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Abstract

We propose a motion planning algorithm for performing
policy search in the full pose and velocity space of a mo-
bile robot. By comparison, existing techniques optimize
high-level plans, but fail to optimize the low-level mo-
tion controls. We use policy search in a high dimensional
control space to find plans that lead to measurably better
motion planning. Our experimental results suggest that
our approach leads to superior robot motion than many
existing techniques.

1 Introduction

Most mobile robot navigation systems to date have sepa-
rated robot motion into two levels of control: global path
planning and local motion control [3]. The global path
planner is usually implemented in some low-dimensional
space, such as the discretized x, y manifold of the robot’s
configuration space. The path in this space is then opti-
mized using a number of techniques: dynamic program-
ming is perhaps the most popular technique [17, 12] at
present, in that it guarantees optimality with respect to
the model of the robot and the environment, converges
very quickly for most environments, and also provides a
universal plan for the entire space. Other examples of
these planners are potential-field based planners [9], and
probabilistic roadmaps [8].

However, a plan in x, y space must still be converted into
controls for the mobile robot. Note that most global path
planning methods cannot be used to plan directly in the
full state space of the robot, because the state space of
a mobile robot is at least 5 dimensional (x, y, θ, vt, vr,
where vt is the translational velocity and vr is the ro-
tational velocity). Many different local controllers have
been suggested in recent years [2, 18, 6, 10]. How-
ever, the local controllers have all abandoned optimal-
ity in the local space, in exchange for adapting to dy-
namic obstacles and speed of convergence. Existing lo-
cal controllers make approximations such as modelling
the robot’s shape with a bounding circle [13], (eliminat-
ing the θ dimension), deterministic motion models [16],
etc. The controllers then use a variety of heuristics for
finding some path that approximates the trajectory sug-
gested by the global planner1. The disadvantage to these

1Only recently have global path planners been able to replan fast

approaches is that the high-level structure of the path may
be close to optimal, but controls may be suboptimal on a
detailed level. This sub-optimality is usually manifested
as overly-conservative motions, such as passing through
doors.

By comparison, our approach is to generate a complete
plan in the full state space of the robot. We first gener-
ate an intermediate plan in a low dimensional, discrete
space by using dynamic programming over a value func-
tion. We then project this plan to the full state space that
includes orientation and velocity as state features. The
plan is represented as a sequence of waypoints and a con-
troller that drives through the waypoints in sequence. Us-
ing the high-dimensional projection of the value function
plan as a seed, we then perform gradient ascent in the
plan space, modifying the waypoints to increase the ex-
pected reward of the plan. Under a number of simple and
physically motivated assumptions, we will demonstrate
that this approach finds paths where conventional means
fail, and does so in a realistic amount of time.

The central assumption of our approach is that the value
function generates an initial plan that is “close to” the op-
timal solution, and provides a reasonable starting point.
For our mobile robot navigation problem, we assume that
the value function provides a topologically correct so-
lution, which is refined by the search. We do not pro-
vide any guarantees on the quality of the final plan if the
initial value function policy is allowed to be arbitrarily
bad. However, we provide empirical evidence that this
approach is successful for real world domains.

2 Related work

One of the earliest local controllers that mediates between
global plans and local constraints was the Vector Field
Histogram approach [2] and its successor VFH+ [18].
This approach uses a form of potential based histograms
of range measurements to determine appropriate head-
ings. Fox et al. [6] use the dynamic window method for
converting high-level plans into local controls, while ac-
counting for dynamic obstacles. Ko and Simmons [10]
used a lane-based method for local planning around dy-
namic and unmodelled obstacles. Konolige [12] demon-
strates an approach that is closer to our approach in spirit,

enough to allow for dynamic obstacles in the environment[12].
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in that he uses dynamic programming for generating a
path that obeyed more of the kinematic constraints of the
mobile robot, replanning as necessary after every control.
However, this approach still contains approximations of
the mobile robot as a point, and also does not respect the
dynamic constrains of the robot.

Davies et al. [5] propose an algorithm that is very sim-
ilar in spirit to our mobile robot application; however,
while they project a low-dimensional approximate value
function solution to a higher space, they do not explic-
itly search for policies that minimize expected reward.
Instead, they use a heuristic search to find an admissi-
ble trajectory for a deterministic agent. In contrast, our
work allows a noisy action model, and will not only find
an admissible path, but will attempt to find the best path
according to some objective function.

