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Abstract 

This paper describes the navigation system used on a 
prototype sun-synchronous robot. Sun-synchrony is a 
concept that will enable exploration missions by solar-
powered rovers that could last months or years. This 
paper presents navigation algorithms developed for 
traversing natural terrain robustly.  The novel elements 
of this work are the refinements necessary to transform 
laboratory-demonstrated technologies into a form 
useful for robust, sun-synchronous exploration.  Results 
of a field experiment in the Canadian Arctic, where the 
robot traversed 6.1km, 90% autonomously, are also 
presented. 

1.1 Introduction 

Sun-synchronous exploration is an energy-cognizant 
strategy for planetary exploration [10][18] that utilizes 
knowledge of terrain, time and rover characteristics to 
maximize solar energy gathered while performing a 
mission. This concept will enable exploration missions 
by solar powered rovers that could last months or years.  
Hyperion (figure 1), a solar powered robot, was 
developed to demonstrate this idea on Earth.  In July 
2001 Hyperion was deployed to Devon Island, above 
the Arctic Circle, to perform experiments in sun-
synchrony.  The culmination of these experiments was a 
24-hour sun-synchronous route, which Hyperion 
planned and executed [19].  This paper describes the 
obstacle detection and navigation systems utilized on 

Hyperion and presents relevant results of the field 
experiments.   

1.2 Navigation Problem 

Hyperion’s navigation problem can be divided into two 
parts: (1) generation of a sun-synchronous route and (2) 
execution of the route.  A mission planner generates 
routes from digital elevation maps and knowledge of the 
motion of the sun[15].  The goal of the mission planner 
is to output routes that maximize solar input to 
Hyperion’s fixed solar panel while completing a 
feasible circuit of a desired radius.  The mission planner 
is only capable of planning for features that are 
detectable at the resolution of the elevation map 
(typically 25m or greater), such as hills and valleys.   

To complement the mission planner, a finer resolution 
motion planner (navigator) is required to move the robot 
around obstacles that are too small to appear in the 
elevation maps (or are unknown at the time of mission 
specification) while achieving waypoints determined by 
the mission planner.  The navigator is the focus of this 
paper. 

Important to the design and implementation of a 
navigator are the characteristics of the environment.  
The high arctic terrain that Hyperion is designed for is 
typical of many regions of the Moon and Mars.  The 
terrain is mostly rolling with discrete large boulders and 
impassable rocks interspersed at a low density. A 
particular focus of this paper is the refinements to 
laboratory navigation algorithms that were made to 
allow for a successful demonstration of long duration, 
robust, sun-synchronous exploration. 

2 Related Work 

A majority of work in robot navigation has dealt with 
robots operating on a flat plane with discrete 
obstacles[6].  In recent years, there has been increased 
interest in algorithms capable of driving robots over 
rough terrain.  Much of this work also maintains the 
assumption that space can be easily divided into what is 
and what is not traversable [1][5][14].  Natural terrain 
rarely provides this simple distinction.  There is 
generally a gradation between terrain that is easily Figure 1: Hyperion at the field experiment site. 



traversed and that which is completely impassable. 
Without modeling this variability, a robot will be 
paralyzed due to excessive caution or will take 
unnecessary risks. The abrupt boundary between 
traversable and impassable can also lead to potentially 
dangerous instabilities in the navigation algorithm when 
the terrain is viewed from slightly different 
perspectives. 

Researchers are beginning to explore descriptions of 
terrain that better encode its variability.  Continuous 
measures of terrain have been implemented as fuzzy 
sets [7][9].  These representations are generally 
combined with fuzzy logic controllers, which suffer 
local minima problems similar to potential field 
approaches [6].  Other work describes traversability as a 
continuous value based on the weighted combination of 
terrain metrics [2][3][11].  Generally, systems that use 
obstacle detection incorporate it as a reactive behavior 
with little global planning capability [8].  By combining 
a path planner with a local obstacle detection system 
useful behavior can be generated in unknown or 
partially known environments.   

The novel elements of this work are the refinements 
necessary to transform laboratory-demonstrated 
technologies into a form useful for robust, sun-
synchronous exploration.  Robustness is essential for 
sun-synchrony due to the extended duration of the 
missions.  Making local navigation decisions that 
increase the sun-pointing of the solar panels while 
avoiding obstacles is a second important area for sun-
synchrony.  The culminating field experiment with 
Hyperion provided a unique opportunity to test and 
verify these improvements.   

