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Abstract 

The purpose of this paper is to introduce a hybrid 
cognitive-reactive system, which integrates a machine- 
leorning algorithm (SAMUEL, an evolutionary 
algorithm-based rule-learning system) with a 
computational cognitive model (written in ACT-R). In 
this system, the learning algorithm handles reactive 
aspects of the task and provides an adaptation 
mechanism, while the cognitive model handles 
cognitive aspects of the task and ensures the realism of 
the behavior. In this study, the controller architecture 
is used to implement a controller for a team of micro- 
air vehicles performing reconnaissance and 
surveillance. 

1. Introduction 

This research focuses on the design and 
implementation of intelligent autonomous agents, or 
teams of agents, which can be easily integrated into 
mixed-initiative human-agent teams. Successful 
integration is supported by use of common 
representation between human and artificial team 
members, and cognitively plausible agent behaviors. 
The adaptation of behaviors to changes in the 
environment and the capabilities of the team has to be 
permitted as well. This study addresses some of these 
issues by creating an architecture that supports 
cognitively plausible behaviors of a team of intelligent 
unmanned vehicles. 

The purpose of this research is to merge a cognitive 
model and a reactive system into a hybrid control 
architecture for autonomous agents. In this study, 
SAMUEL, an evolutionary algorithm-based reactive 
rule-learning system [13], is integrated with a cognitive 
model written in ACT-R, a computational cognitive 
architecture 151. In this hybrid system, the learning 
algorithm handles reactive aspects of the task such as 
local navigation and obstacle avoidance, and provides 
an adaptation mechanism. The cognitive model 
handles higher-level aspects of the task such as 

planning and cognition, and ensures the cognitive 
realism of the behavior. 

For this study, the hybrid architecture was adapted to 
provide a controller for a group of micro air vehicles 
whose task was reconnaissance and surveillance. The 
following sections of the paper discuss related work in 
cognitive science and robotics, and describe the hybrid 
architecture. The description of the task domain and 
the experimental approach along with current results 
are provided as well. 

2. Related Work 

In early robotics work, the architectures tended to be 
hierarchical, stressing the classical sense-think-act 
cycle. One example of this approach is the earlier 
work of Albus on reference model architecture for real- 
time intelligent control systems (ARTICS) [I]. Later, 
behavior-based approaches stressed rapid reaction to 
the environment and tried to model the sense-react 
cycle of insects and animals. This work is best 
exemplified in the subsumption architecture 181 where 
all behaviors have direct access to sensors, and each 
can produce direct actions in the world. 

Many researchers saw the need to incorporate both 
approaches into their architectures. The current 
popular approach adapts something similar to a multi- 
level architecture with reactive behaviors or skills at 
the lower levels, and more traditional planning systems 
at the upper layer. Between these are additional 
mechanisms, which attempt to bridge the two 
approaches. This middle layer typically involves 
sequencing of skills based on goals produced by the 
planner. The 3T architecture 171, for example, uses 
reactive action plans (RAPS) [I21 to instantiate the 
preconditions, skills, and stopping criteria to achieve 
the planner's goals. Albus's more recent work has 
extended the real-time control system (RCS) to 
incorporate different levels of reactivity into his 
architecture, moving it from a hierarchical to a 
heterarchical architecture 121, [3]. 
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Our low-level controller, SAMUEL, implements the 
behaviors or skills, which it learns as stimulus-response 
rules [13]. This representation is derived from 
behaviorist tradition as mentioned above. SAMUEL’S 
strength lies in its ability to learn relatively simple 
condition-action rules to solve complex tasks. 
SAMUEL and other evolutionary algorithm-based 
reinforcement learning systems [I51 are good at 
learning reactive strategies for sequential decision 
problems, but cannot take advantage of the higher-level 
information that facilitates cognition. 

Computational cognitive modeling is primarily 
concerned with building running models that not only 
imitate what a person does but also how they do it. 
There are several modeling languages prevalent in the 
literature today: ACT-R [5], Soar [16] and EPIC [14]. 
Each of these modeling languages has a different 
emphasis and, thus, different strengths and weaknesses 
[ l l ] .  Our work will focus on ACT-R. ACT-R is a 
production system language that allows creation of 
models based on human cognition. ACT-R has an 
excellent track record of providing fits to human data 
in a wide variety of domains including memory for 
goals [4], human computer interaction [6], and 
scientific discovery [ZO]. Most current work in ACT-R 
has focused on high-level cognition and much less 
work has been done on reactive skill modeling and 
learning [17]. 

Our hypothesis is that an integration of SAMUEL with 
ACT-R will create a robust control architecture that 
combines the best of both reactivity and high-level 
cognition (e.g. planning), with learning at both the 
reactive level and at the cognitive level. 

