
Evaluation of Orientation Ambiguity and Detection
Rate in April Tag and WhyCode

Joshua Springer
Department of Computer Science

Reykjavı́k University
Reykjavı́k, Iceland
joshua19@ru.is

Marcel Kyas
Department of Computer Science

Reykjavı́k University
Reykjavı́k, Iceland
marcel@ru.is

Abstract—Fiducial systems provide a computationally cheap
way for mobile robots to estimate the pose of objects, or their own
pose, using just a monocular camera. However, the orientation
component of the pose of fiducial markers is unreliable, which can
have destructive effects in autonomous drone landing on landing
pads marked with fiducial markers. This paper evaluates the
April Tag and WhyCode fiducial systems in terms of orientation
ambiguity and detection rate on embedded hardware. We test 2
April Tag variants – 1 default and 1 custom – and 3 Whycode
variants – 1 default and 2 custom. We determine that they are
suitable for autonomous drone landing applications in terms of
detection rate, but may generate erroneous control signals as a
result of orientation ambiguity in the pose estimates.

Index Terms—fiducial, marker, orientation, ambiguity, pose

I. INTRODUCTION

Fiducial markers provide a computationally cheap way to
estimate the pose (position + orientation) of objects, or for
a robot to estimate its own pose in an environment. Given a
monocular image and the distortion parameters of the camera
that produced it, a fiducial system can quickly determine if
the image contains one of its markers, and can determine the
marker’s pose. While the position component of the pose is
typically accurate, the orientation is often subject to ambiguity
(see Section III), such that it (and the pose to which it
belongs) has discontinuities when viewed as a time series.
One way of evaluating the ability of a fiducial system to
accurately determine the orientation of the marker, without
having a sophisticated system to know the marker’s ground-
truth pose, is to detect discontinuous poses perceived from
fiducial markers attached to physical objects. Further, since
mobile robots that can benefit from fiducial markers use
embedded hardware with limited computational capacity, it is
useful to know the rate at which the fiducial system can detect
markers when executing on such hardware. Previous work
tends to use a downward-facing camera that is fixed on the
drone or stabilized on a gimbal, but does not actuate in order
to track the landing pad; our evaluation informs subsequent
autonomous drone landing tests, where a drone actuates its
camera in order to actively track a landing pad that is marked
with a fiducial marker [1]. The drone uses the marker’s pose to
generate position targets in order to approach and land on the
landing pad. In this scenario, pose discontinuities caused by
orientation ambiguity propagate to the drone’s control signals

(a) April Tag 48h12 (b) WhyCode

(c) April Tag 24h10 (d) WhyCode “Bundle”

Fig. 1: The fiducial markers evaluated in this paper.

and cause erratic behavior. Moreover, in such a time-sensitive
scenario, the pose estimation must be fast, motivating our
evaluation of the systems’ detection rates.

We evaluate a total of 5 fiducial systems, 2 of which are the
default, unmodified systems of April Tag 48h12 and WhyCode
(Figures 1a and 1b respectively). We also tested three modified
versions of the default systems: 1) our “WhyCode Ellipse”
variant which uses the same marker as in Figure 1b but uses
additional image sampling points to inform its decision of
the marker’s orientation, 2) our “WhyCode Multi” variant,
which uses the marker arrangement in Figure 1d to determine
the orientation of the plane connecting the markers, and then
assigns that orientation to all of the markers, and 3) the April
Tag 24h10 variant, a smaller version of April Tag 48h12.
We focus on monocular fiducial systems because they are
computationally cheap and can therefore execute on embedded
hardware onboard a drone, and they are cheap to deploy,

ar
X

iv
:2

20
3.

10
18

0v
3 

 [
cs

.C
V

] 
 1

1 
N

ov
 2

02
2



requiring only a printout of a particular marker, and a monoc-
ular camera (arguably the most common drone peripheral
sensor), There are many possible fiducial systems [2]–[6],
but we choose those that are highly configurable, open source,
and whose positional accuracy has been formally evaluated.
Some systems that address the issue of orientation ambiguity
(such as Lentimark [7] and the filtering method described
in [8]) involve fundamental changes to the marker systems
or are proprietary and are, therefore, less widely used. We
aim to produce simpler solutions requiring minimal changes
to existing marker systems to allow easy integration.