Path planning has been posed as a form of traditional
control in some preceding work. Koditschek described
navigation control in terms of navigation functions for
navigating a mobile robot [11], however, this approach
is difficult to scale to more dimensions, and partially
observable settings. Laumond et al. also described a
control-theoretic approach for local/global control [7],
however, this approach suffers from the same limitations
as non-control-theoretic mixed-level approaches. In gen-
eral, control-theoretic approaches are best applied to gen-
erating steering controls in the absence of obstacles. Ex-
tending the existing approaches to handling obstacles in
more than two or three dimensions remains an open prob-
lem for the control community.

3 Markov Decision Processes

A Markov decision process (MDP) describes a problem
where an agent, such as a mobile robot, must take actions
in a world to maximize the expected reward. The model
is Markovian if the current state is sufficient to predict
the next state, conditioned on the action. We model the
outcome of each action as non-deterministic, with some
probability distribution. However, we make an assump-
tion that the true next state is fully observable after the ac-
tion, and also that the next state is independent of all but
the most recent state and action. An MDP is described
by the tuple (S, so,A, T ,R) where S is the state space,
so is the initial state and A is the set of actions available
to the agent. The transition matrix T describes how the
state changes with actions: T : S ×A×S 7→ [0, 1] such
that T (s, a, s′) = p(s′|s, a), the probability of being in
state s′ starting from state s and taking action a. R is the
reward given to the agent. In general, the reward function
can be a mapping from states and actions to numerical
rewards,R : S ×A 7→ [0, Rmax], but for simplicity (and
without loss of generality) we will assume the reward de-
pends only on the current state.

The optimal solution to an MDP is a policy that describes
which action to take as a function of the current state to
maximize the reward over the lifetime of the agent. For
the case of a navigating mobile robot, the optimal pol-

icy will correspond to the optimal path, given the current
goal, from any point in the environment. Notice that a
policy generates an expected trajectory for all possible
start locations, and therefore is a more general problem
than the standard motion planning problem.

3.1 The Value Function Approach

The goal of the agent in an MDP setting is to maximize its
cumulative long-term expected reward. In the value func-
tion setting, a value is assigned to each state, where the
value is a function of the policy (or path) and represents
the long-term cumulative expected reward. The optimal
policy is one that maximizes this value, and hence the ex-
pected reward at each state. The optimal value function
is given by Bellman’s equation:

V (si) = R(si) + γ

|S|∑

j=1

V (sj)

|A|∑

k=1

p(sj |π(ak|si), si)

(1)
where π(ak|si) is the current policy and γ is the discount
factor that determines the contribution of future reward to
the current state value. For the rest of this work, we as-
sume (again, without loss of generality) an undiscounted
(γ = 1) finite-horizon problem with some termination
state. Furthermore, we will assume a deterministic pol-
icy, π(ak|si) = {0, 1}.
Value iteration finds the optimal policy by computing the
value function for every state based on some policy, and
then iteratively updating the policy until the value is max-
imized over every state. The nature of value iteration
highlights its computational cost – a mapping for every
state to some value and action is preserved, and iteratively
updated. In order to find a policy for a continuous, high-
dimensional problem, we need a different, more compact
representation of a policy, and a way to evaluate policies
in this representation.

3.2 Policy search

Policy search operates by evaluating the long term cu-
mulative reward of the current policy. Gradient-ascent
search estimates the gradient of the reward and adjusts the
policy parameters to increase the expected reward until a
maximum is reached. In order to search the policy space,
we need a parameterized, continuous policy representa-
tion. In addition, the need to map the low-dimensional
policy into a high-dimensional continuous space has im-
plications for our choice of policy representation. There
are a number of different choices of policies, e.g., Bayes
nets [14], neural nets [1], etc. that take continuous-valued
state features and return some control action. However,
a mapping from a discrete grid world to these complex
representations is not easy.

