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Abstract—Automatic detection of visual anomalies and changes
in the environment has been a topic of recurrent attention in
the fields of machine learning and computer vision over the
past decades. A visual anomaly or change detection algorithm
identifies regions of an image that differ from a reference image
or dataset. The majority of existing approaches focus on anomaly
or fault detection in a specific class of images or environments,
while general-purpose visual anomaly detection algorithms are
more scarce in the literature. In this paper, we propose a
comprehensive deep learning framework for detecting anomalies
and changes in a priori unknown environments after a reference
dataset is gathered, and without need for retraining the model.
We use the SuperPoint and SuperGlue feature extraction and
matching methods to detect anomalies based on reference images
taken from a similar location and with partial overlapping of the
field of view. We also introduce a self-calibrating method for the
proposed model in order to address the problem of sensitivity
to feature matching thresholds and environmental conditions. To
evaluate the proposed framework, we have used a ground robot
system for the purpose of reference and query data collection.
We show that high accuracy can be obtained using the proposed
method. We also show that the calibration process enhances
changes and foreign object detection performance.

Index Terms—Anomaly Detection; Change detection; Robotics;
Visual anomaly detection; Computer vision; Feature extraction;
Inspection robots

I. INTRODUCTION

Anomaly detection, also known as foreign and outlier
detection is a recurrent concept in computer vision, machine
learning, and statistics. It has been explored in a wide range of
research and application fields such as industry [12], medical
imaging [8], security and safety systems [1]. Anomaly detec-
tors are designed to identify the presence of unknown artifacts
in data types such as images, videos, audio, text, and time
series that significantly differs from the normal data. Visual
anomaly detection refers to the detection of anomalies within
image data. Vision-based anomaly detection can be performed
on both pixel and image levels. Anomaly detection algorithms
are typically based on a reference dataset from which normal
conditions are generalized. Change detection algorithms, on
the other hand, typically compare individual pairs of images
to detect changes. Our objective is to combine both from the
perspective of supporting autonomous inspection robots.

Machine learning methods have been extensively explored
as a powerful tool for detecting anomalies. Based on refer-
ence information with labelled normal and abnormal data in

Fig. 1: Selection of results from the method introduced in this work.

the training process, deep anomaly detection models can be
divided into three categories: supervised, semi-supervised, and
unsupervised. These anomaly detection models often require a
large number of training data from both normal and abnormal
data to be effective in detecting anomalies [4]. The supervised
models are trained for normal and abnormal images, as well
as for limited foreign objects inside abnormal images. The
unsupervised models are also trained for normal data as a
single-class classification, then can classify other classes as
the alien classes [20].

Some of the main limitations of existing works on visual
anomaly detection tasks are that they have trained their models
on specific environments and datasets [30], and the models for
a large variety of datasets need to have a robust localization
or a very similar viewpoint [2]. Also, works that are robust
against environmental changes are trained for specific envi-
ronments [27].

In this study, we focus on a vision-based anomaly and
change detection system for finding abnormal data based on
detecting foreign or changed objects at the pixel level in single-
robot missions (see Fig. 1). Anomalies or changes are both
detected but not separately classified. We target the application
domain of inspection robots. We first assume that the robot is
able to navigate through its environment and records normal
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reference images at least once. We then provide a method for
self-calibration of the model based on the reference data, and
a system for comparing any future images with corresponding
images captured from similar locations in the reference data to
detect abnormal objects or changes. The focus of our analysis
has been pixel-level change detection in the second robot’s
camera. The evaluation was conducted on pairs of images with
from different cameras and with different conditions including
variable viewpoints, distance to the anomaly, and environment
lightning.

When robots move in different directions and follow dif-
ferent routes, there can be noticeable changes in the output
images, such as viewpoint changes. To overcome the men-
tioned challenges, a method has been applied to extract and
compare multi-scale features between the input image and the
corresponding image in the trusted robot. We have employed
SuperPoint [5], and SuperGlue [24] for feature extraction
and feature matching process between pairs of images and
calibrated them based on different environments and cameras.
These features are robust to lighting, scale, and viewpoint
changes. Then, in order to recognize the exact object as
the anomaly in the image, the trained Mask-RCNN instance
segmentation model has been used to segment anomalous parts
based on the extracted features. Due to the limited number
of object classes in each model and the fact that there are
always untrained classes, in order to address the detection
of unknown anomalies, DBSAN clustering method also is
applied on unmatched interest points that are not segmented.
Final anomalies are detected using both the segmentation and
clustering processes.