II. BACKGROUND

Fiducial markers are 2-dimensional patterns whose positions
(and IDs) can accurately be determined in space using only
images, without a notion of time. WhyCode [4] (shown in
Figure 1b and 1d) is a lightweight, circular fiducial marker
system, formed by an inner white circle, outer black circle,
and a Manchester encoded ID between the two circles. April
Tag [6], [9], [10] (shown in Figures 1a and 1c) is a square
marker system with a configurable layout white and black
squares, each representing a data bit or a section of the black
and white border.

It is difficult to determine the orientation of planar fiducial
markers using single-image, monocular systems, due to the
fact that a marker may have the same appearance when viewed
from specific, different angles. This orientation ambiguity
typically results in apparent discontinuities in a marker’s orien-
tation when it is viewed as a time series. If the full marker pose
(position + orientation) is used as a control input to the drone,
these discontinuities can cause potentially destructive, erratic
behavior. Therefore, it is easier to achieve stable precision
drone landing using a fixed, downward-facing camera, so that
the control algorithm needs only to consider the position of
the fiducial marker and can ignore its orientation. Conversely,
a marker system that avoids these discontinuities would enable
gimbal-based marker tracking and therefore more reliable
precision landing.

III. RELATED WORK

Irmisch [11] has analyzed the performance of April Tag
and WhyCon markers in terms of their abilities to determine
correct position in real world experiments. The experiments
show that both April Tag and WhyCon have relatively low
position estimate errors. The issue of ambiguity in planar
marker orientation is a known problem, and various methods
exist which attempt to mitigate it. One example is an edition
of ARTag called LentiMark [7], which uses special Moiré
patterns on the outside of the tags to determine a correct
orientation. Another study [8] proposes to determine the
correct solution using an averaging algorithm with multiple
views of the markers, instead of using only a single image.
The method in [12] proposes to consider the marker as a
moving object, and therefore reduces orientation ambiguity by
intelligently choosing the orientation using a motion model.

IV. METHODS

We captured the video stream at 480p with a “Creative
Technology Live! Cam Sync 1080p.” The camera has a wide
angle of 77 degrees. We mounted the markers to a divider
wall and moved the camera by hand to simulate the drone’s
approach, and tested at distances of 1 to 3 meters, as relevant
in the subsequent autonomous drone landing scenario [?].
We performed the experiments in a lab room at Reykjavik
University, allowing us to control the light, whereas outdoor
environments have variable light conditions and spectral signa-
tures [13]. We use the position targets to evaluate the systems’
performance in terms of the reliability of the control signals
they would send to a drone (orientation ambiguity), and at
what frequency the system recognizes the landing pad at all
(detection rate).

A. ROS Message Attributes and Calculations

April Tag and WhyCode both have ROS (Robot Operating
System) [14] modules that allow them to interact with other
programs, such as flight control software. We have extended
them to perform calculations and include message attributes
for drone landing:

1) A position target in the a relative “east, north, up”
(ENU) coordinate frame whose origin is the camera,
where “east” refers to the camera’s right, “north” to
the front, and “up” to the top. This parameter gives the
relative position from the camera to the marker, under
the assumption that the marker is flat on the ground,
facing up. In an autonomous drone landing scenario,
this parameter tells the drone where to go in order to
approach the marker.

2) The normalized pixel position un, vn ∈ [−1, 1] of the
center of each marker, which serves as inputs to the
systems that track the marker.

3) The marker’s orientation components: yaw, pitch, and
roll. Our edits exposed these to the ROS interfaces in
the cases where they were not explicitly exposed. An
autonomous drone can use the marker’s yaw to align
itself to the landing pad before descent.

B. Tested Fiducial Systems

1) WhyCode Orig: We use a version of WhyCode created
by Ulrich [15] as a baseline for testing. The method samples
the ellipse that goes through the centers of the “teeth” forming
the marker’s ID (i.e. the yellow and green ellipses in Figure 4),
to determine the marker’s orientation. Of the two possible
candidate solutions that are implied by the detected semi-axes
of the outer black ellipse, the detector chooses the one with a
lower variance in the number of sample points per tooth. This
works because the candidate solutions predict this ellipse to
be in slightly different places, and the correct solution should
predict the ellipse to be in its correct place, minimizing the
variance in the number of sample points that coincide with
each tooth. Conversely, the incorrect solution should predict
the ellipse to be in the incorrect place, such that the sampling
ellipse does not line up well with the marker, and the variance



Fig. 2: An illustration of the method in [15] that determines
an orientation of the marker based on which ellipse is better
centered on the marker. It chooses the ellipse that minimizes
the variances in the ellipse’s intersection with the teeth. Both
possible solutions are shown, with the green being correct.

is higher. We use WhyCode markers with 8-bit IDs so that
there are several sample points and a meaningful variance.

