
Stereo Vision Based Navigation for Sun-Synchronous Exploration

Chris P. Urmson, M. Bernardine Dias, Reid G. Simmons

The Robotics Institute, Carnegie Mellon University, Pittsburgh, USA
{curmson, mbdias, reids}@ri.cmu.edu

Abstract

This paper describes the navigation system used on a
prototype sun-synchronous robot. Sun-synchrony is a
concept that will enable exploration missions by solar-
powered rovers that could last months or years. This
paper presents navigation algorithms developed for
traversing natural terrain robustly. The novel elements
of this work are the refinements necessary to transform
laboratory-demonstrated technologies into a form
useful for robust, sun-synchronous exploration. Results
of a field experiment in the Canadian Arctic, where the
robot traversed 6.1km, 90% autonomously, are also
presented.

1.1 Introduction

Sun-synchronous exploration is an energy-cognizant
strategy for planetary exploration [10][18] that utilizes
knowledge of terrain, time and rover characteristics to
maximize solar energy gathered while performing a
mission. This concept will enable exploration missions
by solar powered rovers that could last months or years.
Hyperion (figure 1), a solar powered robot, was
developed to demonstrate this idea on Earth. In July
2001 Hyperion was deployed to Devon Island, above
the Arctic Circle, to perform experiments in sun-
synchrony. The culmination of these experiments was a
24-hour sun-synchronous route, which Hyperion
planned and executed [19]. This paper describes the
obstacle detection and navigation systems utilized on

Hyperion and presents relevant results of the field
experiments.

1.2 Navigation Problem

Hyperion’s navigation problem can be divided into two
parts: (1) generation of a sun-synchronous route and (2)
execution of the route. A mission planner generates
routes from digital elevation maps and knowledge of the
motion of the sun[15]. The goal of the mission planner
is to output routes that maximize solar input to
Hyperion’s fixed solar panel while completing a
feasible circuit of a desired radius. The mission planner
is only capable of planning for features that are
detectable at the resolution of the elevation map
(typically 25m or greater), such as hills and valleys.

To complement the mission planner, a finer resolution
motion planner (navigator) is required to move the robot
around obstacles that are too small to appear in the
elevation maps (or are unknown at the time of mission
specification) while achieving waypoints determined by
the mission planner. The navigator is the focus of this
paper.

Important to the design and implementation of a
navigator are the characteristics of the environment.
The high arctic terrain that Hyperion is designed for is
typical of many regions of the Moon and Mars. The
terrain is mostly rolling with discrete large boulders and
impassable rocks interspersed at a low density. A
particular focus of this paper is the refinements to
laboratory navigation algorithms that were made to
allow for a successful demonstration of long duration,
robust, sun-synchronous exploration.

2 Related Work

A majority of work in robot navigation has dealt with
robots operating on a flat plane with discrete
obstacles[6]. In recent years, there has been increased
interest in algorithms capable of driving robots over
rough terrain. Much of this work also maintains the
assumption that space can be easily divided into what is
and what is not traversable [1][5][14]. Natural terrain
rarely provides this simple distinction. There is
generally a gradation between terrain that is easily Figure 1: Hyperion at the field experiment site.

traversed and that which is completely impassable.
Without modeling this variability, a robot will be
paralyzed due to excessive caution or will take
unnecessary risks. The abrupt boundary between
traversable and impassable can also lead to potentially
dangerous instabilities in the navigation algorithm when
the terrain is viewed from slightly different
perspectives.

Researchers are beginning to explore descriptions of
terrain that better encode its variability. Continuous
measures of terrain have been implemented as fuzzy
sets [7][9]. These representations are generally
combined with fuzzy logic controllers, which suffer
local minima problems similar to potential field
approaches [6]. Other work describes traversability as a
continuous value based on the weighted combination of
terrain metrics [2][3][11]. Generally, systems that use
obstacle detection incorporate it as a reactive behavior
with little global planning capability [8]. By combining
a path planner with a local obstacle detection system
useful behavior can be generated in unknown or
partially known environments.

The novel elements of this work are the refinements
necessary to transform laboratory-demonstrated
technologies into a form useful for robust, sun-
synchronous exploration. Robustness is essential for
sun-synchrony due to the extended duration of the
missions. Making local navigation decisions that
increase the sun-pointing of the solar panels while
avoiding obstacles is a second important area for sun-
synchrony. The culminating field experiment with
Hyperion provided a unique opportunity to test and
verify these improvements.