3. Hybrid Architecture 

To facilitate the implementation of the cognitive layer 
of the controller, ACT-R, a computational cognitive 
modeling system, was used. SAMUEL, an 
evolutionary algorithm-based rule learning system, was 
used for implementation of the reactive layer of the 
controller. The two layers of the controller 
communicated with each other using Unix Inter- 
Process communication protocols (sbaied memory and 
message queues). This design allowed for independent 
decision cycles for low- and high-level behaviors as 
well as distributed implementation. 

3.1 Cognitive Layer of the Controller 

A cognitive model implemented using ACT-R 
augmented the cognitive layer of the controller. 
ACT-R is a production-system architecture based on 
condition-action rules, which execute the specified 
actions when the specified conditions are met. ACT-R 

was chosen for this research because it provides a 
rigorous framework for cognitive modeling as well as a 
set of built-in parameters and constraints on cognition 
to facilitate a priori predictions about behaviors and 
more psychologically plausible models [5]. 

Building a cognitive model, which is to serve as an 
agent’s controller, consists of implementing the 
declarative and procedural knowledge of the domain 
and the task. The declarative knowledge is 
implemented using strnctures called chunks, which 
contain information about the current perceived state of 
the world as well as facts related to the domain. 
Examples of declarative knowledge include “There b 
an object in front of agent number S“, ”The object in 
front of agent number 5 is green”, and “Tanks are 
green. ” The procedural knowledge is implemented as 
sets of productions where each production is a 
condition-action pair. The condition specifies what 
must be known for the production to apply and the 
action specifies the things to do if the production 
applies. The conditions test the knowledge contained 
in declarative memory, while the actions modify the 
declarative memory or perform physical actions. 
Examples of procedural knowledge (production rules) 
include “IF the goal is to find objects THEN send an 
agent to search for objects”, “IF the goal is to search 
for objects and object hm been found THEN determine 
the type of an object”, and “IF the goal is to determine 
the type of an object and the color of the object is 
green THEN the object is a tank. ” Given this set of 
productions and chunks from the previous example, the 
model would be able to deduce that a tank has been 
found. 

ACT-R implements a fixed-attention architecture, 
which means that at any point in time, it is focused on 
a single goal and only one production can fue during 
each cycle. The actions of productions can create new 
goals as well as change the focus, which allows the 
system to support multiple tasks in a single model. 
ACT-R models much of the qualitative structure of 
human cognition at a subsymbolic level (also referred 
to as “rational” level) rather than using the symbolic 
structures described above. The subsymbolic level 
contains quantities that participate in neural-like 
processes, which determine the chunk and production 
access in memory. It also has a set of learning 
processes that can modify those subsymbolic 
quantities. 

3.2 Reactive Layer of the Controller 

SAMUEL was used to implement the reactive layer of 
the controller. SAMUEL is a machine learning system 
that uses genetic algorithms (GAS), reinforcement 



learning, and Lamarckian learning to solve sequential 
decision problems. SAMUEL is designed for handling 
problems in which feedback is delayed @ayoff occurs 
only at the end of an episode that spans many decision 
steps). This learning system has been previously used 
to learn behaviors such as local navigation and 
collision avoidance for an autonomous underwater 
vehicle [18], shepherding [19], and tracking and 
herding for mobile robots. The original system 
implementation is described in detail in [ 131. 

SAMUEL implements behaviors as a collection of 
stimulus-response rules. Each stimulus-response rule 
consists of conditions that match against the current 
sensors of the autonomous vehicle, and an action that 
defines action to be performed by it. An example of a 
rule might be: 

RULE 4 
IF range2 > 25 

AND range5 > 0 
AND bearing = 0 
THEN SET turn = 0 

This rule should be interpreted as follows: if the 
MAV’s range sensor 2 is returning a value greater than 
25 units, the range sensor 5 is sensing anything, and the 
MAV is going towards the goal, then the MAV should 
go straight. Each rule has an associated strength with it 
as well as a number of other statistics. During each 
decision cycle, all rules that match the current state are 
identified: Conflicts are resolved in favor of the rules 
with higher strength. Rule strength is updated based on 
the reward received after each training episode. 

4. Experimental Details 

In this study, the hybrid architecture (Section 3) was 
used to develop a system to control a team of simulated 
micro air vehicles whose task was to perform 
reconnaissance and surveillance. Each vehicle was 
able to detect obstacles, including other MAVs, and 
certain ground features below the vehicle within a 
defined range. As a group, the MAVs needed to 
maximize the information gain, concentrating on areas 
of more importance, and minimizing duplication of 
effort. In previous work, we successfully used GAS to 
evolve MAV control behaviors that could accomplish 
this task [22], [9]. 

