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Abstract

In this paper we describe a functioning low cost em-
bedded vision system which can perform basic color
blob tracking at 16.7 frames per second. This sys-
tem utilizes a low cost CMOS color camera module
and all image data is processed by a high speed, low
cost microcontroller. This eliminates the need for
a separate frame grabber and high speed host com-
puter typically found in traditional vision systems.
The resulting embedded system makes it possible to
utilize simple color vision algorithms in applications
like small mobile robotics where a traditional vision
system would not be practical.

1 Introduction

There are many examples in the literature of simple
computer vision algorithms proving to be extremely
useful in a variety of applications [2], [4], [5], [7], [12],
[14]. However the usefulness of these algorithms is
often limited by the cost and complexity of the hard-
ware needed to implement them. Such systems tradi-
tionally consist of a camera, a frame grabber, and an
associated computer to interface to the frame grab-
ber and execute the algorithm. Recent hardware de-
velopments now make it possible to greatly simplify
and reduce the cost of these systems. The two de-
velopments which we take advantage of in this work
are low cost CMOS color camera modules and high
speed, low cost microcontrollers. A major advantage
of CMOS versus CCD camera technology is the abil-
ity to integrate additional circuitry on the same die
as the sensor itself. This makes it possible to inte-
grate the analog to digital converters and associated
pixel grabbing circuitry so a separate frame grab-
ber is not needed. As microcontrollers have become
more prevalent their cost has decreased and their ca-
pabilities have increased. This makes it possible to
perform simple pixel processing “on the fly” as the
pixel values are scanned out of the camera making
a full frame buffer unnecessary in many situations.
This suggests that it should be possible to team a

CMOS camera chip with a low cost microcontroller
and implement a simple vision system.[10] We have
constructed a functioning system based on this idea
which we describe in the remainder of this paper.
The fully assembled system is commercially available
for a cost of $109.[9]

2 System Details

Our vision system is designed to provide high-level
information extracted from a camera image to an
external processor that may, for example, control a
mobile robot. In a typical scenario, an external pro-
cessor first configures the vision system’s streaming
data mode, for instance specifying the tracking mode
for a particular bounded set of RGB values. The vi-
sion system then processes the data in real time and
outputs high-level information to the external con-
sumer. The following sections describe the details of
the system which we have implemented.

Figure 1: The microcontroller board mated with the
CMOS camera module. A standard size hobby servo
is shown for scale.

2.1 Hardware System

The hardware for our system consists of a three chip
design. The first two chips are the OV6620 CMOS
camera and the SX28 microcontroller. The third chip



is a simple level shifter for the RS232 serial data. To
keep the design simple, the data bus, synchroniza-
tion pins and configuration bus from the OV6620
are directly connected to the SX28 without the aid
of any glue logic. The SX28 waits for incoming data
to stream from the camera and processes it in real
time. It then relays the extracted high level informa-
tion to the outside world via an asynchronous serial
interface implemented in software. The complete vi-
sion system is 1.75” × 2.25” and less than 2” deep
with the camera module and lens attached, see Fig-
ures 1 and 2. The system operates at 5 volts and
draws about 200 milliamperes of current.

The image input to the system is provided by an
Omnivision OV6620 CMOS camera on a chip.[8] The
CMOS camera is is mounted on a carrier board which
includes a 4.9 mm F2.8 lens and a few supporting
passive components such as a 17 MHz clock crystal.
Different lenses are available for customizing the op-
tics. By itself, the board is free running and will
output a stream of 8 bit RGB or YCrCb color pix-
els along a 8 or 16 bit wide data bus. Synchroniza-
tion signals, including a pixel clock, are then used to
read out data and indicate new frames and horizontal
lines. The CMOS image array contains 101,376 pix-
els and supports resolutions of up to 352 × 288 with
a maximum refresh rate of 60 frames per second.[8]
CMOS camera parameters such as color saturation,
brightness, contrast, white balance, exposure time,
gain and output modes are programmable using a
standard serial I2C interface. To utilize video data
from the OV6620 one must properly initialize the
camera and then remain synchronized with each of
its output signals. An independent monochrome
analog output exists that can be used for external
monitoring of the image. Due to the nonstandard
frame rate utilized in our system a multisync display
device is necessary to properly decode the image.