3 Design Overview

To maximize robustness, an early design decision was
to allow teleoperators to resolve pathological navigation
problems that were possible, but unlikely to occur. By
focusing on the central navigation problems, rather than
worrying about low-probability “what if” scenarios, the
team was able to ensure that Hyperion’s core navigation
capabilities worked reliably.

The navigation system can be divided into four principle
components:

Navigator: perceive the terrain and select the
appropriate action

Vehicle controller: convert actions into
hardware commands

Health monitor: monitor the state of the
vehicle and disengage the autonomy system
and notify operator in case of problems

State Estimator: fuse sensor data to provide
the approximate state of the robot

A teleoperation interface allows remote operators to
assist the robot when unusual situations arise. The
architecture illustrated in figure 2 allows a human
operator to intercede at any point by passing drive arcs
directly to the vehicle controller. The navigator
however, will continue to evaluate the terrain and
monitor the robot’s progress; this approach allows the
autonomy system to continue moving as soon as the
operator cedes control. In practice, this often meant it
was impossible for observers to detect the transition
between teleoperation and autonomous operation. The
balanced combination of human teleoperation and
autonomy proved extremely reliable and robust.

4 Perception

Hyperion utilizes a two-tiered obstacle detection system
to guarantee safety. A stereo vision system provides a
detailed evaluation of the nearby terrain while a laser
range finder monitors the ground immediately in front
of the robot. The laser range finder is configured as a
“virtual bumper”; it prevents the robot from hitting any
undetected obstacles by causing the health monitor to
issue a stop command when an imminent collision is
detected. The teleoperator can then assess and correct
the situation before handing control back over to the
autonomous navigator.

A common failure point for many navigation systems
are stereo induced errors. Low visual texture can blind
stereo systems, providing no-information for the
navigation system to operate on. In general, it is
prudent to consider unsensed terrain unsafe, but given
the nature of the terrain (sparse obstacles, softly rolling)
and that a safety sensor (the virtual bumper) is in place,
considering the terrain optimistically makes sense. This
encourages the use of a navigation system that allows
terrain that is unsensed by the stereo vision system to be
traversed. This approach helps limit the number of false
obstacles that often cause great inefficiency for stereo
based navigation algorithms. However, even with the
optimistic assumption, it is important to perform the
stereo analysis of the terrain as accurately as possible to
allow Hyperion to navigate efficiently.

Figure 2: Hyperion’s software architecture.

4.1 Stereo Filtering

Point errors due to miscorrelations are a common
problem in stereo vision generated 3D data. A common
approach to preventing miscorrelation is to filter the
resultant disparity image by rejecting regions where the
input image doesn’t have much visual texture. A
similar technique is to filter pixels when the correlation
is not sufficiently unique. These techniques often
remove valid pixels because they cannot determine if a
low probability match is actually a true reading. This
can cause a point cloud to contain sparse data in regions
of the image with low visual texture. Given domain
knowledge, and the safety provided by the virtual
bumper, a more optimistic filtering technique can be
used.

The world Hyperion navigates in can be modeled as a
(relatively) smoothly varying 2 ½ D surface. Any large
step or spike in the disparity data can be assumed to be
noise and should be discarded. This approach allows
the algorithm to utilize regions of low visual texture
while still providing useful data. To check for steps in
the disparity image, each pixel is compared with its
neighbors. If its disparity is more than some threshold
value different than any of its neighbors, it is discarded.
This algorithm can be easily and efficiently
implemented. Small patches of bad data can be
removed by this approach but the skeleton of large
patches will remain.

A final filtering step compares the computed height of
each pixel to the expected ground plane. If it is too far
from the ground plane, the pixel is discarded. The
combination of these two approaches dramatically
reduced the number of false obstacles detected by the
stereo mapping system while maintaining a dense point
cloud.

4.2 Traversability Analysis

Hyperion’s obstacle detection algorithm is derived from
MORPHIN[11]. For each stereo image, the algorithm
generates a traversability map of the local terrain. To
do this, the local terrain is divided into cells. Groups of
cells are combined into overlapping robot-sized patches.
For each patch the algorithm finds the best plane that
represents the perceived terrain.