Instead, we represent the policy as a series (that is, an or-
dered set) of waypoints wj , and an associated local con-
troller. The controller emits actions, where each action
moves the agent towards the next (closest) waypoint. The



series of waypoints can be viewed as a forming an ap-
proximately piece-wise linear path from the start state to
to the goal. At execution time, the next action a at time
t is a function of the current state s(t) and the next way-
point w,

a = (∆vt,∆vr) = f(s(t),wj). (2)

The policy has an additional free parameter dapproach
that determines when the controller switches to the next
waypoint, as in

wj = wj+1 iff ||s(t)−wj || < dapproach. (3)

It should be noted that the principle sacrifice made by this
type of policy is that the final policy is no longer an opti-
mally universal plan. Policies computed from the optimal
value function have the desirable property that the policy
describes the optimal action for every possible state. In
comparison, the policy that found using our approach ex-
hibits this property close to the expected trajectory, but
the quality of the policy can become arbitrarily bad as the
actual path deviates from the expected path. However,
if the model of the local controller accurately reflects the
true next state distribution, then result of the policy search
will be a policy for those states that truly matter.

3.3 Initial Policy Estimate

In order to search for the best policy (or expected path)
efficiently and avoid problems such as local minima, we
want an estimate of a good path to begin the search.
The value function gives a reasonable path in the low-
dimensional state space, so it remains to convert the low-
dimensional policy into a continuous, high-dimensional
path. We do this by first extracting the set of maximum
likelihood states that describe the expected trajectory in
the lower space. We project these states into the higher-
dimensional space to generate a large set of waypoints
that describe the expected path. This set of projected
waypoints is unnecessarily dense, so we prune by merg-
ing path neighbors that share the same value function pol-
icy, as shown in figure 1. The endpoints of these line
segments represent the policy in the high dimensional
space, and this policy is used as the initial estimate for
the search.

merge
Project and

Figure 1: Projecting the value function policy on the left
to the higher dimension space on the right, we merge
neighboring states with the same policy into a single line
segment. The endpoints of the line segments constitute
the initial estimate for policy search.

3.4 Computing the policy value

The optimal policy π∗ is one that maximizes the expected
reward over the execution of the policy from the start state
s0 to the goal state,

Vπ∗(s) = max
π∈π

Vπ(s0))

= max
π∈π

R(s0) +

∫

|S|
p(s(dt)|s0, π(s0))Vπ(s(dt))ds. (4)

where π(s0) is the action dictated by the policy at state
s0, s(dt) is the next state after time dt, and the integral is
simply the expectation reward of the next state distribu-
tion after time dt (cf. equation (1) in continuous form).

We make a final simplifying assumption that the local
controller is unbiased. That is, the local controller keeps
the next state distribution centered on the expected trajec-
tory, with some distributionG(s(t), θ) where θ represents
the parameters of the local controller. This dictates that
the result of each action will have maximum likelihood
on a line between wj and wj+1, which makes computing
the expected distribution easier.

We can therefore modify the integral in equation (4) by
transforming the next state distribution p(s(t)|s0, π(s0))
into a function centered on the maximum likelihood next
state G(s; s(t), θ) : S 7→ [0, 1]. If we write G(s) and
V (s) in matrix form, we can simplify equation (4) to

V (π) = R(s0) +G(s(dt), θ) · V (s(t)) (5)

where s(dt) is the maximum likelihood next state after
time dt under policy π. From here onwards, G(s(dt))
is assumed to be the agent’s distribution over the state
space, the parameters θ being assumed to be constant.

If we further constrain the policy π(si) to be a described
by a series of n waypoints w1...wn in some Euclidean
space, we can expand recurrence equation 4 to

V (πn) =

∫ T

t=0

G(s(t)) ·R(s(t))dt (6)

=

n−1∑

j=0

∫ s(wj+1)

s(wj)

G(s) ·R(s)ds. (7)

We maximize equation (7) by differentiating and travel-
ling along the positive gradient. Differentiating gives

∇V (πn) =
∂

∂w1...n

n−1∑

j=0

∫ s(wj+1)

s(wj)

G(s) ·R(s)ds (8)

=

n−1∑

j=1

∂

∂wj

(∫ s(wj+1)

s(wj)

G(s) ·R(s)ds

)
.(9)

Note that in the case of purely deterministic action mod-
els (i.e., a perfect controller), we could drop theG(·) term
and simply integrate the reward along the expected path.
By integrating the expected reward with respect to G(·),



we capture the noise inherent in the local controller, sub-
ject to the assumption of no bias. The larger the noise
in the local controller, the more conservative the eventual
policy.

