N

HAL

open science

Planning human walk in virtual environments

Julien Pettré, Thierry Simeon, Jean-Paul Laumond

» To cite this version:

Julien Pettré, Thierry Simeon, Jean-Paul Laumond. Planning human walk in virtual environments.
IEEE/RSJ International Conference on Intelligent Robots and System, 2002, Lausanne, Switzerland.
pp.3048-3053, 10.1109/TRDS.2002.1041736 . inria-00473304

HAL 1d: inria-00473304
https://inria.hal.science/inria-00473304

Submitted on 22 Jan 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://inria.hal.science/inria-00473304
https://hal.archives-ouvertes.fr

Planning human walk in virtual environments

J. Pettré, T. Siméon, J.P. Laumond

LAAS/CNRS,
7, avenue du Colonel Roche, 31077 Toulouse Cedex 04 - France
{jpettrenic,jpl } @laas.fr

Abstract

This paper presents a method for animating human char-
acters, especially dedicated to walk planning problems.
The method is integrated in a randomized motion plan-
ning scheme, including a steering method dedicated to
human walk. This steering method integrates a charac-
ter motion controller assuming realistic animations. The
navigation of the character through the virtual environ-
ment is modeled as a composition of Bezier curves. The
controller is based on motion capture data editing tech-
niques. This approach satisfies some essential computer
graphics criteria : realistic result, low response time,
collision-free motion in possibly constrained 3D environ-
ments. The approach has been implemented and success-

fully demonstrated on several examples.

1 Introduction

Animating human characters has become a very ac-
tive research field since cinematographic and enter-
tainment industries have demonstrated the greatness
of the application field. Many animation techniques
recently developed allow to reduce production time
and also improve the realism of the animations[4].
Animating automatically virtual actors raises prob-
lems due to models and control complexity. In-
deed, automation suppose motion synthesizing capa-
bilities. On one hand, realistic human motion con-
trollers exist in computer animation literature[4][14].
On the other hand, robotics has developed algo-
rithms efficient over complex and constrained mo-
tion planning problems[12][13]. Our contribution is
to take advantage from both sides. We propose a so-
lution for planning human walk through virtual en-
vironments, taking advantage of randomized motion
planning algorithms, combined to a character motion
controller based on motion capture editing.

Walking virtual actors Through the character
animation problem [4], walking is crucial for navi-
gating in a virtual world. Synthesizing walk anima-
tions is traditionally approached by three techniques:

kinematic (forward and inverse), dynamic and mo-
tion data based.

Kinematic approach is commonly dedicated to hand
made animations, eventually assisted by specific in-
terpolation techniques to generate transition posi-
tions. Inverse kinematics reduces the body position-
ing time, as animator acts on the end effector only.
It also can be used as an animation filter in order to
solve kinematic constraints violation [2]. A dynamic
approach is described in [5]. Respecting physical
laws intrinsically increase realism but high compu-
tation power i1s needed. Motion capture data based
techniques are presented in [20], [3] and [16]. The
data are fixed recorded motion sequences warranting
realism[1]. Moreover, re-targeting is possible to ani-
mate different trajectories thanks to motion blending
and warping. Motion blending [19] consists in inter-
polating parameters of several motions in order to
produce new motions, whereas motion warping [20]
consists in modifying a single motion in order to fit
to a new trajectory. See [16], [14] or [7] for a more
detailed state of art.

Path planning Motion planning algorithms are
well-developed in robotics literature [12]. Robot mo-
tion planning is concerned by collision free motion in
constrained environments, system’s control[13] and
complex tasks achievements. Randomized motion
planning is an efficient solution taking into account
these constraints: description is given in[9], [8].

Human motion planners Closing together mo-
tion planning algorithms issued from robotics and
human character animation has been approached
in [6] and [15]. Applications to humanoid robots
control are also presented in [11] and [10] with
stability constraints. In [6], Kuffner divides path
planning and path following problems. A dynamic
environment is considered. A path is planned for the
character’s bounding cylinder, a controller is used to
produce an animation along this path. A collision
invalidates the path and process is repeated. In

[15], Raulo also considers dynamic environments.
During planning phase, a simplified representation
of environment is used. The “Virtual Robot”
tracks the planned trajectory, while informations
are collected. The informations allow to choose a
strategy for modifying the resulting animation and
solving collisions.

Our strategy differs by integrating the human
motion control during the path planning. Conse-
quently, our contribution consists in synthesizing a
steering method integrated in a randomized planner
scheme. The potential of randomized motion plan-
ner algorithms over highly constrained problems,
respecting low computing times, benefits to our
solution.

In section 2, the model of the human charac-
Section 3 described first level
of the steering method, while the core is detailed
in section 4. Section 5 describes integration and
implementation of the method in a randomized
motion planner architecture.

ter 1s introduced.