The rest of this manuscript is structured as follows. Section
II discusses related work in the relevant anomaly and change
detection literature. The background of the study is discussed
in section III, and section IV provides an overview of the
methodological approaches we used for this analysis. Results
are presented in Section V, and Section VI concludes the work
and points to future directions.

II. RELATED WORK

Recent studies have focused mostly on using image recon-
struction approaches based on convolutional neural network
models to detect visual anomalies in a certain class. Autoen-
coders and generative adversarial networks (GAN) are popular
deep generative models. These models are trained on sufficient
normal images of a single class to be able to reconstruct test
images of the same class and detect the abnormal classes
by comparing the loss scores [26], [35]. In [30] the authors
applied a three-step procedure based on a deep generative
model including an autoencoder and discriminator to detect
abnormal images and foreign objects in rail images. A cog-
nitive visual anomaly detection model consisting of an auto-
encoder was utilized for industrial inspection robot to detect
abnormal images with larger reconstruction errors than normal
images in [13].

For pixel-level anomaly detection, some studies used
segmentation-based approaches. The authors in [6] developed

an anomaly detection method based on the comparison of
features between the input and a generated photo-realistic
image using a semantic segmentation model for road images.
In [9], [21] the Mask-RCNN segmentation model was used
to detect anomaly events and instances for video surveillance
systems. However, when anomaly is a missed object or an
unknown object, it cannot be detected or segmented by the
segmentation and detection methods.

Change detection is also widely used in several fields,
including aerial image change detection [16], urban change
monitoring [38], and anomaly detection [32] by comparing
images of the same area. Wang et al. in [31] introduced a scene
change detection model using the siamese vision transformer
and CNN model to generate corresponding pixel-wise change
maps. Similar models have been designed to be robust to
outdoor conditions, including illumination, scaling, and view-
point changes [10]. ChangeNet [29], and CSCDNet [23] which
are deep siamese networks for detecting changes between
pairs of images, have been used for different datasets and
applications [19].

In a recent study [28], the authors presented a visual change
detection method for robotics applications. They applied an
attention mask to the intermediate layer of a siamese CNN
to detect small changes in pairs of images. They evaluated
their method by comparing reference images to live images
with slight variations in viewpoint in indoor environment. A
number of studies have used feature detection methods to
detect anomalies in pair images [18].

There are a number of well-known classical feature de-
tectors in the computer vision area, including SIFT [17],
SURF [3], and ORB [22], as well as deep neural network-
based methods, such as SuperPoint. An anomaly detection
model is described in [37] using ORB features and sliding
windows. In a relevant study [36], SIFT feature extractor along
with polar cosine transform (PCT) have been incorporated to
detect tempered pixels in images for internet of things (IoT)
security. A fully-convolutional neural network architecture
called SuperPoint which is a self-supervised feature point
detector and descriptor was presented in [5]. SuperGlue [24] as
a keypoints matching technique showed better performance in
conjunction with SuperPoint to match two sets of extracted
features and corresponding descriptors. The results showed
that their proposed method tends to generate a larger number
of correct matches that broadly cover the image compared
to other traditional methods. Both SuperPoint and SuperGlue
have different confidence parameters such as keypoint detec-
tors and matching confidence thresholds which have a major
effect on their performance and the final results.

III. BACKGROUND

Through this section, we introduce the key neural network
architectures that are employed in our work.

A. SuperPoint

SuperPoint is a self-supervised fully convolutional neural
network for extracting interest points and their descriptors.
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Fig. 2: Architectural diagram of the proposed framework.

Its architecture starts with pre-training a base detector called
MagicPoint on synthetically generated dataset that includes
simple shapes such as rectangles, stars, and cubes to extract
interest points. Detecting corners of simple geometric shapes
using the initial base detector performs well even with added
noise [5]. However, the base detector misses many important
interest point in real images. For better generalization, it
is combined with homographic adaptation to provide more
training samples from each image in the MS-COCO dataset.
Using this approach, pseudo-ground truth interest points are
generated for each image. The final network has a shared
VGG-based encoder and two decoders. The first decoders
is for point detection, while the second one is for point
description. There are multiple shared parameters between
both. Compared to traditional feature point extractors such
as LIFT, ORB, or SIFT, the Superpoint model has recently
achieved superior results in several research projects.