2) WhyCode Ellipse: The first method that we have
implemented for reducing orientation ambiguity is the
ellipse_sampling branch of [16]. The method deter-
mines the marker ID and the two candidate solutions for the
orientation as in WhyCode Orig, after which it identifies the
lines that go from the center of the white region through the
center of each tooth. It then samples the input image on these
lines, as illustrated by Figure 4. It expects a white-to-black
transition at the predicted edge of each tooth, and the sampling
line is centered on this edge. The true edge is determined
during sampling, and its value is recorded as a percentage of
the length of the line segment, oriented such that 0 corresponds
to the centermost end of the line segment, and 1 corresponds
to its outermost end. The detector chooses the solution that
minimizes the variance of the location of the true edge over
the sample lines.

3) WhyCode Multi: The second method that we have
implemented for reducing orientation ambiguity (the multi
branch of [16]) works under the assumption that all recognized
markers are coplanar. For each input image, the WhyCode
algorithm identifies all markers and then finds the normal
vector to the plane implied by the markers’ positions, after
which it can calculate the pitch and roll components of the
bundle’s orientation. The position of the bundle is the mean
of the positions of its constituent markers, and its yaw is that
of any constituent markers, with the assumption they are all
the same. The detector then calculates all additional attributes
for the bundle as if it were a single marker. This system uses
the arrangement of WhyCode markers in Figure 1d.

4) April Tag 48h12: April Tag provides a default family
48h12, shown in Figure 1a, for which the 4 center squares
are undefined, 20 squares provide a white border, 28 squares

Fig. 3: An illustration of “WhyCode Ellipse”. Each ellipse and
corresponding radial lines represent the sampling locations,
marked in yellow and green to distinguish the two candidate
solutions. This method uses the radial lines to determine how
well each candidate solution is aligned with the real image. In
this case, the green solution is correct and is visually better
centered on the marker.

Fig. 4: An illustration of “WhyCode Multi”. The system
regresses a plane connecting the markers, then assigns that
orientation to each marker, as they are assumed to be coplanar.

provide a black border, and 48 squares provide data bits, giving
a total of 96 defined squares. The undefined center provides a
space to embed a smaller marker, which is useful in the last
stages of a drone landing scenario, where the camera is too
close to the landing pad to see the larger markers. We test this
family as a baseline for the performance of April Tag.

5) April Tag 24h10: April Tag provides libraries to specify
and generate non-default marker variants, from which we
generated the April Tag 24h10 family (shown in Figure 1c).
This variant maintains marker embeddability while decreasing



the size of the marker definition, by reducing the size of the
undefined center to one square, and adjusting the surrounding
regions accordingly: Eight squares for a white border, 16
squares for a black border, and 24 outer data squares. This
gives a total of 48 defined squares(compared to the 96 squares
of April Tag 48h12). This reduction is important because all
possible valid marker IDs for each family are loaded into a
single hash table at runtime, and April Tag 48h12 has a large
hash table of 42,211 markers which can require more than 1
GB of RAM – a precious resource on embedded hardware. By
contrast, April Tag 24h10 has only 18 markers and therefore
requires significantly less memory. We test April Tag 24h10
to see if it can offer an increase in detection rate with respect
to April Tag 48h12.

C. Bases of Comparison

1) Discontinuities: Orientation ambiguity manifests as dis-
continuities (e.g. sign flips and other spikes) in the pitch and
roll components of a marker’s orientation, which propagate
to subsequent calculations that depend on the orientation –
the position targets. The fiducial systems are compared on the
basis of the number of discontinuities in the position targets
they generate. A “good” system minimizes this number.

We capture 33 videos of the marker arrangement in Figure 1,
printed, so each marker has a side length of 30 cm, and
mounted to a planar surface with clear lighting. We move the
camera in each of the videos (e.g. panning, tilting, moving
in and out, etc.) while keeping all markers completely in the
frame at all times. We save the videos as a series of pairs
of image and camera info messages in the standard ROS
way, using rosbag. Each fiducial system in Section IV-B
processes the same set of videos. Since the experiments
are conducted slowly in a controlled environment, angular
and linear speeds above pre-determined thresholds can be
classified as discontinuities. Linear discontinuities occur when
the quotient of any position target ~P = 〈pe, pn, pu〉 (east,
north, or up) and its predecessor is sufficiently negative (such
discontinuities always occur over the origin):

px,i+1

px,i
< θl < 0 (1)

where px,i and px,i+1 are position targets in a single dimension
x ∈ {e, n, u} dimension at frames i and i+1 respectively, and
θl < 0 is an experimentally determined threshold (see Table I).
If the inequality in Equation 1 is true, this implies that the
marker appears to change locations faster than allowed during
testing.