The microcontroller that is used to process the video
data is a Ubicom SX28 operating at 75 MHz, model
number SX28AC/DP.[13] It is housed in a standard
28 pin narrow DIP package. The SX28 is a RISC
processor and operates at 75 MIPS. It has a 2048
word flash programmable EPROM and 136 bytes of
SRAM. Although it has few hardware peripherals, it
has fast and deterministic interrupts as well as three
flexible multi-bit I/O ports that allow software to
emulate standard hardware peripherals as “virtual”
peripherals. Using these virtual peripherals, we im-
plemented a serial UART port, a standard hobby
servo PWM output port and can control a status
LED in our system. With our hardware design, it is
also possible, using a pass-through PC104 style con-
nector to join multiple SX28 vision boards on a single
camera bus. This allows for parallel processing of the

image data in what we call slave mode. Using this
“slave mode” two microprocessors can be attached to
the output of a single CMOS camera, allowing two
different image operations to be performed in a fully
synchronized fashion.

Figure 2: Detail of the assembled microcontroller
board, 1.75” × 2.25”. Visible are the microcontroller
at the top, the RS232 level shifter below on the right,
and the clock oscillator below on the left.

2.2 Firmware System

The main challenge that we had to overcome in de-
veloping the software for this system was the small
amount of RAM available in most microcontrollers.
In our case, with only 136 bytes of RAM it is impos-
sible to buffer an entire image. In fact, it is not even
possible to buffer an entire row of color image data.
To work within such limitations, we were required
to process the data as it streams from the camera
with little or no buffering. By utilizing the data as
it streams from the camera we were able to perform
basic image processing during the time between pix-
els. To reduce processing time we drop the trailing G
component of the sensor’s RGBG (or CrYCbY) pixel
group and skip every other pixel. At the end of each
row and once at the end of a frame there is extra
time that can be used for additional post processing
and transmission of data. This method limits our
horizontal resolution to 80 RGB pixels, but does not
affect the maximum vertical resolution of 143 pixels.
One of the main algorithms that the system is capa-
ble of implementing with this method of processing
is a simple form of color blob tracking.

All firmware for the vision board was written in C
and compiled using the ByteCraft SXC v2.0 com-
piler. When compiled the current firmware requires
2035 words of ROM and at some points utilizes all
but 1 byte of the SX28’s RAM. Needless to say the
firmware had to be coded very carefully.

Color Blob Tracking. The color blob tracking
algorithm allows the user to enter a minimum and



maximum bound for each of either the three RGB or
YCrCb channel values, depending on how the camera
is configured. Each pixel in the buffer is compared
against the user specified bounds. The coordinates
of the pixels that fall within the color bounds are
compared against previously stored coordinates to
generate a bounding box. This simple method re-
quires that the SX28 store little global information
about the image. The stored data includes the up-
per left x1, y1 coordinate and the lower right x2, y2
coordinate that enclose pixels which satisfy the color
bounds. We also count how many pixels actually fall
within the color boundaries. Once the entire frame
has been processed, some additional post processing
operations are completed. In particular, a scaled ra-
tio between the total sum of pixels within the color
boundaries and the actual area calculated by the
bounding box is computed. This value can then
be used as a confidence measure indicating whether
there is only one compact object being tracked which
fills the bounding box or multiple small detections.
The system also accumulates the x and y positions
of each detected pixel. These accumulated sums are
then divided by the total number of detected pixels
to calculate the centroid of the tracked object. Once
it has received an entire frame of data, the system
can return the x,y components of the centroid, the
four coordinates of color bounding box, the number
of detected pixels as well as a confidence value for
the object tracked.