3.5 Determining policy size

The initial policy estimate provided by value function
will consist of some number n of waypoints. However,
the optimal policy may require an arbitrary number of
waypoints. Consequently, some procedure is required to
introduce new waypoints as needed. The number of way-
points needed to represent the policy is similar in concept
to the problem of estimating the number of clusters used
during Expectation-Maximization, and consequently we
borrow a popular split-and-merge technique [15]. We
perform policy search to convergence, and then consider
inserting a new waypoint where appropriate. The algo-
rithm terminates when the policy value does not increase
with any inserted waypoint. The heuristic we use for in-
serting waypoints is to do so when the immediate reward
between waypoints drops below the immediate reward at
the waypoints:

Insert w′j+1 if R(w′j+1) < R(wj) (10)

and R(w′j+1) < R(wj+1).

Figure 1 summarizes our path planning algorithm.

Table 1: Algorithm summary

1. Run the dynamic program and extract a policy from 2-
dimensional value function (Section 3.1)

2. Determine the maximum likelihood trajectory and con-
vert to a set of 5-dimensional waypoints to form the
expected path (Section 3.3)

3. Policy search: for each waypoint wj

(a) Determine value contribution of trajectory from
previous waypoint wj−1 to next waypoint wj+1

(Section 3.4)
(b) Measure gradient at endpoints
(c) Move waypoint wj along gradient until path seg-

ment value increases
(d) Repeat for all waypoints until convergence

4. Add new waypoints (Section 3.5)

(a) Find lowest immediate reward along the trajec-
tory

(b) Insert a new waypoint
(c) Repeat step 3.

5. Repeat waypoint insertion until convergence

4 Mobile Robot Navigation

We demonstrate our approach on a mobile robot navigat-
ing in an indoor environment. Figure 2 shows the mo-
bile robot Pearl interacting with elderly people in their

assisted-living residence. The nature of this particular
environment emphasizes the need for optimal policies;
in confined quarters, with slower and less agile humans
in the surroundings, control policies that make approxi-
mations about the shape and orientation of the robot be-
come increasingly brittle. Most importantly, as has been
stated already, value function planning in a more exact
state space is actually computationally intractable.

We represent the robot’s state at time t by a 5-tuple
s(t) = (x(t), y(t), θ(t), vt(t), vr(t)) where x, y gives the
position of the robot, θ the orientation. and vt, vr are the
translational and rotational velocities. We assume that
the state space is continuous in all dimensions. The kine-
matic model of the robot coupled with the local controller
gives the next state distribution G(s). The goal of the

Figure 2: Pearl, the nursebot, interacting with residents
of a health care facility.

robot is to maximize its expected reward; the navigation
problem is designed such that the robot incurs some small
negative reward R = (−c · d) for traveling a distance d,
and receives some large positive reward g when it reaches
the goal. Furthermore, the robot receives an large nega-
tive reward R = (−h · d) for attempting to travel a dis-
tance d when an obstacle is closer than a certain safety
range.

By allowing the reward function to depend on the ori-
entation and velocity of the robot, as well as the current
location, we can capture the reward’s dependence on the
shape of the robot and the dynamics. The reward func-
tion can penalize the robot for some orientations and not
others for the same position; similarly, the reward func-
tion can encode the dynamics of the robot by penalizing
attempted velocities which have a high expectation of hit-
ting nearby obstacles.

We can use knowledge about the state space to com-
pute the gradient terms ∂

∂wj
approximately. The reward

function seeks to minimize travel time, while also mini-
mizing the likelihood that the robot will hit an obstacle.
The expected travel time at any point in the trajectory
is a function of the direction to the previous waypoint
(wj−1−wj) and next waypoint (wj+1−wj). The like-



(a) (b) (c) (d)

Figure 3: (a) Dynamic program solution; (b) Projected DP solution; (c) Policy search of DP solution; (d) With addi-
tional waypoints. The black areas are obstacle, and the white area is free space.

lihood of hitting an obstacle is a function of the direction
and distance to the nearest obstacle, ζ(wj). We compute
the gradient as

∇V (wj) = ((wj−1 −wj) + (wj+1 −wj)) (11)

− (ζ(wj)−wj))

where the first term moves the waypoint wj closer to its
immediate neighbors wj−1 and wj+1, and the second
term moves the waypoint away from the obstacle at ζwj .