3 Design Overview 

To maximize robustness, an early design decision was 
to allow teleoperators to resolve pathological navigation 
problems that were possible, but unlikely to occur.  By 
focusing on the central navigation problems, rather than 
worrying about low-probability “what if” scenarios, the 
team was able to ensure that Hyperion’s core navigation 
capabilities worked reliably.   

The navigation system can be divided into four principle 
components: 

Navigator: perceive the terrain and select the 
appropriate action 

Vehicle controller: convert actions into 
hardware commands 

Health monitor: monitor the state of the 
vehicle and disengage the autonomy system 
and notify operator in case of problems 

State Estimator: fuse sensor data to provide 
the approximate state of the robot 

A teleoperation interface allows remote operators to 
assist the robot when unusual situations arise.  The 
architecture illustrated in figure 2 allows a human 
operator to intercede at any point by passing drive arcs 
directly to the vehicle controller. The navigator 
however, will continue to evaluate the terrain and 
monitor the robot’s progress; this approach allows the 
autonomy system to continue moving as soon as the 
operator cedes control.  In practice, this often meant it 
was impossible for observers to detect the transition 
between teleoperation and autonomous operation. The 
balanced combination of human teleoperation and 
autonomy proved extremely reliable and robust. 

4 Perception 

Hyperion utilizes a two-tiered obstacle detection system 
to guarantee safety.  A stereo vision system provides a 
detailed evaluation of the nearby terrain while a laser 
range finder monitors the ground immediately in front 
of the robot. The laser range finder is configured as a 
“virtual bumper”; it prevents the robot from hitting any 
undetected obstacles by causing the health monitor to 
issue a stop command when an imminent collision is 
detected.  The teleoperator can then assess and correct 
the situation before handing control back over to the 
autonomous navigator. 

A common failure point for many navigation systems 
are stereo induced errors.  Low visual texture can blind 
stereo systems, providing no-information for the 
navigation system to operate on.  In general, it is 
prudent to consider unsensed terrain unsafe, but given 
the nature of the terrain (sparse obstacles, softly rolling) 
and that a safety sensor (the virtual bumper) is in place, 
considering the terrain optimistically makes sense.  This 
encourages the use of a navigation system that allows 
terrain that is unsensed by the stereo vision system to be 
traversed.  This approach helps limit the number of false 
obstacles that often cause great inefficiency for stereo 
based navigation algorithms. However, even with the 
optimistic assumption, it is important to perform the 
stereo analysis of the terrain as accurately as possible to 
allow Hyperion to navigate efficiently.   

Figure 2: Hyperion’s software architecture. 



4.1 Stereo Filtering 

Point errors due to miscorrelations are a common 
problem in stereo vision generated 3D data.  A common 
approach to preventing miscorrelation is to filter the 
resultant disparity image by rejecting regions where the 
input image doesn’t have much visual texture.  A 
similar technique is to filter pixels when the correlation 
is not sufficiently unique.  These techniques often 
remove valid pixels because they cannot determine if a 
low probability match is actually a true reading.  This 
can cause a point cloud to contain sparse data in regions 
of the image with low visual texture.  Given domain 
knowledge, and the safety provided by the virtual 
bumper, a more optimistic filtering technique can be 
used. 

The world Hyperion navigates in can be modeled as a 
(relatively) smoothly varying 2 ½ D surface.  Any large 
step or spike in the disparity data can be assumed to be 
noise and should be discarded.   This approach allows 
the algorithm to utilize regions of low visual texture 
while still providing useful data.  To check for steps in 
the disparity image, each pixel is compared with its 
neighbors.  If its disparity is more than some threshold 
value different than any of its neighbors, it is discarded.  
This algorithm can be easily and efficiently 
implemented.  Small patches of bad data can be 
removed by this approach but the skeleton of large 
patches will remain. 

A final filtering step compares the computed height of 
each pixel to the expected ground plane.  If it is too far 
from the ground plane, the pixel is discarded.  The 
combination of these two approaches dramatically 
reduced the number of false obstacles detected by the 
stereo mapping system while maintaining a dense point 
cloud.  

4.2  Traversability Analysis 

Hyperion’s obstacle detection algorithm is derived from 
MORPHIN[11].  For each stereo image, the algorithm 
generates a traversability map of the local terrain.  To 
do this, the local terrain is divided into cells.  Groups of 
cells are combined into overlapping robot-sized patches. 
For each patch the algorithm finds the best plane that 
represents the perceived terrain.   