Color Statistics. The vision system also includes
a color statistic acquisition function. This function
keeps a running sum of the individual color channel
components. Upon completion of the frame, it di-
vides these accumulated values by the total number
of pixels returning the mean color. It also returns
an approximation of the absolute deviation from the
mean of each color. This can be used like a variance
measure to quantify the spread of the colors about
the mean. When used in conjunction with other fea-
tures such as windowing, described below, the color
statistics can be used as a building block for a mo-
tion detection algorithm or for determining the color
of an object at a specific location in the field of view.

Along with the basic algorithmic functions, there are
a set of modifying parameters that allow for more ad-
vanced image processing. The first of these param-
eters is the ability to arbitrarily set the window size
and location that the user wishes to process. This
allows data to be captured in an isolated region of
the camera’s view. The window bounding box can
be easily changed between frames allowing for more
localized analysis of the environment. It is also possi-
ble to configure the system to return a larger amount
of data after each line is processed. This “line mode”

can be used in conjunction with both the color track-
ing algorithm and the statistics function. When used
with color tracking, “line mode” will return a binary
image of the pixels that fall within the specified color
range. Since this data is sent during the delay be-
tween the lines of the image, there is no decrease
in the overall frame rate. The actual throughput
of data does become higher requiring a potentially
faster processor to perform any meaningful analysis
of the transmitted data. After the binary image is
sent, the track color command sends its normal out-
put packet. Figure 3 shows the shape of a hand that
had been automatically acquired and then tracked
using line mode. When “line mode” is enabled dur-
ing the acquire statistics function, the mean color
value for every image row is sent.

Image Processing and Camera Settings. An-
other group of functions define how the data is for-
matted and performs minor adjustments on the over-
all performance of the system. These functions in-
clude a noise filter, an interface transfer flow control
setting and a command to modify the CMOS cam-
era’s internal image settings. The noise filter mode
makes the color tracking algorithm more robust by
requiring a valid detection to consist of two horizon-
tally adjacent pixels in the specified color range. This
added robustness however can cause small objects
not to be detected. The interface flow control set-
tings allow configuration of the serial data entering
and leaving the system. The default mode uses visi-
ble ASCII characters and continuously streams data
as each frame is processed. Selecting “poll mode”
instead, causes each function to only return one
packet of data and then return to its idle state. This
can be useful to help less powerful microcontrollers
keep synchronization with the data and can facilitate
changing camera parameters between frames. An-
other setting allows for raw binary bytes to be trans-
ferred instead of visible ASCII text and suppresses or
enables different synchronization bytes. The camera
settings control command allows the user to change
the frame rate, toggle white balance, toggle gain,
switch between RGB and YUV modes or set any of
the OV6620’s internal register values.[8]

Demo Mode. To accommodate systems where an
extra actuator may be necessary, the camera board
has the internal ability to control one standard hobby
servo. Using this ability, the vision system can op-
erate in a stand-alone “demo mode”. When demo
mode is selected, the camera acquires the color of
the first object it sees upon power up and tracks it
using a simple feedback loop to point a servo toward
it. The position of the servo can also be set or read
manually, even while demo mode is active. The servo



output port can also be used as a TTL digital output
instead of to generate a servo PWM signal. For de-
bugging purposes there is also a firmware controlled
tracking LED that illuminates when the sensor de-
tects an object. This tracking LED can also be man-
ually controlled via user commands.

2.3 Interface

The vision system by default uses a human readable
ASCII communication protocol that allows the user
to communicate with it interactively from a serial
terminal program. As described previously, a less
verbose mode can be enabled to reduce serial port
traffic when communicating directly with a computer
or another microcontroller. When communicating
with a computer, the system can also dump an entire
raw image via the serial port. This can be used for
diagnostic purposes or higher resolution processing.
Due to the high data rate required, a frame dump
cannot occur in real time. Instead, the board will
send one column of image data per frame that the
system processes. At the current default frame rate
and maximum window size of 80 × 143 a full frame
dump takes about 5 seconds.