5 Experimental Results

We compared our integrated value function/policy search
method to an existing approximate value function plan-
ner [6] which uses a local collision avoidance module
to refine the approximate value function to a realizable
trajectory. The expected trajectory of a sample problem
is shown in figure 3 in its 4 phases: the dynamic pro-
gramming path, the projection of the DP solution to the
5-dimension continuous space, the initial phase of search,
and the final optimized path. The image depicts a map of
an indoor environment (our lab), and part of the corridor
outside the lab. The robot starts inside the lab, and at-
tempts to drive out to the corridor. The black areas are
obstacles (i.e., walls, etc.) and the white areas are free
space. The opening at the top of the map is the doorway
to the corridor, and is 60 cm wide, whereas the robot’s
width and safety margin is 54cm, leaving only 2cm clear-
ance on either side.

Figures 3a and 3b demonstrate that although the value
function does show a trajectory that is in some sense topo-
logically correct, the policy is clearly suboptimal with re-
spect to the real world. The reduced state space means
that the model has no notion of the size of the robot or
of the consequences of different orientations. As a result,
the policy is free to move the robot arbitrarily close to ob-
stacles. Figures 3c and 3d show the results of policy itera-
tion, after searching on the initial set of waypoints and af-
ter the waypoint set size has converged. The policy found
with the initial set of waypoints is a clear improvement,
however some odd motions are generated to compensate

for an impoverished policy representation. When more
waypoints are added, the policy converges to a straight-
line path through the narrow doorway. The effect of the
additional dimensions of velocity can be seen in the mid-
dle of the doorway – the robot’s velocity is low entering
the doorway, to reduce the likelihood of hitting the door.
Once the robot is part-way through the door, the addi-
tional waypoints do not change the robot’s heading, but
allow velocity increase since the kinematics of the robot
dictate that the danger of impact has passed.

Table 2 shows a quantitative comparison of an existing
planner based on an approximate value function algo-
rithm and a planner with value function seeding policy
search. The results shown here indicate that although the
planning time increases substantially when adding pol-
icy search, the total time taken to execute the trajectory
drops significantly compared to the value function ap-
proach. The trajectory is also much more acceptable in an
“intuitive” sense – the controller from the previous plan-
ner spent a significant amount of time driving back and
forth across the narrow doorway before it was aligned
well enough to enter the lab. It is worth noting that it
should be relatively easy to improve the planning time of
the policy search even further as the current implementa-
tion has not been optimized in any manner.
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Figure 4: Velocity profiles of the policy search and con-
ventional planner.
Figure 4 also shows the velocity profiles of the policy
search planner and the conventional planner, for a differ-
ent trajectory (not shown due to space limitations). The
velocity profiles shows that the policy search finds a plan
that achieves a consistently higher velocity (between 10-



Table 2: Experimental results

Algorithm Planning time Execution time Distance travelled
Prior (value function) planner .44 +/- .03 sec 133.15 3272.5 cm

Policy search 7.0 +/- 4.8 sec 107.6 1432.1 cm

20 cm/s faster).

6 Conclusions

In this paper, we have shown how seeding of the pol-
icy search with a solution from an approximate value
function can be used to directly perform motion plan-
ning in the full state space of the robot. This allows us to
avoid many of the assumptions of existing motion plan-
ners, such as point-shaped robots and deterministic mo-
tion. We are also able to generate plans that obey the
physical, kinematic and dynamic constraints of the robot,
and can express a richer set of plans. The key assumption
is that the low-dimensional value function, while subop-
timal with respect to reality, biases the policy search cor-
rectly, and does not lead to an arbitrarily bad controller.

We demonstrated this work on a real robot navigating in
our lab, in particular focusing on a goal that requires a
highly constrained trajectory. Preliminary results indicate
we are able to handle these real world problems appropri-
ately, and are able to outperform an existing approximate
value function style planner in constrained situations.

Although we currently assume a fully observable Markov
decision process model, in the future we would like to
draw upon much of the recent work on policy search in
POMDPs to better model noisy robot sensors. Certainly,
approximate value function methods such as Cassandra
et al. [4] and Roy & Thrun [16] could be directly applied
to this method.
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