Traversability is determined by looking at three metrics: 
the slope, roughness and “step height”.  Each metric is 
normalized such that they can be compared directly.  
The traversability of the patch is determined by the 
worst of these three values.   

Regions of the stereo footprint that contain more points 
generate a better estimate of the actual terrain.  To 
capture this, a certainty value is computed for each 
patch.  Certainty is calculated as a function of the 
number of points in a patch and the evenness of the 
distribution of the points over the patch. 

Critical to the success of the obstacle detection 
algorithm was the development of tools that allow in-
depth visualization of its inner workings.  The tool 
illustrated in Figure 3, allows the user to directly 
compare the values generated by the statistical analysis 
with the geometry of the terrain (and point cloud).  This 
capability provides insight into how parameters (such as 
the amount of “roughness” that is considered an 
obstacle) should be adjusted to generate correct 
behavior. 

5 Navigation 

The navigator uses local terrain evaluations to plan 
traversable paths to goals generated by the mission 
planning software or a human operator.   The navigator 
builds maps of the local terrain on the scale of 100m x 
100m.   

Path planning to a goal is performed using an enhanced 
version of the D* algorithm [12][13].  This modified 
algorithm calculates the path cost as a combination of 

Figure 3: 3D view of terrain rendered by an analysis 
tool. 

Figure 4: An illustration of the navigation map 
orientation. 



the cost to traverse an arc and the cost from the end of 
an arc to the goal.  The basic procedure of the navigator 
when evaluating paths is as follows: 

• Update the robot position via the state 
estimator 

• Obtain stereo information from the stereo 
mapper 

• Compute the traversability analysis 

• Insert the new traversability data into the D* 
map 

• Update the position to account for movement 
of the robot during stereo data evaluation 

• Evaluate the cost along each of the arcs (total 
sum of cost along the arc plus cost from the 
end of the arc to the nearest point in the goal 
region), vetoing any arc that collides with an 
obstacle 

• Choose the arc that results in the lowest cost, if 
several arcs with equal cost are found, one is 
selected arbitrarily   

• Send radius, speed, and safety timeout for this 
arc to the controller  

• If the goal is not reached, repeat procedure  
(Thus, the robot travels a fraction of the chosen 
arc, and then the entire procedure is repeated) 

A combination of map orientation and goal regions are 
used to help maximize Hyperion’s sun-pointing while 
navigating between waypoints and around obstacles.  
Each navigation map is oriented such that the principal 
axis is aligned along the path between the current goal 
and the next goal, as illustrated in figure 4.  This 
direction is the direction of travel the mission planner 
believes will maximize solar power gain.   

Waypoints, generated by the mission planner, are 
specified as goal regions whose dimensions and 
orientation are determined at runtime.  By aligning goal 
regions perpendicular to the preferred direction of 
travel, the 8-connectedness of the map encourages the 

navigator to generate paths that maximize sun-pointing. 

6 Results 

To evaluate the concept of sun-synchronous navigation, 
Hyperion was deployed to Haughton Crater (on Devon 
Island), in Arctic Canada.  As part of an end-to-end 
system test, the mission planner generated a sequence of 
waypoints marking out a 5.8km sun-synchronous circuit 
that the navigator was to execute over a period of 24 hrs 
while human operators monitored progress.  For 
recharging cycles between waypoints, operators would 
orient the robot as required by the mission planner.  
Further information regarding this experiment can be 
found in [15][19].  

6.1 Terrain Evaluation 

The filtered stereo mapping data generated by the stereo 
algorithm had planar errors ranging from -5cm to 
+20cm increasing with distance from the cameras.  In 
practice, this error did not affect the validity of maps 
generated by the stereo obstacle detection algorithm.  At 
range, it is sufficient to know approximately where an 
obstacle is located, so that gross motions can be 
performed to avoid it.  As the robot travels towards 
obstacles, the position of the obstacle is revised 
repeatedly, providing an accurate location when the 
robot most needs it.  In practice the stereo based 
obstacle detection is more reliable than the “virtual 
bumper” which generates a number of false positives 
due to an algorithm that is overly simplistic for the 
arctic terrain. 

