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Abstract—This paper presents an algorithm for feature point
extraction from scanning data of large tubular T-joints (a sub-
type of a TKY joint). Extracting such feature points is a vital
step for robot path generation in robotic welding. Therefore, fast
and reliable feature point extraction is necessary for developing
adaptive robotic welding solutions. The algorithm is based on
a Convolutional Neural Network (CNN) for detecting feature
points in a scanned weld groove, where the scans are done using
a laser profile scanner. To facilitate fast and efficient training,
we propose a methodology for generating synthetic training
data in the computer graphics software Blender using realistic
physical properties of objects. Further, an iterative feature point
correction procedure is implemented to improve initial feature
point results. The algorithm’s performance was validated using
a real-world dataset acquired from a large tubular T-joint.

Index Terms—laser scanner, convolutional neural network,
synthetic data, weld groove.

I. INTRODUCTION

Robotic welding is often considered an efficient and safe
alternative to manual welding. A typical industrial application
is the mass production of relatively precise mechanical parts,
where the robot is pre-programmed offline for a repetitive
welding task. In this case, robots cannot adapt to variations in
the geometry of a workpiece, an issue particularly prevalent
when working with large structures. A particular case is
robotic welding of large tubular T-joints (see Fig. 1), where
multi-layer welds are done in deep machined weld grooves.
Tubular T-joints (and TKY-joints, in general) constitute many
hours of manual welding work in constructing large offshore
structures. Robotic welding can, for such cases, benefit from
the geometric information of a groove being collected by
vision systems, such as laser triangulation sensors.

A common type of structured light sensor used for robotic
welding is the laser line scanner, where the projected light
is a single straight line [1], [2], and the output is a set of
triangulated points. The subsequent process of extracting a
small subset of points from the measurements sufficiently
describing the geometry of the groove is generally referred
to as feature extraction. The nature of the feature points may
vary based on the category of weld considered; butt joints, lap
joints or stub joints adhere to different geometric patterns, and
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Fig. 1. An example of a large tubular T-joint used in offshore structures,
which was used for real-world data collection in this work.

the number of required points needed to describe them varies.
The groove corners are natural choices for the desired subset
of points. These corner points are often found through analysis
of the first- and second derivatives using finite differences
methods [3]–[6], by utilizing RANSAC search [7]–[9], or
through combinations of the two [10]. Methods like template
matching can also be used for weld groove parametriza-
tion [11], which perform well when some parts of the data
are missing. Weld grooves are usually made by machining or
grinding, making the groove surface reflective and leading to
noisy data as a reflected laser line is triangulated. Therefore,
feature extraction algorithms should be able to handle some
data noise robustly. It is noted that the majority of methods are
derived for processing the image data obtained directly from
the camera of the structured light sensor [6], [9], [11]–[14],
while others process the triangulated points, which is the final
sensor output [3], [5], [7], [15]. The latter methods can be used
with sensors where access to the raw image data is limited.

Neural networks have recently shown an ability to solve
tasks from various domains. Convolutional Neural Networks
(CNNs) have been used for feature extraction in the recent
past [16]–[19]. However, all of these methods work at the
camera image level. To the best of the authors’ knowledge,
CNNs have not yet been applied for weld groove feature
extraction at the triangulated point output level.

In this work, we extend the results of [7] by proposing a
CNN-based method for feature point extraction from triangu-
lated point output of line laser scanners. The motivation for us-
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ing CNN compared to the previously used RANSAC algorithm
lies in further reduction of computational time and extending
the algorithm’s applicability to various types of grooves. In
addition, we propose a methodology for generating synthetic
training data in computer graphics software Blender, where
accurate laser line modeling and data augmentation methods
are designed to imitate naturally occurring noise, increasing
the network robustness to noise caused by reflections of the
laser line. This facilitates straightforward implementation of
the proposed method for new types of weld grooves.

The rest of this work is organized as follows. In Section II,
the background challenges of this work are presented. The
proposed CNN-based method is given in Section III, while
experimental verification and comparison are given in Sec-
tion IV. The findings of the work are concluded in Section V.

II. PROBLEM FORMULATION

Manual offline programming of a robotic welding system
is a time consuming task, which is reasonable when a robot
is welding the same mass produced product. In a case of
welding large and bulky products, like ships, offshore floaters
or substructures, relatively large geometric tolerances of stock
steel products make every joint slightly geometrically differ-
ent. This makes it impossible to use the same offline welding
program and sensor feedback is required for adaptive welding
robot path planning. One of the typical sensors for collecting
weld groove geometric data is a line laser scanner, which
returns a 2-dimensional (2D) array of points. This data has
to be parametrized to a minimal set of parameters which
can uniquely describe the weld groove shape and can be
used for robot path planning. This task can be especially
challenging when the dataset contains noise from the laser line
reflections from the ground weld groove surfaces. In addition,
data processing time is important as it might influence the
efficiency of the whole process. Therefore, solution to the
weld groove data parametrization problem is an important
initial step towards more adaptive and flexible robotic welding
systems.