2 Model and Motion Data

Lower Torso
- Upper Torso
L Collar Bone
L Up Arm
L Low Arm
L Hand
R Collar Bone
R Up Arm
R Low Arm
R Hand

Neck
Head
F L Thigh
L Low Leg
L Foot
= R Thigh
R Foot
R Low

Figure 1: Character’s model

Our the virtual actor is modeled as a classic opened
kinematic structure with 57 degrees of freedom (dof)
detailed on figure 1. “Lower Torso” is the root
of the kinematic structure. Position and orienta-
tion of the root gives us the situation of the char-
acter, noted [z,y,z,0,¢,v]. The whole configura-
tion of the character is then given by it’s situation
attached to the angular values of each dof, and is
noted [z,y, 2,6, 6, ¢, q1, ..., ¢n]. Motion capture data
depend on the model and represent the evolution of
the configuration through the time, in several cases
: walks, turns, runs, etc.

3 Root’s trajectory

Root’s trajectory problem concerns only [z, y, 8] pa-
rameter’s evolution. Inputs of this functionality are

Final situation & orientation

Figure 2: Example of a root trajectory

two configurations of the virtual actor’s free config-
uration space (Cfree). Human’s local navigation is
modeled as a third degree Bezier curves. As a result,
global path resulting from the whole planner algo-
rithm is a composition of Bezier curves respecting
C' continuity constraint, i.e. a B-Spline. Control
points are computed taking in account initial and fi-
nal # values and in-between configurations distance.
Parameter’s evolution are given by cartesian para-
metrics equations :

z(t) = Ym0 i!(:LL!—i)tZ:(l - t)nﬂ:P“'
y(t) = E?:o %tl(l —)" Py (1)
6(t) = arctan(y'(t)/='(¢))

with n = 3, 0 < ¢ < 1, and P,; the 2 coordinate
for the control point number 2, etc. Other values
are needed : arc length, linear and rotation speeds
evolution. Parameters can be analytically derived
from equation 1.

4 Animation Module

ROOT’S TRAJECTORY
ANIMATION BUFFER

MOTION LIBRARY

SAMPLING

SELECT SPECIFIC ANIMATION j=- -7
APPLY SUB-CONTROLLER

‘ MODIFIED ANIMATION BUFFER

FINAL ANIMATION

Figure 3: Animation Module Structure

MOTION CAPTURE FILE
MOTION CAPTURE FILE
MOTION CAPTURE FILE

@
=
=
15
o
£
<
9
z
S
Z
1)
=

The animation module is composed by two elements :
a motion library and a set of specific sub-controllers.
Successive application of sub-controllers using some
motion data of the library compose our human mo-
tion controller. The principle of the module is to
sample the previously computed root’s trajectory.
The animation buffer stores the samples. The con-
tent of the motion library is scanned, and specific
sub-controllers are applied. The process is described
on figure 3. The animation module is designed to be
easily modified by adding new sub-controllers.

4.1 Motion Library

The motion library is a container for motion capture
files. Each motion capture file 1s pre-processed: fil-
tered (in the case of walk cycles) and characterized
as explained in next sections. The motion library
eventually contains different walk cycles, and other
actions descriptions : movements, postures, etc.

. MOTION CAPTURE DATA

X.Y ERRORS
o \ - APPROX LINE

~ 1T

X

Figure 4: Computing (z,y) motion capture data sil-
uation’s errors around an approximative trajectory

Preparing Walk Cycles. The walk sub-
controller is based on motion capture blending and
warping ([3],[20] and [16]). This method needs
a preparation of motion data as supposed to be
interpolated (harmonization need), repeated along
the trajectory (cyclic data need).

The user 1s in charge to select in a given motion
capture file, a walk sequence approximatively cyclic,
and to add descriptors (see section 4.1). This
operation is only made once to format data.

Next phases of preparation are automatically done
during the planner’s initialization phase. In the
case of straight walks, parameters of the position
z(t),y(t), 2(t) given by the motion capture data are
approximated by a line whose characteristics are
computed with a linear less squares fitting technique,
defining #(t), y(t), 2(t) and average orientations. In
the case of a turning walks, the approximation is a
circle portion. Some parameters derived from the
approximation are kept: average linear and rotation
speeds.

Situation data [z, y, z, 8, ¢,] are computed as errors
around the approximation previously done. Errors
are computed by e, = Z(t) — z(t), etc. This compu-
tation is illustrated on figure 4 over both (z(t), y(t))
parameters. The set of parameters defining motion
is now noted [ey, €y, €., €0,€5,€y,q1,..., ¢, and is
almost cyclic. Fourier expansions are computed over
these parameters, and a low-band filter applied [19]
in order to make sequences cyclic. Consequently, a
set of parameters (ay, f;) characterize each motion
style. The evolution of a parameter p can be
computed using equation 2.

p(t) = ap + i a;cos(2mti) + f;sin(2mii) (2)
i=1

where 0 <t < 1.