Similarly, a discontinuity determined from angular speed sa
occurs when

sa =
dist (qi, qi+1)

∆t
> θa > 0 (2)

where qi and qi+1 are the quaternions representing the orienta-
tion of a marker at frames i and i+1, respectively, dist ≥ 0 is
the intrinsic geodesic distance between the angles represented
by the quaternions, ∆t is the change in time between frames
i and i+1, and θa is a pre-determined threshold (see Table I).

If the inequality in Equation 2 is true, this implies that the
marker appears to rotate faster than allowed during testing.

We consider cases where Equations 1 and 2 are true
simultaneously, to reduce false identification of discontinuities.
For example, a linear discontinuity can appear erroneously via
noise when the e or n component of a marker’s position target
is close to 0. If both discontinuities occur at the same time,
this means that the marker truly appears to drastically change
positions in space in a small amount of time, which does not
happen in our test cases. Finally, since the test cases vary in
length, we can define a “discontinuity rate” rd = d

n which
describes the number of discontinuities d as a portion of the
total number of detections n, and which serves as a basis for
comparing the performance of each system in each test case.

2) Detection Rate: We capture 14 videos of each marker
in Figure 1 separately with both the camera and marker
remaining still, at several distances and deflections from one
another. We record videos of each marker in isolation to
avoid any potential interference, since the marker detectors
all analyze black and white regions. Both the camera and
marker remain still during each test case, and each test case
lasts 60 s. The systems are compared on the basis of their
detection rate (Hz) when executing on a Raspberry Pi 4 with
2 GB of RAM, with the following ROS pipeline: replaying a
test case video, image rectification using image_proc (April
Tag systems only, required by April Tag ROS module), marker
detection by each of the fiducial systems in Section IV-B, and
rosbag recording for later analysis. This avoids capturing the
image during testing, but maintains fairness of comparison
among the systems, since all systems are put into the same
computational environment one at a time, and all process
similar test cases. We then determine a detection rate F = n

t ,
where n is the number of detections, and t is the length in
seconds of the test case. The goal of this metric is to determine
at what frequency the embedded hardware can run the fiducial
system. All systems process video from the same camera at
the same framerate, so the setup is not biased in favor of any
particular system.

We use the default system parameters for both April Tag and
WhyCode. We also test only with the markers in Figure 1, as
these are the markers that we use to mark landing pads.

V. RESULTS

Figures 5 and 6 give an intuition for the discontinuities
studied in this paper. Figure 5 shows the east, north, and up
position targets for a test case where the camera moves first to
the left, then to the right, keeping the marker near the center
of the frame the entire time – “orbiting” the marker. The east
position target correctly indicates the camera’s movement left
and right, while the north and up position targets correctly
remain near-constant (the camera was being moved by hand,
so there is some erroneous movement). Figure 6 shows the next
test case with the same marker and same camera movement,
but from a longer distance (indicated by the lower up position
target). Since the marker is farther away and therefore smaller
in the camera frame, it is more difficult for the system to



0 10 20 30 40 50
Time (s)

1.25

1.00

0.75

0.50

0.25

0.00

0.25

0.50

Po
sit

io
n 

Ta
rg

et
 (m

)
Test case: orbit-left-right-3, Marker: apriltag48h12

east
north
up
discontinuity

Fig. 5: Example of position targets without discontinuities.

0 5 10 15 20 25 30 35 40
Time (s)

3

2

1

0

1

Po
sit

io
n 

Ta
rg

et
 (m

)

Test case: orbit-left-right-4, Marker: apriltag48h12

east
north
up
discontinuity

Fig. 6: Example of discontinuities in position targets (marked
by the vertical lines), which are spikes in the east and north
position targets that roughly correspond to sign flips.

estimate its orientation, leading to the discontinuities. The
discontinuities always occur over the origin – the camera
appears to jump from one side of the marker to the other.
Notice the spikes in the east position target t ∈ [25, 30]s
in Figure 6 are not discontinuities, but rather noise. Further,
noise in the east position target in both Figures 5 and 6
would be considered discontinuities when the position target
becomes near-zero, such that noisy movement actually satisfies
Equation 1. Figure 7 shows the detected angular speed of the
marker in Figure 7, showing that certain spikes in Figure 6 are
not considered discontinuities because they do not correspond
in time to spikes in angular speed. Figure 8 visualizes the
discontinuity rates for the systems, and Figure 9 visualizes
their detection rates. Table I shows the speed thresholds for
Equations 1 and 2.

