding light

on its potential implications and contributions. Furthermore, Chapter 1 acknowledges the

limitations inherent in this study and outlines avenues for future exploration (Section  1.4 ).

Chapter 2 delves into significant architectures of Deep Learning, encompassing Convolu-

tional Neural Networks (CNNs), Recurrent Neural Networks (RNNs), Seq2Seq models, and

other relevant methodologies. Moreover, this chapter provides an in-depth exploration of
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popular Deep Reinforcement Learning (DRL) algorithms pertaining to audio classification,

namely model-based DRL, policy gradient-based DRL, and value-based DRL.

In light of the scarcity of publicly available audio datasets, Section ?? examines diverse

approaches to data augmentation techniques. Additionally, a comprehensive literature review

presented in Section  2.4 highlights the merits of utilizing Deep Learning (DL) in audio and

speech processing applications. Specifically, a meticulous examination is conducted on ML-

based UAV detection and classification, utilizing varied approaches such as radar, computer

vision, radio-frequency, and audio. Furthermore, papers concerning UAV payload detection

are thoroughly scrutinized, providing a comprehensive understanding of each approach’s

strengths and weaknesses, all of which demonstrate promising results.

Furthermore, this chapter delves into the audio features conventionally employed for

training ML models, covering the time domain, frequency domain, time-frequency domain,

and cepstral domain. It elucidates the evolution, characteristics, and applications of di�erent

features. Additionally, the chapter investigates various feature extraction tools, available

in di�erent formats such as software function libraries, plug-ins for host applications, and

standalone software applications. Most of these tools are open-source and can be e�ectively

utilized across modern architectures and platforms.

Chapter 3 commences by presenting an elaborate account of the data collection process

(see Section  3.1 ). This phase is further divided into indoor and outdoor operations, contingent

upon the availability of unmanned aerial vehicles (UAVs). Notably, out of the 22 UAVs under

consideration, 14 were flown and data was collected outdoors, with the specific locations

indicated in Figure  3.1 . The remaining eight UAVs were flown and their corresponding

data was gathered within the controlled environment of K-SW at Purdue University, West

Lafayette, IN. In Section  3.2 , comprehensive specifications pertaining to the UAVs, including

type, weight, size, and other relevant details, are meticulously delineated.

Subsequently, Section  3.3 provides an extensive overview of the proposed UAV classifier,

which capitalizes on audio data for classification purposes. Furthermore, Section  3.4 o�ers an

intricate elucidation of the underlying mechanics of feature extraction, delineating the precise

methodology employed for calculating Mel-frequency cepstral coe�cients (MFCCs). Finally,

Section  3.4 introduces the architectural framework of the proposed convolutional neural
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network (CNN) for phase one. Notably, phase two and phase three adopt a similar structure

to that of the CNN utilized in the initial two phases. To address concerns of overfitting, an

additional dropout layer is incorporated between the two convolutional layers in phase three.

Chapter 4 of this dissertation presents a detailed account of the experimental process,

encompassing three distinct phases. Each phase involves a comprehensive dataset evaluation,

wherein five distinct Machine Learning models are trained to utilize the collected dataset.

Notably, all ML models are trained using default settings and parameters. This step serves

the purpose of assessing the dataset’s e�ciency and establishing a baseline for Deep Learning

model training.

The first phase (Section  4.1 ) entails the collection of audio data from 10 specific classes of

UAVs, followed by training a CNN classifier using the acquired dataset. The results of this

phase indicate an average training accuracy of 97.43% and an average test loss of 0.085, as

derived from 10 separate training sessions.

Moving on to the second phase (Section  4.2 ) of the experiment, audio data from 15

di�erent classes of UAVs are collected. A CNN classifier is subsequently trained using this

expanded dataset, based on the CNN structure developed in the first phase. However, notable

modifications include an increased number of filters in both the convolutional and dense

layers. The findings reveal an average training accuracy of 98.2% and an average test loss of

0.085, obtained from 10 separate training runs.