The scope of this work is limited to grooves in tubular T-
joints, however the methodology is general and can also be
applied to other types of grooves.

III. PROPOSED CNN-BASED WELD GROOVE FEATURE
POINT EXTRACTION METHOD

We propose to train the CNN for weld groove feature
extraction on data generated in a 3D graphics model. In
the following section, we present the steps of the proposed
approach.

A. Synthetic Dataset Generation

1) Model Setup and Data Generation: One of the main
challenges of successfully utilizing machine learning for a
task is the need for large amounts of data. Data gathering and
labelling are time-consuming and expensive without access to
public datasets. One way to alleviate these concerns is by using
synthetic data. Here, one avoids the need for physical objects

Fig. 2. Example of an entire scene consisting of a T-joint segment, an
ambient background environment and a projected laser line (to the left). The
appearance of the scene as seen from the camera of the virtual laser scanner
(to the right).

to gather data, while additionally, it may remove the need to
label data manually.

The open-source 3D modeling software Blender was used
to create a synthetic dataset of various brace- and leg element
configurations. Blender offers a built-in Python interpreter, al-
lowing for the programmatical generation of numerous scenes
showing the groove geometry of a sampling of various T-
joints.

An example of such a scene can be seen in Fig. 2. An
industrial laser scanner can be modeled by creating a virtual
camera and a light source, where the shape and color of the
projected light can be specified. We chose to emulate the
Micro-epsilon scanCONTROL 2610-100 laser scanner in this
work. Therefore, the virtual light source was set to project a
single red laser line. In order to make the laser appear more
realistic, different object parameters can be modified until it
resembles a real-life laser scanner. This shows one of the
challenges of using synthetic data: many modeling decisions
must be made using heuristics.

Physically-Based Rendering (PBR) materials are available
in the form of image texture maps. These can be projected
onto the 3D models in the scene, assigning realistic material
properties. This makes light interact with the models in a
realistic manner.

During the acquisition of synthetic data, the emulated laser
scanner is moved in discrete steps along the weld groove. For
each step, three images are collected: one rendered image to
be used for the training, one ideal image arranged for straight-
forward creation of training data labels, and one high-dynamic
range, multi-channel raster image (EXR), which additionally
contains the positional information of the image content as
seen from the global reference frame. The scene used to
create the ideal image differs by using no ambient lighting
and assigning diffuse material properties to the elements. This
results in light being reflected off the scene content equally in
all directions, making the acquired image noise-free.

2) Point Extraction: Commercial laser sensors vary in the
characteristics of their output. The sensor emulated in this
work (Section III-A1) returns a set of 640 points in R2, given
in the sensor frame coordinates. The synthetic data, therefore,



had to be processed to produce similar output.
Given a set of training data images, which is a rendered

image with its corresponding ideal image, a number of steps
are required to turn the images into point clouds. For the
rendered image, typical image pre-processing techniques are
applied before extracting the centre line of the laser. Using
the open source library OpenCV, images are converted into
the hue, saturation, and brightness color representation (HSV),
followed by filtering with a median filter that replaces each
pixel with the median of neighbouring pixels. Then, a binary
mask with non-zero values only at areas where the hue,
saturation and brightness constitute a red color is applied
to zero out non-red areas. Then, the images are processed
by a closing followed by an opening operation, which are
combinations of dilating and eroding morphology operations.
The morphology operations close gaps within the line and
remove noise while thinning out the laser line. Finally, the
images are converted into a grayscale format. There is no
need for further processing for the ideal images, as they
are generated to contain only the laser line before saving in
grayscale.

Following the steps above, a grey-gravity method [20] is
used for finding the weighted centre of the laser line in its
thickness direction by aggregating the pixels with the highest
intensities column-wise. When the centre line pixel coordi-
nates have been extracted for both images, the position in the
world reference frame is found by reading the values of the
EXR image at the positions of the extracted pixel coordinates.
Letting p̃w

j ∈ R4 denote an obtained homogeneous point
given in the world reference frame and Ts

w ∈ SE(3) is the
transformation from the laser scanner reference frame to the
world reference frame, the homogeneous point as seen from
the scanner, p̃s

j ∈ R4, is then calculated as p̃s
j = Ts

wp̃
w
j ,

where Ts
w is obtained from Blender. Then the Euclidean point

ps
j ∈ R2 is obtained by removing the two last coordinates from

p̃s
j . It is noted that the z coordinate of p̃s

j is always equal to
zero.