0 5 10 15 20 25 30 35 40
Time (s)

0

2

4

6

8

An
gu

la
r S

pe
ed

 (a
bs

ol
ut

e 
ra

d/
s)

Test case: orbit-left-right-4, Marker: apriltag48h12
angular_speed
discontinuity

Fig. 7: The angular speeds of the marker in Figure 6, similarly
labeled with discontinuities.

Discontinuity Type Symbol Value
rotational θa 1.0 rad/s
linear θl -0.8 (unitless)

TABLE I: Thresholds for targeting pose discontinuities in
all systems. We say that a discontinuity occurs when the
inequalities in Equations 1 and 2 are simultaneously true using
the values in this table. These are chosen to be well above
the maximum allowed values in testing, so that they are not
sensitive to noise.

w
hy

co
de

-e
lli

ps
e

ap
ril

ta
g4

8h
12

w
hy

co
de

-o
rig

w
hy

co
de

-m
ul

ti

ap
ril

ta
g2

4h
10

Fiducial System

0.0

0.1

0.2

0.3

0.4

D
is

co
n
ti

n
u

it
y

R
at

e
r d

System rd σ̂

whycode-ellipse 0.014 0.028

apriltag48h12 0.026 0.039

whycode-orig 0.056 0.083

whycode-multi 0.064 0.102

apriltag24h10 0.161 0.165

Discontinuity Rates

Fig. 8: A visualization of the discontinuity rates rd, which
represent the proportion of discontinuous position target read-
ings relative to the total number of readings. rd is the sample
mean of the discontinuity rate, and σ̂ is the sample standard
deviation, and n = 33 per group.



w
hy

co
de

-o
rig

w
hy

co
de

-e
lli

ps
e

w
hy

co
de

-m
ul

ti

ap
ril

ta
g4

8h
12

ap
ril

ta
g2

4h
10

Fiducial System

14

16

18

20

22

24

26

D
et

ec
ti

on
R

at
e
F

(H
z)

System F σ̂

whycode-orig 26.232 0.444

whycode-ellipse 26.096 0.365

whycode-multi 22.881 3.509

apriltag48h12 16.270 1.527

apriltag24h10 16.154 1.760

Detection Rates

Fig. 9: A visualization of the detection rates F (Hz). F is
the sample mean of the detection rate, and σ̂ is the sample
standard deviation, and n = 14 per group.

VI. DISCUSSION

WhyCode Ellipse offers a decrease in discontinuity rate
compared to WhyCode Orig, with only a small decrease in
detection rate. WhyCode Multi does not offer a decrease in
discontinuity rate compared to WhyCode Orig, and also has
a lower detection rate. It is possible that variations in the
orientation of the plane connecting WhyCode Multi markers
could be reduced by adding more markers to the arrange-
ment, or spreading them out. April Tag 24h10 has a higher
discontinuity rate than April Tag 48h12, with no increase in
detection rate. The lower detection rates of the April Tag
systems are likely a result of their longer ROS pipeline, which
depends on transmitting each input image to an intermediate
image_proc node and back for rectification. WhyCode
builds this into its algorithm, thereby avoiding latency and
performing faster than April Tag even when detecting several
markers at a time. However, WhyCode systems cannot handle
marker embedding as April Tag systems can.

We use only the default system parameters, and a single
hardware setup. Different setups will have different results,
e.g. a camera with a telephoto lens might provide more accu-
racy at long distances, but would require calibration at many
different focal lengths. Different computational hardware will
also give different detection rates.

VII. CONCLUSION & FUTURE WORK

We have evaluated 5 fiducial systems - 2 existing variants:
April Tag 48h12 and WhyCode Orig, and 3 custom variants
which we have implemented - in terms of their rates of
discontinuity in position target generation and detection rate
on a Raspberry Pi 4 (2 GB RAM). We have determined

that WhyCode Ellipse, WhyCode Multi, April Tag 48h12,
and WhyCode Orig provide a good starting point for testing
gimbal-based fiducial landing with a drone, while April Tag
24h10 is likely to exhibit problematic behavior. These markers
are further evaluated in our subsequent study [1].