The third phase (Section  4.3 ) focuses on the collection of audio data from 22 distinct

classes of UAVs, which is utilized to train another CNN classifier. Notably, the CNN structure

in this phase incorporates further enhancements, such as an increased number of filters in

the convolutional layers and the inclusion of an additional dropout layer between the two

convolutional layers. The outcomes of this phase showcase an average training accuracy of

99.1% and an average test loss of 0.027, based on 10 separate training iterations.

Furthermore, in addition to Accuracy, Precision, Recall, and F1-scores, an array of

supplementary evaluation metrics are employed to assess the CNN structure implemented in

the third phase. These metrics include the examination of a confusion matrix plot (Figure  4.7 )

and the utilization of OvR ROC curves (Figure  4.8 ).
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In conclusion, this research study encompasses three distinct experimental phases, which

culminated in the collection of audio data from a diverse range of 22 di�erent types of

unmanned aerial vehicles (UAVs), spanning from handheld drones to Class I UAVs, as

depicted in Figure  4.7 . A minimum of 100 data entries were obtained for each UAV class,

with each data entry having a duration of 5 seconds. In the absence of an available benchmark

dataset, five machine learning (ML) models were trained using the collected dataset to assess

its quality. Additionally, these trained ML models served as a foundation for subsequent deep

learning (DL) model training. Subsequently, a convolutional neural network (CNN) classifier

was trained to utilize the acquired dataset. The resulting 22-class classifier achieved an

average accuracy score of 99.1% and an average test loss of 0.027. Furthermore, comprehensive

evaluations of the CNN structure in the third phase included the examination of additional

performance metrics such as precision, recall, F1-scores, as well as the generation of a confusion

matrix plot (Figure  4.7 ) and one-vs-rest receiver operating characteristic (OvR ROC) curves

(Figure  4.8 ). The collective findings from these evaluation metrics a�rm that the proposed

classifier exhibits near-flawless performance in accurately classifying UAVs utilizing audio

data.

The present study is subject to several limitations, which are outlined as follows:

• The dataset used in this research comprises solely Class I UAVs, thus limiting the

generalizability of the findings to other classes of UAVs.

• Data collection was confined to the period between sunrise and sunset due to regulatory

requirements and considerations of personal safety. Consequently, variations in UAV

audio patterns during other times of the day remain unexplored.

• The collected outdoor data incorporates ambient noises originating from the rural

environment, including air tra�c, ground tra�c, birds, insects, wind, human conversa-

tions, and other similar sources. These environmental noises may introduce potential

confounding factors in the audio dataset.

• The dataset includes a total of 22 distinct classes, representing 22 di�erent UAVs. While

this collection is the largest known audio dataset for UAVs to date, it is important to note
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that it does not encompass the entirety of UAVs available from various manufacturers

and models.

• The number of data entries for each class ranges from 100 to 138, with each data entry

spanning a duration of 5 seconds. The inclusion of additional data for each class would

enhance the robustness and reliability of the classifier.

• The proposed classifier is based on a convolutional neural network (CNN) structure,

which serves as the underlying foundation for its operation and decision-making process.

These limitations should be taken into account when interpreting the findings of this

research and considering its potential implications. Future studies may address these limita-

tions by incorporating diverse classes of UAVs, extending data collection periods, mitigating

environmental noise e�ects, expanding the dataset to include a broader range of UAV models,

increasing the volume of data for each class, and exploring alternative classifier architectures

beyond CNNs.

The aforementioned limitations highlight potential avenues for future research. As

part of these research endeavors, a primary objective is to further enhance the dataset by

incorporating additional UAV types and augmenting the volume of data available for each

class. Furthermore, an area of interest lies in the implementation of alternative deep learning

architectures, such as self-supervised learning and semi-supervised learning, utilizing the

comprehensive dataset gathered. By conducting a comparative analysis of the performance

exhibited by various model structures, valuable insights can be gleaned, enhancing the

understanding and e�ectiveness of UAV classification methodologies.
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