Traversability is determined by looking at three metrics:
the slope, roughness and “step height”. Each metric is
normalized such that they can be compared directly.
The traversability of the patch is determined by the
worst of these three values.

Regions of the stereo footprint that contain more points
generate a better estimate of the actual terrain. To
capture this, a certainty value is computed for each
patch. Certainty is calculated as a function of the
number of points in a patch and the evenness of the
distribution of the points over the patch.

Critical to the success of the obstacle detection
algorithm was the development of tools that allow in-
depth visualization of its inner workings. The tool
illustrated in Figure 3, allows the user to directly
compare the values generated by the statistical analysis
with the geometry of the terrain (and point cloud). This
capability provides insight into how parameters (such as
the amount of “roughness” that is considered an
obstacle) should be adjusted to generate correct
behavior.

5 Navigation

The navigator uses local terrain evaluations to plan
traversable paths to goals generated by the mission
planning software or a human operator. The navigator
builds maps of the local terrain on the scale of 100m x
100m.

Path planning to a goal is performed using an enhanced
version of the D* algorithm [12][13]. This modified
algorithm calculates the path cost as a combination of

Figure 3: 3D view of terrain rendered by an analysis
tool.

Figure 4: An illustration of the navigation map
orientation.

the cost to traverse an arc and the cost from the end of
an arc to the goal. The basic procedure of the navigator
when evaluating paths is as follows:

• Update the robot position via the state
estimator

• Obtain stereo information from the stereo
mapper

• Compute the traversability analysis

• Insert the new traversability data into the D*
map

• Update the position to account for movement
of the robot during stereo data evaluation

• Evaluate the cost along each of the arcs (total
sum of cost along the arc plus cost from the
end of the arc to the nearest point in the goal
region), vetoing any arc that collides with an
obstacle

• Choose the arc that results in the lowest cost, if
several arcs with equal cost are found, one is
selected arbitrarily

• Send radius, speed, and safety timeout for this
arc to the controller

• If the goal is not reached, repeat procedure
(Thus, the robot travels a fraction of the chosen
arc, and then the entire procedure is repeated)

A combination of map orientation and goal regions are
used to help maximize Hyperion’s sun-pointing while
navigating between waypoints and around obstacles.
Each navigation map is oriented such that the principal
axis is aligned along the path between the current goal
and the next goal, as illustrated in figure 4. This
direction is the direction of travel the mission planner
believes will maximize solar power gain.

Waypoints, generated by the mission planner, are
specified as goal regions whose dimensions and
orientation are determined at runtime. By aligning goal
regions perpendicular to the preferred direction of
travel, the 8-connectedness of the map encourages the

navigator to generate paths that maximize sun-pointing.

6 Results

To evaluate the concept of sun-synchronous navigation,
Hyperion was deployed to Haughton Crater (on Devon
Island), in Arctic Canada. As part of an end-to-end
system test, the mission planner generated a sequence of
waypoints marking out a 5.8km sun-synchronous circuit
that the navigator was to execute over a period of 24 hrs
while human operators monitored progress. For
recharging cycles between waypoints, operators would
orient the robot as required by the mission planner.
Further information regarding this experiment can be
found in [15][19].

6.1 Terrain Evaluation

The filtered stereo mapping data generated by the stereo
algorithm had planar errors ranging from -5cm to
+20cm increasing with distance from the cameras. In
practice, this error did not affect the validity of maps
generated by the stereo obstacle detection algorithm. At
range, it is sufficient to know approximately where an
obstacle is located, so that gross motions can be
performed to avoid it. As the robot travels towards
obstacles, the position of the obstacle is revised
repeatedly, providing an accurate location when the
robot most needs it. In practice the stereo based
obstacle detection is more reliable than the “virtual
bumper” which generates a number of false positives
due to an algorithm that is overly simplistic for the
arctic terrain.

6.2 Robustness

The majority of Hyperion’s traverse was performed
autonomously. Post analysis of mission telemetry
revealed that Hyperion drove 6.1 km, operating
autonomously for 90% of the time. At no point was it
necessary for human observers to physically interact
with the robot. Tele-operators found that manually

Figure 6: Hyperion in a rock field with a mixture of
traversable and intraversable obstacles.