6.2 Robustness 

The majority of Hyperion’s traverse was performed 
autonomously.  Post analysis of mission telemetry 
revealed that Hyperion drove 6.1 km, operating 
autonomously for 90% of the time.  At no point was it 
necessary for human observers to physically interact 
with the robot.  Tele-operators found that manually 

Figure 6: Hyperion in a rock field with a mixture of 
traversable and intraversable obstacles. 
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adjusting the speed Hyperion used had an impact on 
Hyperion’s ability to navigate through dense obstacle 
fields.  Due to the decoupling of forward speed and 
steering, Hyperion can change its heading in a much 
shorter distance when traveling at lower speeds, 
allowing it to navigate tight constraints that it would not 
be capable of at higher speeds.  

The navigator and obstacle detection algorithms proved 
very reliable.  The level of performance was evident in 
the navigator’s ability to traverse cluttered terrain 
without hitting any rocks that it could not drive over. 

6.3 Efficiency 

A reasonable metric for efficiency of the navigator is 
heading error: the difference between the optimal 
heading and the actual heading.  Over the 24 hour 
traverse, the robot had an average heading error of 5.4°, 
the average of the absolute value of the heading error 
was 21.0°.  The distribution of the heading error is 
shown in Figure 5. In the context of sun-synchrony this 
meant the robot received 93% of the maximum energy 
the mission planner expected it to receive.  

The average density of rough or impassable terrain 
Hyperion traversed was 6.9%.  Rough terrain, in this 
context, is any terrain that would significantly disturb 
Hyperion (a lower bound would be approximately rocks 
that are 5-8cm in height).  During several legs, the 
density of rough terrain was considerably higher, 
reaching a maximum of 34.2%.  Figure 6 shows 
Hyperion navigating in a dense rock field while figure 7 
shows a navigation map representative of similar 
difficult terrain.  

Another important metric is the amount of steering 
activity generated by the navigator.  In a world with 

static obstacles, a navigator should change its desired 
curvature gradually.  Rapid changes of the steering are 
undesirable as they waste energy and cause excessive 
mechanical wear.  On average, during each cycle, 
Hyperion changed the curvature of the arc it was 
traveling along by 0.03m-1; or by less than one arc in its 
discretized arc set.  This smoothness implies that the 
stereo perception system was also stable, since if the 
stereo system were producing a significant number of 
false obstacles, the navigator would be forced to make 
abrupt movements to avoid them.  Figure 8 shows the 
relationship between terrain difficulty and navigation 
smoothness.  In this data, there is a general trend that 
shows that as the percentage of rough terrain increases, 
steering activity also increases. 

7 Future work 

The exercise of developing the navigation system for 
Hyperion pointed towards several development areas in 
which there could be significant payoff. 

7.1 Variable Speed Control 

Operators can control the velocity at which the 
navigator drives Hyperion.  In tight quarters, slowing 
the robot improved its ability to navigate around 
obstacles due to a relative increase in nimbleness.  By 
monitoring the local obstacle density, Hyperion could 
have autonomously decreased its speed as necessary.  
This would decrease human input further and would 
likely result in a more robust robot which does not 
sacrifice speed unnecessarily.  

7.2  General Rough Terrain 

Even when utilizing continuous values to describe the 
traversability of terrain, there are many subtleties about 
the terrain that are missed.  Often the function used to 
convert sensor data to cost must be pessimistic.  A good 
example is a rock that is short enough to be cleared by 
the body of the robot, but too large for the rover’s 
wheels to drive over.  By considering the worst case 
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segment, approximately 70m of travel.  

Figure 7: The navigation map for a traverse where 
Hyperion crossed a cluttered rock field.  Terrain is 
classified from safe or unknown (black) to unsafe 
(white).  The rectangle indactes the goal region. 



contact, our current algorithms would not allow the 
rover to straddle the rock, even if it is the only possible 
path.  Improving traversability analysis and terrain 
understanding will become particularly important as 
mobile robots operate in more difficult regions with 
greater reliability requirements. 

7.3 Generalization of the Algorithm 

The NASA Jet Propulsion Laboratory is developing a 
common object based framework, called CLARAty, to 
allow robotic software to be more portable between 
software and hardware platforms [16].  As part of this 
effort, the navigation software described in this paper 
will be ported to this framework.  This will lead to more 
robust and generally useful software while providing a 
framework within which various navigation algorithms 
can be more directly compared. 

8 Conclusions 

Hyperion demonstrated robust, sun-synchronous 
navigation.  The development and application of several 
refinements enabled Hyperion to navigate 
autonomously for 24 hours, traversing more than 6km, 
without a navigation failure. The refinements developed 
for Hyperion are illustrative of how domain knowledge 
can be applied to increase navigation robustness.   
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