B. SuperGlue

SuperGlue is a feature point matching method that takes key
points and their descriptors in image pairs and matches them
with corresponding points using a graph neural network. It
has been shown to produce better results in combination with
the SuperPoint-generated features. In short, the algorithm is
composed of two parts, an attentional graph neural network,
and an optimal matching layer. A differentiable Sinkhorn
algorithm is used to efficiently pair matchable points and
reject non-matchable points at the final step [24]. SuperPoint
and Superglue models require predefined thresholds for dif-
ferent parameters such as sinkhorn iterations, non-maximum
suppression (NMS), and keypoints and matching thresholds.
These parameters affect the performance of the networks, and
therefore are often tailored to the nature of the data being fed
to the models. In this work we introduce a self-calibration
approach given some data samples.

C. Instance segmentation

Object segmentation is a process in which a specific class
is assigned to pixel values of an image, and it is broadly
divided into two types: semantic segmentation and instance

segmentation. Semantic segmentation results in all pixels of
the same class with the same value. Instance segmentation
methods, instead, identify multiple objects of a single class as
distinct instances of interest in an image, and only label pixels
of classified objects. Recently, several approaches for instance
segmentation have been proposed, with the most popular
technique still relying on Mask R-CNN, a two-stage detection
and segmentation approach [11], robust to different image
types [34]. In this approach, and using an object detection
model, bounding boxes are first predicted for all instances.
Then, regions-of-interest (ROIs) are cropped for each instance
and all ROIs are then fed to a fully convolutional network for
foreground and background segmentation.

IV. METHODOLOGY

In this section, we introduce a calibration procedure for
the feature extraction algorithm, along with the segmentation
and clustering of interest points. A diagram of the proposed
process is outlined in Fig. 2.

For detecting both changes and foreignobjects in an en-
vironment, two sets of images are processed based on the
SuperPoint and the SuperGlue techniques. We calibrated the
models using a single-shot procedure since the number of
matched and non-matched points varies depending on different
thresholds. In this study, we have used the SuperGlue GitHub
repository1 to extract and match keypoints of base and test
images.

The main parameter to adjust is the SuperGlue match
threshold (∆) that directly affects the number of matched
interest points. We have also analyzed the impact of other
parameters but found any significant performance changes. A
small ∆ close to 0 (e.g., the default value ∆ = 0.2 used
in the SuperGlue paper) results in wrong common overlap
areas in image pairs. A large threshold (close to 1) , on the
other hand, leads to incorrect anomaly detection. We change
the amount of matching threshold from ∆ = 0 to ∆ = 0.9
with steps of 0.1. This parameter must be calibrated according
to different environmental conditions and camera types. To

1https://github.com/magicleap/SuperGluePretrainedNetwork
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this end, we capture a few image pairs with a horizontal shift
with three different cameras. The images are obtained under
various conditions, with changes in lightning and environment
structure or background. Due to the linear shift between
image pairs, we hypothesize that appropriate thresholds should
yield a low standard deviation of the distribution of distances
between matched keypoint pairs. Let N be the number of
image pairs and mpn be the number of matched interest points
in image pair number n. The coefficient of variation (cv) of
the image pairs can be computed following Eq. (1):

cvn =
σn
µn

n = 0, ..., N (1)

where σn and µn are the standard deviation and the average
distance between matched keypoints, respectively. If the num-
ber of matched interest points is close to 0, it will result in a
smaller amount of cvn so, for the ideal threshold values with
a maximum number of interest points, each cvn is divided by
the number of matched interest points. The average of this
value for N image pairs is calculated as given by Eq. (2):

cv =

∑N
n=1

cvn
mpn

N
n = 0, ..., N (2)

The deployment, calibration and anomaly detection process
then proceeds as follows:

1. Baseline data: once a robot is deployed, we first gather
a sample set of images of the new environment, which can be
as small as a single pair of images. We then measured cv for
different matching thresholds. Low thresholds result in more
true positive, but also more false positives. The best value is
a balance point between maximum number of keypoints and
minimum amount of cv. We use the Kneedle algorithm to find
a balance point on the curve of the mean of the coefficient
of variation per matching threshold. This algorithm selects
the so-called knee point. This point is defined as the furthest
away from a line defined by the higher and lower points with
maximum curvature [25].