0

1

2

3

4

5

6

7

8

9

-150 -100 -50 0 50 100 150

%
 o

cc
ur

re
nc

e

heading error (degrees)

Figure 5. The distribution of heading error.

adjusting the speed Hyperion used had an impact on
Hyperion’s ability to navigate through dense obstacle
fields. Due to the decoupling of forward speed and
steering, Hyperion can change its heading in a much
shorter distance when traveling at lower speeds,
allowing it to navigate tight constraints that it would not
be capable of at higher speeds.

The navigator and obstacle detection algorithms proved
very reliable. The level of performance was evident in
the navigator’s ability to traverse cluttered terrain
without hitting any rocks that it could not drive over.

6.3 Efficiency

A reasonable metric for efficiency of the navigator is
heading error: the difference between the optimal
heading and the actual heading. Over the 24 hour
traverse, the robot had an average heading error of 5.4°,
the average of the absolute value of the heading error
was 21.0°. The distribution of the heading error is
shown in Figure 5. In the context of sun-synchrony this
meant the robot received 93% of the maximum energy
the mission planner expected it to receive.

The average density of rough or impassable terrain
Hyperion traversed was 6.9%. Rough terrain, in this
context, is any terrain that would significantly disturb
Hyperion (a lower bound would be approximately rocks
that are 5-8cm in height). During several legs, the
density of rough terrain was considerably higher,
reaching a maximum of 34.2%. Figure 6 shows
Hyperion navigating in a dense rock field while figure 7
shows a navigation map representative of similar
difficult terrain.

Another important metric is the amount of steering
activity generated by the navigator. In a world with

static obstacles, a navigator should change its desired
curvature gradually. Rapid changes of the steering are
undesirable as they waste energy and cause excessive
mechanical wear. On average, during each cycle,
Hyperion changed the curvature of the arc it was
traveling along by 0.03m-1; or by less than one arc in its
discretized arc set. This smoothness implies that the
stereo perception system was also stable, since if the
stereo system were producing a significant number of
false obstacles, the navigator would be forced to make
abrupt movements to avoid them. Figure 8 shows the
relationship between terrain difficulty and navigation
smoothness. In this data, there is a general trend that
shows that as the percentage of rough terrain increases,
steering activity also increases.

7 Future work

The exercise of developing the navigation system for
Hyperion pointed towards several development areas in
which there could be significant payoff.

7.1 Variable Speed Control

Operators can control the velocity at which the
navigator drives Hyperion. In tight quarters, slowing
the robot improved its ability to navigate around
obstacles due to a relative increase in nimbleness. By
monitoring the local obstacle density, Hyperion could
have autonomously decreased its speed as necessary.
This would decrease human input further and would
likely result in a more robust robot which does not
sacrifice speed unnecessarily.

7.2 General Rough Terrain

Even when utilizing continuous values to describe the
traversability of terrain, there are many subtleties about
the terrain that are missed. Often the function used to
convert sensor data to cost must be pessimistic. A good
example is a rock that is short enough to be cleared by
the body of the robot, but too large for the rover’s
wheels to drive over. By considering the worst case

0

0.5

1

1.5

2

2.5

0 5 10 15 20 25 30 35

st
e

er
in

g
 a

rc
 s

te
p

% rough terrain

Figure 8: The relationship between terrain roughness
and steering activity. Each point represents a route

segment, approximately 70m of travel.

Figure 7: The navigation map for a traverse where
Hyperion crossed a cluttered rock field. Terrain is
classified from safe or unknown (black) to unsafe
(white). The rectangle indactes the goal region.

contact, our current algorithms would not allow the
rover to straddle the rock, even if it is the only possible
path. Improving traversability analysis and terrain
understanding will become particularly important as
mobile robots operate in more difficult regions with
greater reliability requirements.

7.3 Generalization of the Algorithm

The NASA Jet Propulsion Laboratory is developing a
common object based framework, called CLARAty, to
allow robotic software to be more portable between
software and hardware platforms [16]. As part of this
effort, the navigation software described in this paper
will be ported to this framework. This will lead to more
robust and generally useful software while providing a
framework within which various navigation algorithms
can be more directly compared.

8 Conclusions

Hyperion demonstrated robust, sun-synchronous
navigation. The development and application of several
refinements enabled Hyperion to navigate
autonomously for 24 hours, traversing more than 6km,
without a navigation failure. The refinements developed
for Hyperion are illustrative of how domain knowledge
can be applied to increase navigation robustness.