By default, all communication with the board takes
place at 115.2 kilobaud, but jumpers can be used to
select either 9.6, 19.2 or 38.4 kilobaud speeds. Below
is an example of a typical set of command transac-
tions with the camera used to track the mean RGB
color located in the middle of the image, where the
vision system output is shown in italics:

CMUcam v1.12

:cr 18 44 17 2 19 32

ACK

:sw 30 60 50 80

ACK

:pm 1

ACK

:gm

ACK

S 150 20 30 5 2 6

:pm 0

ACK

:sw 0 0 80 143

ACK

:tc 145 18 24 155 22 36

ACK

M 50 80 38 82 53 128 35 98

M 52 81 38 82 53 128 35 98

M 51 80 38 84 53 128 35 98

The first command “CR” sets the CMOS camera
registers. The numbers that follow are register ad-
dresses and parameters, for example 18 44 tells the
camera to set the color mode to RGB and turn on
automatic white balance. These values are outlined
in the vision system documentation [9] as well as the

CMOS camera documentation.[8] The “SW” com-
mand sets the coordinates of the window to be pro-
cessed. In this case x1=30 y1=60 x2=50 y2=80,
which selects the center of the image. The “PM
1” command turns on the poll mode of the camera
so that any additional functions will only return a
single line and not stream data. The “GM” com-
mand then asks the camera to get the mean value
in the current window. The resulting “S” packet
shows the Rmean, Gmean, Bmean, followed by the
Rdeviation, Gdeviation and Bdeviation. Next, poll mode
is disabled and the window is set back to encompass
the entire image. The final “TC” command actually
calls the track color function, passing in a minimum
RGB value of (145,18,24) and a maximum value of
(155,22,36). This value is the mean value previously
returned from the camera now padded by its devia-
tion. The returned M packets appear at 16.7 frames
per second and show the centroid x, y coordinates
the x1, y1, x2, y2 bounding box coordinates, the
number of detected pixels and the confidence value
of the object being tracked: M x y x1 y1 x2 y2 pixels
confidence.

Figure 3: Example hand image captured by the
graphical user interface with tracked bitmap (light
turquoise) and centroid (dark red dot) overlaid.

To aid in system integration, we have also developed
a Java based graphical user interface (GUI) that al-
lows the user to interface with the camera from a
Unix or Windows based PC. This GUI allows for al-
most all elements of the camera to be explored in a
user friendly environment. The GUI graphically dis-
plays real-time data from the camera in a more nat-
ural manner. For example, the user can enter color
bounds into a dialog box and then issue a track color
command. The GUI then formats that request and
sends it to the camera. The output of the camera
data is parsed and displayed in a window that shows
the actual bounding box whose colors depend on the
confidence value returned. Depending on how it is
configured, the “line mode” binary image and the



centroid may also be overlaid on the bounding box,
as seen in Figure 3. When the user calls the statis-
tics function, the returned color data is mixed and
displayed. One of the most important features of the
GUI, is of course, its ability to display a frame dump.

2.4 Performance

Our final vision system operates at a maximum rate
of 16.7 frames per second with a maximum resolution
of 80 × 143. Using the Java graphical user interface
to display the data, we are able to dump a frame
and select the color of an object to track. In one
case this object was a blue 14” × 15” × 10” recy-
cling bin. Once the object’s color bounds are sent
to the vision system, it can confidently track the bin
up to 35 feet away. From a fixed position, the vision
system tracked a stationary 12” x 9” red cardboard
target for 10,000 frames. During this period of time
the target’s center of mass was found to jitter on
the x axis and y axis on average by 0.005 pixels and
0.011 pixels, respectively, and with a standard de-
viation of 0.005 and 0.011 pixels, respectively. The
number of pixels tracked was on average 144.00 with
a standard deviation of 0.016 pixels. This same test
was repeated on a 2” x 2” green target at 10’ away.
Over the 10,000 frames, the x and y jitter was on
average 0.1460 and 0.2900 with standard deviations
of 0.146 and 0.216. The average size of the object
was 7.98 pixels with a standard deviation of 0.288
pixels. With the appropriate IR coated lens, the sys-
tem performs well in a wide range of lighting condi-
tions, including direct sunlight outdoors. When the
above tests where performed outside during a bright
day the results where nearly identical. Video se-
quences demonstrating various rapid-prototyped mo-
bile robots tracking colored objects using this vision
system may be viewed at [10].