3) Data Labeling: For the automatic labelling of data,
we make use of the fact that methods based on derivative
analysis have yielded favourable results on relatively noise-
free data [3]. The previously mentioned ideal image is devoid
of noise, and therefore, a simple corner detection algorithm
based on identifying the peaks of the second derivatives is
developed and used on this image to find the labels to be used
with the training data.

B. Feature Point Extraction

1) Neural Network Setup: A CNN is set up and used for
the feature extraction. This popular class of artificial neural
networks is favored due to its performance and computational
efficiency. With the input data being a set of 2D points, where
the x coordinates are sorted along the profile, it bears some
resemblance to data typically seen in signal processing, with
the x values being analogous to the time domain of a typical
1D signal. Therefore, 1D convolutional layers, common when

TABLE I
NEURAL NETWORK ARCHITECTURE

Layer Output shape Param. #
conv1(Conv1D) (Batch, 8, 128) 248
bn1(BatchNorm1D) (Batch, 8, 128) 16
ReLU
conv2(Conv1D) (Batch, 16, 128) 400
bn2(BatchNorm1D) (Batch, 16, 128) 32
ReLU
MaxPool1D (Batch, 16, 64)
conv3(Conv1D) (Batch, 32, 64) 1 568
bn3(BatchNorm1D) (Batch, 32, 64) 64
ReLU
MaxPool1D (Batch, 32, 32)
conv4(Conv1D) (Batch, 64, 32) 6 208
bn4(BatchNorm1D) (Batch, 64, 32) 128
ReLU
MaxPool1D (Batch, 64, 16)
conv5(Conv1D) (Batch, 128, 16) 24 704
bn5(BatchNorm1D) (Batch, 128, 16) 256
ReLU
MaxPool1D (Batch, 128, 8)
conv6(Conv1D) (Batch, 256, 8) 98 560
bn6(BatchNorm1D) (Batch, 256, 8) 512
ReLU
MaxPool1D (Batch, 256, 4)
fc1(Linear) (Batch, 100) 102 500
ReLU
fc2(Linear) (Batch, 10) 1 010

working with time-varying signals, were used in place of the
more common 2D layers.

With execution time being an essential factor in the realiza-
tion of adaptive robotic welding, the CNN was designed with
the goal of being as efficient as possible. The architecture
was kept simple, using the well-known Rectified Linear Unit
(ReLU) activation function with intermediate Batch Normal-
ization (BatchNorm) layers. The architecture can be seen
summarized in Table I. The network outputs ten scalars for
each input, corresponding to the x- and y-values of the five
feature points. A custom loss function was implemented, cal-
culating the average Euclidean distance between the estimated
points and their corresponding labels. We thus formulated
the problem as a regression task, seeking to minimize the
Euclidean distance between the output and the labels.

When training the network, 10% of the dataset images
were set aside for validation to monitor the performance on
unseen data. The Adam optimizer was used for training, and
the learning rate was gradually reduced by halving it every
200 epochs. An extensive data augmentation regime was used
where the point clouds had a sampled set of augmentations
applied to them, such as, e.g., a stochastic affine transformation
or the addition of noise to random segments of the point cloud.
The network was trained for 1200 epochs, taking around one
hour on a GTX 3090 GPU, a point beyond which additional
training leads to overfitting.

2) Corner Correction Algorithm: A least-squares line fit-
ting algorithm can be used to increase the precision of the
initial estimate of feature points. In general, such algorithms
tend to improve the localization of feature points, especially
for cases with rounded weld profile corners. In this work, we



X, [mm]
1100

1150
1200

1250
1300

1350
1400

Y, [mm]

300
200

100
0

100
200

300

Z,
 [m

m
]

120
140
160
180
200
220
240
260
280

Fig. 3. A section of the real-world dataset used in the experimental
verification. The groove geometry continuously varies along the circumference
of the joint. The different colors illustrate areas with similar groove geometry.

implemented an iterative corner correction procedure similar
to the one proposed in [7] for the final adjustment of the
feature point estimates obtained by the CNN. It is noted that
the feature point positions obtained by CNN should already
be close to the true values. Otherwise, the corner correction
algorithm forces initial estimates to diverge from the true
values.

IV. EXPERIMENTAL STUDY AND COMPARISON

The performance of the feature extraction method was
evaluated using real-world data collected in [7] and [8]. The
method was implemented using Python and the deep learning
framework Pytorch and was evaluated in terms of accuracy
and execution time compared to the results obtained by the
algorithm used in [7], [8].