Acknowledgments

This paper describes the work of the Sun-synchronous
Navigation project and all of its members are important
contributors. The authors acknowledge and thank Dimi
Apostolopoulos, Jesse Boley, Stewart Moorehead,
Benjamin Shamah, Sanjiv Singh, Tony Stentz, James
Teza, Paul Tompkins, Vandi Verma, Michael Wagner
and David Wilkinson. Field experimentation was
conducted in collaboration with the NASA Haughton-
Mars project, Pascal Lee, Principle Investigator. This
work is supported by NASA under grant NAG9-1256.

9 References

[1] P. Belluta et al. “Terrain Perception for Demo III”, Proc.
IEEE Intelligent Vehicles Symposium, Dearborn, USA,
October 2000.

[2] J. Biesiadecki et al. “The Athena SDM Rover: a Testbed
for Mars Rover Mobility”, Proc. International
Symposium on Artificial Intelligence and Robotics &
Automation in Space, St-Hubert, Canada, June 2001.

[3] S. Golberg, M. Maimone & L. Matthies. “Stereo Vision
and Rover Navigation Software for Planetary
Exploration”, Proc. IEEE Aerospace Conference, Big
Sky, USA, March 2002.

[4] A. Kelley and A. Stentz. “Rough Terrain Autonomous
Mobility – Part 1: A Theoretical Analysis of
Requirements”, Autonomous Robots, No. 5, May 1998,
pp 129-161

[5] S. Laubach and J. Burdick. “An Autonomous Sensor-
Based Path-Planner for Planetary Microrovers”, Proc.
IEEE International Conference on Robotics and
Automation, Detroit, USA, May 1999.

[6] J-C. Latombe. “Robot Motion Planning”, Kluwer
Academic Publishers, 1991.

[7] A. Martin-Alvarez et al. “Fuzzy Reactive Piloting for
Continuous Driving of Long Range Autonomous
Planetary Micro-Rovers”, Proc. IEEE Aerospace
Conference, 1999.

[8] H. Seraji et al. “Safe Navigation on Hazardous Terrain”,
Proc. IEEE International Conference on Robotics and
Automation, Seoul, Korea, May 2001.

[9] H. Seraji. “Traversability Index: A new concept for
Planetary Rovers”, Proc. IEEE International Conference
on Robotics and Automation, Detroit, USA, May 1999.

[10] K. Shillcutt. “Solar Based Navigation for Robotic
Explorers,” Ph.D. thesis, CMU-RI-TR-00-25, October
2000.

[11] S. Singh et al. “Recent Progress in Local and Global
Traversability for Planetary Rovers”, Proc. IEEE
International Conference on Robotics and Automation,
San Francisco, USA, April 2000.

[12] A. Stentz. “Optimal and Efficient Path Planning for
Partially-Known Environments”, Proceedings of IEEE
International Conference on Robotics and Automation,
volume 4, pp.3310-3317, 1994.

[13] A. Stentz. “The Focused D* Algorithm for Real-Time
Planning”, Proceedings of International Joint Conference
on Artificial Intelligence, August 1995.

[14] A. Stentz and M. Hebert. “A Complete Navigation
System for Goal Acquisition in Unknown
Environments”, Proc. IEEE/RSJ International Conference
On Intelligent Robotic Systems, Aug 1995.

[15] P. Tompkins et al. “Mission planning for the Sun-
synchronous Navigation Field Experiment”, Proc. IEEE
International Conference on Robotics and Automation,
Washington, USA, May 2002.

[16] R. Volpe et al. “The CLARAty architecture for robotic
autonomy”, Proc. IEEE Aerospace Conference, 2001.

[17] D. Wettergreen et al. “Developing Nomad for Robotic
Exploration of the Atacama Desert”, Robotics and
Autonomous Systems, February 1999.

[18] D. Wettergreen et al. “Robotic Planetary Exploration by
Sun-Synchronous Navigation,” Proc. International
Symposium on Artificial Intelligence and Robotics &
Automation in Space, St-Hubert, Canada, June 2001.

[19] D. Wettergreen et al. “First Experiment in Sun-
Synchronous Navigation”, Proc. IEEE International
Conference on Robotics and Automation, Washington,
USA, May 2002.