4.1 Simulation 

The Micro Air Vehicle Simulator (MAVSIM) includes 
a simple 2D model of the MAV’s motion, sensors, and 
the environment. The sensors modeled for this study 
include eight range sensors (one for each compass 
direction), each of which outputs a floating-point 

values representing distance to the nearest obstacle or 
fellow MAV in that direction, and a “vision” sensor, 
which provides the information (interest level, size, 
mobility, etc.) about the ground features beneath the 
vehicle within its sensing range. The MAV’s 
environment (Figure 1) consists of static as well as 
dynamic regions of varied military interest which 
model real world features such as roads, buildings, 
ground vehicles, etc., as well as static obstacles. The 
interest regions are only visible to the controller if they 
have been sensed by a MAV’s vision sensor (i.e. if a 
MAV has flown over it). MAVs are destroyed either 
when they leave the flight zone (i.e., fly off the screen) 
or when they collide with fellow MAVs or obstacles. 

Figure I :  Screenshot of M V S I M  interface 
showing the pIan view of the environment. Regions 
of interest (rectangles of various shades of gray or 
red). obstacles (black obstacles) and M V s  (circles) 
are shown. 

The goal of the task was to maximize the score, which 
was determined as follows. An individual MAV’s 
instantaneous value was equal to the sensed area 
weighted by the interest of the visible regions within 
the sensor. If the sensor only partially covered an area 
on interest, it would obtain a lower value than if it sat 
completely over the area of interest. The average 
score, the one to be maximized, was the total value of 
all MAVs averaged over time. Note that an area of 
interest could not be accumulated by more than one 
MAV in the same instant of time, i.e. only one MAV 
would receive credit if two or more sensors overlapped 
on some portion of an area of interest. 

4.2 Controller 

In this system, SAMUEL controlled the behavior of 
individual MAVs, while the cognitive model was 
responsible for the team behavior. 
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The cognitive model implemented in ACT-R was 
based on the data collected during human-subject 
experiments performed at NRL and described in 
greater detail in [21]. In those experiments, the human 
operators would control the MAVs by directing them 
to goal locations using a point-and-click interface to 
the simulator. In this study, ACT-R, just like a human 
operator, was responsible for providing 2D goals to 
individual MAVs based on the current perception of 
the world. ACT-R’s perception of the environment 
was closely matched to the perception of the human 
operator. ACT-R could “see” the position and state of 
all MAVs, and the position and value of discovered 
regions of interest. This perceptual information was 
represented as ACT-R chunks, just as ACT-WPM 
(perceptual-motor) does [IO]. The top-level goal of the 
model was to perform the task, which required both 
exploration of the area as well as surveillance of the 
discovered regions. 

The model begins by sending the MAVs to explore the 
unexplored regions of the environment. When a region 
of interest is discovered, the model delegates MAVs to 
determine the boundaries of the region. If the 
discovered regions are of high enough interest (based 
on the amount of explored temtory and time left), the 
model positions MAVs on them. Once the MAV is 
positioned on the region of interest, it will he moved 
only if there exists an unoccupied region with higher 
interest value. 

In this study, SAMUEL was used to evolve stimulus- 
response rules to perform the collision-free navigation 
behavior for the simulated MAVs. Each MAV used 
the same behavior evolved by SAMUEL in 
conjunction with the goals provided by ACT-R to 
safely navigate to a specified location. The current 
MAV sensor information was mapped to the conditions 
of the stimulus-response rules. The activated rule 
specified the action of the vehicle. SAMUEL’S 
conditions included range0 - range7 representing the 
eight MAV’s range sensor readings (values between 0 
and 50 nnits in 5-unit increments), and range (values 
between 0 to 1200 in IO-unit increments) and bearing 
(values between 0 and 345 degrees in 45-degree 
increments) to the goal. The rum-rate action, which 
specified the MAV’s turning angle per decision cycle 
(values between -180 to 180 degrees in 45-degree 
increments), was the only allowed action. 

In summary, ACT-R performed the high-level thinking 
and reasoning while SAMUEL controlled the low-level 
mobility. ACT-R controlled exploration of the 
environment (reconnaissance) and the allocation of 
MAVs over the regions of interest (surveillance). In 
contrast, SAMUEL controlled the local navigation and 
collision avoidance of individual MAVs. 

5. Results 

In this section, the performance of the hybrid 
architecture is compared to the performance of human 
operator and SAMUEL controller performing the same 
task are discussed. The SAMUEL learning results are 
presented fust for completeness. 

5.1 Reactive Behavior Learning Results 

In order to allow us to focus on the important aspects 
of the collision-free navigation behavior, the 
environment in which the behavior was evolved 
differed from the environment used for the task of 
surveillance and reconnaissance. The learning 
environment contained no interest regions, but it 
contained significantly more obstacles. Also, to speed 
up and simplify the implementation, there was only 
one MAV present in the environment during the 
episode. Others were simulated as small static 
obstacles. 