2. Clean run: before starting the anomaly detection process,
the robot performs a so-called clean run of the operational
environment, which we assume to be unchanged at this state.
We use this set of images as the reference for comparing any
future missions, and detect anomalies

3. Image pair matching: Using onboard localization meth-
ods or other source of positioning information, relevant image
pairs of two paths are selected based on both position and
orientation of the robot. These images are then fed to the
SuperPoint and SuperGlue algorithms with ideal threshold for
matching. The positions and orientations of these image pairs
are similar, but the frames aren’t exactly the same, which
would lead to false anomaly detections. In order to determine
and process the overlap area in the query image compared to
the reference image, a mask is created using the maximum
and minimum matched interest points in x and y coordinates.

4. Instance segmentation: In the next step, the Mask-
RCNN model is used to segment different instances in query
image and the result is combined with extracted keypoints. The

Algorithm 1: anomaly detection in image sequences

Input:
Reference images: r
Reference positions: r p
Query images with anomaly: q
Query positions: q p
Range of matching and keypoint thresholds: m, k
Range of distance and orientation thresholds: d, o
Calibration:

SuperGlue calibration();
DBSCAN clusterring();

Geo information:
mapping();
Geo relevant images();

for r image and q image do
calibrated SuperPoint and SuperGlue();
Overlap mask();
foreach overlapped query do

Instance segmentation();
foreach instance mask do

n len = length(segmented unmatched);
m len = length(segmented matched);
if n len - m len ≥ 1 then

overlapped unmatched.remove(
segmented unmatched);
anomaly ← instance mask;
anomaly class ← instance class;

DBSCAN clusterring(overlapped unmatched);

pre-trained Mask-RCNN-X101-FPN model used in this study
is from the Facebook AI Research library called Detectron2,
which implements most of the state-of-the-art object detection
and segmentation algorithms [33]. Since this model has been
trained on a huge number of COCO images, it can segment
most of the probable object classes.

5. Anomalous object identification: Using segmented
masks, extracted unmatched keypoints can be clustered and
mapped to a specific anomalous object. Each segmented object
is analyzed based on the number of matched and not matched
keypoints. If the number of unmatched keypoints in an object
is more, then it is considered as an anomaly. However, there
are still unknown objects that cannot be segmented using any
of the existing instance segmentation models, which have been
trained on a wide range of classes.

In order to detect all anomalies, regardless of their classes,
we apply a density-based clustering method to the unmatched
interest points. At this point, we delete segmented unmatched
points, and all points that remain are grouped using density-
based spatial clustering of applications with noise (DB-
SCAN) [7]. The DBSCAN algorithm estimates the minimum
density level based on the number of neighborhood points,
minPts, within a certain distance threshold, Eps. An anomaly
refers to a group of unmatched interest points within this dis-
tance threshold with more than minPts neighbors. A summary
of the described process can be found in Algorithm 1.
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Fig. 3: Equipment utilized for data collection. The three cameras
utilized in the setup have different field of view, with one of them
having a wide lens and only the L515 has a global shutter. The
cameras are situated in three different vertical planes to reduce
the overlap between the images and increase simulate additional
orientation drift for the experiments.

V. EXPERIMENTAL RESULTS

This section covers experiments that we carried out with a
ground robot to demonstrate the effectiveness of the proposed
anomaly detection and model calibration methods.

Hardware. We mounted two commercial RGB different
cameras and a RealSense L515 lidar camera on a Dashgo
ground robot to determine the optimum thresholds for the
test environment. The robot is also equipped with a Velodyne
lidar to obtain the position and orientation information using
existing lidar odometry and mapping methods [14], [15]. The
platform is shown in 3.

Software. The system has been implemented using ROS
Melodic under Ubuntu 18.04. The robot is commanded to
explore an environment and record the reference RGB images,
and lidar point cloud data. Later, the robot is commanded
to scan the same place in a recurrent manner to detect
anomalous objects or changes. We assume that there might
be slight deviations between the paths followed by the robot
in consecutive iterations. Figure 4 shows the robot’s trajectory
during the collection of the reference data and the anomaly
detection phases and the green points inside the map show
different inserted anomaly objects.