Future tests of the WhyCode Multi system could use
different marker arrangements, such as with more markers,
or with the markers spaced farther apart. All systems could
be further tested with different runtime parameters, cameras,
computational hardware, and lighting conditions.

REFERENCES

[1] J. Springer and M. Kyas, “Autonomous Drone Landing with Fiducial
Markers and a Gimbal-Mounted Camera for Active Tracking,” in 2022
IEEE International Conference on Robotic Computing, 2022.

[2] M. Fiala and M. Fiala, “ARTag, a fiducial marker system using digital
techniques,” in Proceedings of the 2005 IEEE Computer Society Confer-
ence on Computer Vision and Pattern Recognition (CVPR’05) - Volume
2 - Volume 02, ser. CVPR ’05. Washington, DC, USA: IEEE Computer
Society, 2005, pp. 590–596.

[3] S. Garrido-Jurado, R. Muñoz-Salinas, F. Madrid-Cuevas, and M. Marı́n-
Jiménez, “Automatic generation and detection of highly reliable fiducial
markers under occlusion,” Pattern Recognition, vol. 47, p. 2280–2292,
06 2014.

[4] P. Lightbody, T. Krajnı́k, and M. Hanheide, “A Versatile High-
performance Visual Fiducial Marker Detection System with Scalable
Identity Encoding,” in Proceedings of the Symposium on Applied Com-
puting, ser. SAC ’17. New York, NY, USA: ACM, 2017, pp. 276–282.

[5] M. Nitsche, T. Krajnı́k, P. Čı́žek, M. Mejail, and T. Duckett,
“Whycon: An efficent, marker-based localization system,” in IROS
Workshop on Open Source Aerial Robotics, 2015. [Online]. Available:
https://core.ac.uk/download/pdf/42583963.pdf

[6] E. Olson, “AprilTag: A Robust and Flexible Visual Fiducial System,”
in 2011 IEEE International Conference on Robotics and Automation,
2011, pp. 3400–3407.

[7] H. Tanaka, Y. Sumi, and Y. Matsumoto, “A solution to pose ambiguity
of visual markers using Moiré patterns,” in 2014 IEEE/RSJ International
Conference on Intelligent Robots and Systems, 2014, pp. 3129–3134.

[8] S.-F. Ch’ng, N. Sogi, P. Purkait, T.-J. Chin, and K. Fukui, “Resolving
Marker Pose Ambiguity by Robust Rotation Averaging with Clique
Constraints,” 2019.

[9] J. Wang and E. Olson, “Apriltag 2: Efficient and robust fiducial detec-
tion,” 10 2016, pp. 4193–4198.

[10] M. Krogius, A. Haggenmiller, and E. Olson, “Flexible layouts for
fiducial tags,” in 2019 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), 2019, pp. 1898–1903.

[11] P. Irmisch, “Camera-based Distance Estimation for Autonomous Vehi-
cles,” 12 2017.

[12] P.-C. Wu, Y.-H. Tsai, and S.-Y. Chien, “Stable pose tracking from a
planar target with an analytical motion model in real-time applications,”
11 2014.

[13] J. Hedgecoe, John Hedgecoe: The New Manual of Photography. DK
Pub., 2003.

[14] M. Quigley, K. Conley, B. Gerkey, J. Faust, T. Foote, J. Leibs,
R. Wheeler, and A. Ng, “ROS: an open-source Robot Operating System,”
vol. 3, 01 2009.

[15] J. Ulrich, “Fiducial Marker Detection for Vision-based Mobile Robot
Localisation,” pp. 18–21, 2020, Bachelor Thesis.

[16] Joshua Springer. (2020) Edited WhyCon/WhyCode Repository.
”https://github.com/uzgit/whycon-ros”. (accessed: 2022.2.2). [Online].
Available: https://github.com/uzgit/whycon-ros

https://core.ac.uk/download/pdf/42583963.pdf
https://github.com/uzgit/whycon-ros

	I Introduction
	II Background
	III Related Work
	IV Methods
	IV-A ROS Message Attributes and Calculations
	IV-B Tested Fiducial Systems
	IV-B1 WhyCode Orig
	IV-B2 WhyCode Ellipse
	IV-B3 WhyCode Multi
	IV-B4 April Tag 48h12
	IV-B5 April Tag 24h10

	IV-C Bases of Comparison
	IV-C1 Discontinuities
	IV-C2 Detection Rate


	V Results
	VI Discussion
	VII Conclusion & Future Work
	References