During each simulation run, the MAV was given a 
single goal location, which was at least half of the 
width of the environment away. The positions of the 
obstacles and the goal as well as the initial position of 
the MAV were generated randomly for each episode. 
Each learning evaluation consisted of a maximum of 
250 decision cycles at the end of which the behavior 
was evaluated. The fitness function used in this study 
was defmed as in Figure 2. 

0.04.3. 8tdAVcruhcd. based onthc d i s t l ~ ~ c  

Figure 2: Taskfitnessfuncfion. 

The learning experiment was allowed to run for 100 
generations with a population of 100 rulebases. For 
each individual evaluation, 40 runs of the simulator 
were performed in order to provide the learning system 
with statistics ahout rulebase’s performance for 
Lamarckian learning, rule strength updates, as well as 
the genetic algorithm. The system was initialized with 
three heterogeneous sets of rules, which implemenkd 
behaviors including random walk, simple obstacle 
avoidance, and locai navigation. 

Every generation, the hest rule set from the current 
population (based on the fitness function) was 
evaluated 100 times in randomly generated 
environments. The values of these evaluations are 
plotted in Figure 3. As seen in this figure, the fitness 
of the best behavior was at approximately 0.61, which 

2810 



shows a considerable improvement over the initial 
behavior (0.229). 

0.7 , 

0 . q  , , , , , 
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Figure 3: Averagepayoff(0ver 100 trials) of the 
best individuals throughoutfirst 50 generations 
tested in learning environment. 

5 2  Controller Performance Results 

The task performance metrics used to evaluate the 
controller include the MAV survival rate defmed as the 
number of MAVs controllable at the end of a trial and 
the total score calculated as an average MAV group 
score over the length of the trial (Section 4.1). 

For this study, the performance of the hybrid controller 
was compared against the human controller [21] and 
SAMUEL controller performance [9] of the task across 
different MAV group sizes. There were two group 
sizes considered. The smaller MAV group consisted of 
six agents while the larger MAV group consisted of 
sixteen agents. 
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Figure 4: The total score. The graph shows the 
perJormance as measured by the total score 
across different controllers @om !he left: Human, 
SAMUEL, and Hybrid) and different M V  group 
sizes (from the left: 6 and 16 MAVs). The error 
bars show standard error of means. 

As the results show (Figures 4 and 5),  the hybrid 
controller obtained an average score of 7367.67 with 
the larger MAV team and 3626.9 with the smaller 
team. The average MAV survival rates for this 

controller were 14.8 MAVs for the larger team and 
5.36 for the smaller team. It can be seen that the 
hybrid controller obtained a better score than the 
SAMUEL controller independent of the group size, 
even though the SAMUEL controller maintained 
slightly higher survival rates for smaller MAV group 
than the hybrid. The hybrid controller's score as well 
as the, survival rates were comparable to human 
controller's performance independent of the group size. 
Once the quality of the evolved collision-free 
navigation behavior is improved, the hybrid controller 
should outperform the human controller. 
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Figure 5: The M V survival rate. The graph 
shows !he performance as measured by the 
number of MAVs surviving at the end of the trial 
across different controllers &om the le@: Human, 
SAMUEL, and Hybrid Architecture) and direrent 
M V g r a u p  sizes @om the lefr: 6 and 16 MAVs). 
The error bars show standard error of means. 

6. Conclusions and Future Work 

This paper presented hybrid cognitive-reactive control 
architecture for autonomous vehicles. The deliberative 
module of traditional robotics architecture was 
augmented by a cognitive model of the task. We 
believe our architecture will allow for more intelligent, 
more capable, and robust autonomous agents. Our 
architecture should also allow for easier integration of 
the agents into mixed-initiative human-agent teams. 

A detailed description of the study was given in which 
the hybrid architecture was used to implement a 
controller for a distributed team of micro air vehicles. 
Even though the performance of the hybrid controller 
was shown to be only comparable with the 
performance of the human controller, it does seem to 
capture some of the human's behavior and 
performance. This comparability suggests that our 
hybrid model is adequately modeling the humans' high- 
level cognitive functions, as well as the low level 
reactive aspects. 
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The immediate research will focus on increasing the 
quality of the evolved behavior for collision-free 
navigation for the MAVs in order to improve the 
performance of the hybrid controller as compared to a 
human operator. An attempt will also be made to 
examine how much autonomy is appropriate for a 
given agent within a team. We will explore autonomy 
by examining collision avoidance, local navigation, full 
route planning, situation awareness, and complete 
mission planning. Our hybrid architecture will allow 
us to explore issues of reactivity and cognitive 
complexities in a straightfornard manner. 
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