Calibration. Figure 5 shows the optimum matching thresh-
olds to calibrate SuperPoint + SuperGlue model. A few image
pairs with linear shift have been recorded using three different
cameras in the same environment. For each camera, average
threshold values were calculated along with the minimum and
maximum ranges of coefficients of variation (shaded areas) in
pair images. For the RealSense L515 camera, the best value is
∆ = 0.6, and for the other two RGB cameras, the best value is
∆ = 0.5. In both cases the selected value differs significantly
from the default value of ∆ = 0.2.

It is worth noting that the DBSCAN algorithm performance
depends heavily on the choice of minPts and distance threshold
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Fig. 4: Robot Trajectory tracking and the location of anomaly objects.
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Fig. 5: Average thresholds for three different cameras for Super-
Point+SuperGlue calibration.

parameters. We have used the k-nearest neighbor’s approach
mentioned in the referenced paper to find the optimal distance
threshold. In Fig. 7, the average Eps has been determined with
a minimum of 5 neighborhood points for some random images
with anomalies. Small anomalous objects cannot be clustered
by selecting a larger number of minPts.

Results. When the feature detection model has been cali-
brated based on the optimal matching threshold, RGB images
of both reference and query data are recorded using the
realsense l515 camera to evaluate the proposed approach.
Figure 8 shows that the proposed approach achieved 72%
accuracy in detecting anomalies in more than 270 image
sequences over time. In some cases, for unknown small and
textureless anomalous objects that cannot also be detected
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and segmented by the segmentation model, the proposed
approach shows low accuracy for time ranges between 40 s
and 90 s (see Fig. 8). In this figure, the performance of
the proposed approach has also been analyzed for different
matching thresholds. The calibrated feature extraction model
with the matching threshold of ∆ = 0.6 achieved higher
accuracy, demonstrating the effectiveness of the proposed
autocalibration method. It is worth noting that the reference
images are selected from the reference dataset based on the
robot’s position and orientation. This is a limitation as a
localization error might render the method unusable. However,
our method is robust to viewpoint and therefore only major
errors would have an impact. In those cases, still, our method
would potentially detect anomalies across the entire image, so
the results can provide feedback to the localization process or
robot operator indicating that there might be a large error.

Figure 6 shows a selection of the final results of the
proposed anomaly and change detection workflow. The figure
includes the main steps taken in the process: (a) the query
image, (b) the selected reference image form the clean dataset
based on position and orientation, (c) all the matched and
unmatched points returned by SuperPoint, (d) the points that
fall under the SuperGlue-generated mask, (e) the segments
detected in the masked area with Mask-RCNN, (f) the selected
segments where enough unmatched points are present, and
(g) the segments detected as anomalies and unsegmented
by clustered unmatched points that also represent potential
anomalies or changes. We can see that our method works
for various environmental conditions, and is able to detect
anomalies and changes as segmented objects or sets of points
of interest. The segmentation approach enables the detection
of anomalies in largely feature-less objects (e.g., large flat
objects such as TVs) where a clustering approach does not



work. On the other hand, the clustering of points in non-
segmented image areas aids in detecting changes or anomalies
regarding objects that the segmentation network is not able to
classify. Overall, these two approaches together with the self-
calibration show a promising way of general-purpose anomaly
and change detection for mobile robots.

VI. CONCLUSION

In this paper, a visual anomaly and change detection ap-
proach for detecting pixel-level anomalies in image pairs has
been presented. Using a single-shot method we have calibrated
SuperPoint and SuperGlue feature detection models in order
to find the proper unmatched interest points. For detecting
anomalous regions and objects in the query image, a general
instance segmentation model has been applied to unmatched
points, as well as the DBSCAN method clustered remain
points that do not belong to any object. According to the exper-
imental results, it has been shown that this framework yields
promising accuracy for a general and unknown environment
and has no need for training on specific data.

In future work, we will analyze the performance across more
different environments. We will also work on deploying this
anomaly detection framework in a distributed manner in order
to identify potentially byzantine robots within a larger multi-
robot system, without a reference dataset.
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