The first set of real-world test data was small [7] with only a
few samples but contained a substantial amount of reflection
noise, making it particularly important for evaluation. This
dataset was collected by intentionally creating conditions for
high noise levels. The second set [8], collected from an actual
large welded tubular joint, contained over 650 point clouds
with less noise, see Fig. 1 and Fig. 3. This dataset was
collected under realistic conditions and represents the quality
of data typically found in an industrial setup.

The scope of the experimental evaluations was limited to
stub joints with existing root welds of widths varying from 3-
10 mm, which is a common size of the root weld for T-joints
made with tubular sections with up to 1000 mm in diameter.

A. Results and Discussion

1) Computational Efficiency: The method was evaluated
using a laptop with a GTX 1060 GPU, a quad-core Intel i7
CPU, and 16 GB of RAM. Even when using a relatively low-
end GPU such as this one, the inference time of the neural
network was approximately 1.0 ms when averaging over 300
individual forward passes. When using the CPU, this only
increases by a small amount, needing about 1.2 ms, averaging
over 300 forward passes. The fast inference time on the CPU

Fig. 4. The results when testing on samples from the noisy dataset [7], with a
close-up shown to the right. Blue points are the original estimates of the CNN,
red points are outputs after the corner correction algorithm, and the black cross
marks are the results obtained in [7]. The gray points are identified as noise
during the corner correction.

Fig. 5. Results of testing the method on samples from the dataset [8], with
close-ups shown to the right. Two cases with different curvatures of the leg
element are presented. The black cross marks are the outputs obtained in the
previous work [8].

was likely due to the network itself being small and the low
dimensionality of the input.

The corner correction algorithm dominated the total execu-
tion time of the method. Here, the execution time had a higher
variance when processing different point clouds, depending on
the accuracy of the initial estimates. The average execution
time of the corner correction algorithm was approximately
5.4 ms, meaning that the total feature point extraction time
was about 6-7 ms. The method thus remained at least five
times faster than the one proposed in [7] when considering
execution time.

2) Feature Extraction Accuracy: Both real-world datasets
were used for the evaluation of accuracy. However, the second
and larger dataset was used for statistical accuracy analysis
due to its dominating size. It is noted that the accuracy was
evaluated for inner corner points only.

An example of the feature point output for a very noisy
dataset is given in Fig. 4. The proposed method was able to
identify feature points of the profile accurately. The figure
illustrates how the subsequent corner correction algorithm
successfully improved the initial estimates.

Two typical examples of the weld groove profile data
from the second dataset are shown in Fig. 5, where samples
with different geometry and curvature of the leg element are
presented. The corner points found by the method in [7] are
included for comparison. The two methods produce equivalent



Fig. 6. The mean (shown with bars) and standard deviations (shown with
vertical lines) of the distances between the proposed method and the one
from [7]. Similar colored bars correspond to sections that are similar due to
the symmetry of the joint.

results when considering accuracy, with the main difference
stemming from how the corner point along the surface of the
leg element is defined.

The profiles shown in Fig. 5 demonstrate how different the
weld groove geometry can be along the groove of a T-joint.
Most notably, the curvature of the line yielded by the leg
element will vary, as will the angle between the brace and
leg. Therefore, evaluation of accuracy was done separately for
six consecutive sections of a T-joint scan of approximately 180
deg (see Fig. 3), where each section represents similar groove
profile geometry. The performance of the proposed method for
the six defined sections is shown in Fig. 6, where the graph
shows the error and standard deviation of the feature point
estimates compared to the results in [7], [8]. The best average
precision was obtained for the first and last side sections,
where the leg element has little curvature. The mean error
for both sections was 0.26 mm. This was expected since most
synthetic training data was generated using small leg element
curvatures. However, the mean error for all other sections
remained below 0.4 mm, which is well within the practical
precision necessary for robotic welding of large tubular T-
joints for offshore structures.

V. CONCLUSION

In this work, we have suggested a feature point extraction
algorithm for weld groove scan data for the case where a line
laser scanner is combined with an industrial robot. The method
used a CNN, which was trained using generated synthetic
data. This way, the efforts required for training the network
were significantly reduced. In addition, an iterative feature
point correction procedure was implemented for accuracy
improvement.

A case of a large tubular T-joint with varying weld groove
geometry was investigated. The proposed algorithm yielded
execution times at least five times smaller than the previous
work while achieving similar precision. Low execution time
is essential in applications where the feature points are used
for online feedback control of a welding robot.
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