Figure 4: Picture of the mini-servo robot that uses
the vision system for guidance.

To further evaluate the system we built numerous

robotic test platforms. The one shown in Figure 4
consists of two standard hobby servos joined together
creating a small differential drive mobile base. A Mi-
crochip PIC based microcontroller board is mounted
horizontally on top of the servos which then connects
to the vision board which is mounted on the front of
the robot, perpendicular to the base. A small piece
of plastic acts as a sliding caster. A micro-servo con-
nected to this third point of contact allows the robot
to tilt up and down. Power is provided by two 9 volt
batteries. The main PIC microcontroller communi-
cates with the vision board over a serial link. The
PIC first configures the camera to track the brightest
red object in front of it. Then, using the coordinates
of the object, the robot attempts to center the object
in its view. It uses the differential drive base to pan
its view left and right. The micro-servo attached to
its caster can then push up or down controlling the
pitch of the camera. Once the object is centered in
the robot’s view, it uses the size of the object in or-
der to drive backward or forward in order to hold a
constant distance from it. The entire robot measures
about 4” by 3” and was less than 3” tall. With all
processing and power on board, the robot can suc-
cessfully track a small brightly colored red doll at
distances of up to 15 feet.

3 Related Work

The many hardware and software systems that have
been constructed by the computer vision community
are too numerous to list here. However, some well
known systems have had similar goals to the work
described here. The Cognachrome vision system [11]
which consists of custom frame grabber and process-
ing hardware has functionality most similar to the
system we describe here. The Cognachrome system
is definitely more capable than the system described
here, it can track 25 objects at 60 Hz. However
the system described here is significantly less com-
plex and physically smaller making it more attrac-
tive for applications like on board vision for small
mobile robots. The MIT Cheap Vision Machine [1]
has a similar overall architecture to the Cognachrome
system and is similarly more capable than the sys-
tem described here, but is also significantly more
complex. A number of systems [2], [3], [6] consist
of highly optimized software systems which rely on
standard desktop computer systems to process image
data. The system here is unique in that it targets ap-
plications where including the capabilities of a stan-
dard desktop machine would be prohibitive because
of size, cost, or power requirements.



4 Conclusions and Future Work

The goal of this work was to evaluate the feasibility
of constructing a minimal vision system consisting
solely of a microcontroller and a CMOS camera chip
which can implement simple vision algorithms at a
useful frame rate. We believe we have demonstrated
this feasibility by constructing a functioning system
which can successfully find blobs of a specified color
in an image at 16.7 frames per second. We further
evaluated this system by using it as a sensor to guide
several small mobile robots.

There is a great deal of additional functionality that
we would like to add to this system, such as the abil-
ity to compute color histograms of selected image re-
gions and the ability to perform simple frame differ-
encing. However, this was not possible with our cur-
rent system due to the limited program and working
memory space of the microcontroller used. We have
a working prototype of a more powerful system that
uses the SX52 microcontroller. This microcontroller
is from the same family and has approximately twice
the RAM and ROM space than the SX28 model we
are currently using. The new prototype system also
has a single chip FIFO image buffer that allows for
multiple processing passes over a single image. With
this new processor and image buffer we hope to sig-
nificantly enhance the functionality of this system.
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