Characterising Files. Adding descriptors to the
motion data is crucial. As filters differ from a file
type to another, the user has to mention character-
istics. First, motion data are not limited to walk
sequences; they possibly correspond to specific pos-
tures or movements. Also, some data do not concern
all character’s dof (eg. an arm-only movement de-
scription). The two following characteristics must
be given :

- Animation type: for example walk (with sub-
characteristic : straight or not), movement, pos-
ture, blocking task (character must stop to execute
the movement) etc.

- Animation chronological validity: the motion con-
troller needs to know when the motion data must
be taken into account. Walk cycles are generally
always valid. But we could imagine that run cy-
cles are valid only when the character is far from
obstacles. Also, movement and postures are gen-
erally valid at a given moment : at starts or ends
of paths, etc.

4.2 Motion Controller

Sub-controllers. A sub-controller is an applica-
tion rule dedicated to a data file type. The inputs
are motion data, validity moments and actual state
of the animation buffer. The output is a modification
to the animation buffer. The set of all sub-controllers
present in the animation module constitute our char-
acter’s motion controller.

Walk controller This controller solves navigation
problems. We explain it through an example with
three motion capture files: straight, left turn and
right turn motion cycles.

The principle of the walk controller is to scan each
frame of the animation buffer. Given the frame’s sit-
uation parameters, local linear and rotation speeds
(v,w), the walk controller computes a locally valid
set of parameter (ap, B5) and generates a matching
configuration from these parameters, projected on
the animation frame’s situation. Fitting the motion
data to the linear speed value is realized using
warping techniques. Motion data blends are used to
fit to the rotation speed value.

The controller’s algorithm is schematically illus-
trated on figure 6. For readability reasons, we
illustrate the process of [z,y] parameters only. On
figure 5, parameters issued from root’s trajectory
are given (see section 3 for equations). Figure 6
shows the initial motion data at the top (errors
around approximated trajectory), and the evolution
of these errors through warp and blend operations.

ROOT’S TRAJECTORY DATA

ROOT’S TRAJECTORY X

Ls|

LINEAR SPEED PROFILE t
\v/ .

ROTATION SPEED PROFILE

RS

Figure 5: Root’s trajectory available data

The projection over root’s trajectory of the motion
editing result is illustrated on figure 7.

Warping a motion cycle to fit to the linear speed
is realized by applying a coefficient to the motion
specific set of parameters (o, fi). The same coeffi-
cients are applied to the average speeds (described
in section 4.1), in order to be able to reconstruct
correctly the motion.

Blending different motion data consists in construct-
ing a motion with a desired average rotation speed.
This is made by interpolating the motion data with
different known rotation speeds. For example a slow
left turn is obtained by interpolating a rapid left
turn with a straight walk. Average rotation speeds
of motion cycles (left, straight, right) are noted
(w1,w2,ws). The weights a(t),b(t),c(t) of each
motion respectively defined with (a1, 31), (a2, 32)
and (a3, f3) can be computed as follows.

a(t) = abs(*)

wt) <0= 19 b(t) =1—alt)
e(t) =0
a(t) =0

w(t) > 0= 4 b(t)=1-c(t)

c(t) = abs(*44)

Finally, the evolution of blended motion parameters
(ap, Bp)) is computed :

{ ap(t) = a(t)ay + b(t)as + c(t)as 3)
Bu(t) = a(t)Br + b(t) G2 + c(t) 5.

MOTION DATA EDITING

INITIAL MOTION DATA (3 FILES)

SPEED PROFILE WRAPPING

Vel N

MOTION BLENDING WEIGHTS

MOTION BLENDING RESULT

Figure 6: Motion warp and blend steps

\ﬁ

PROIECTION OF MOTION DATA OVER ROOT'S TRAJECTORY

Figure 7: Synthesized motion projection

A final step consists in finding the moment in the
synthesized motion to be used for computing the
configuration’s parameters. The problem is solved
by comparing the distance obtained by executing
root’s trajectory and the distance obtained by play-
ing the computed motion. When equivalents, an in-
verse Fourier transform is applied to determine all
the configuration parameters values. Finally, a pro-
jection of errors on the root’s trajectory is done and
angular values are copied. The projection’s result is
illustrated on figure 7.

Other Sub-controllers The animation module
architecture is designed to integrate other sub-
controllers. For example :

- A partial configuration evolution can be described
in a motion capture data: arm-only movement for
example. When the chronological validity (defined
in subsection 4.1) is verified, contained data re-

place the animation buffer data on the concerned
dof.

- Another sub-controller allows to call the motion
planner (with another steering method such as a

linear one) in order to generate a transition be-
tween two configurations. This is how postures in
the motion library are taken into account.

The evolution of the animation buffer due to succes-

sive applications of the sub-controllers is described
in the next paragraph.

Figure 8: An example of the construction of an ani-
mation : a/ b/ Inputs, ¢/ Root’s Trajectory, d/ Start
sequence introduction e/ Walk Cycle introduction f/
Macarena postures introduction

Evolution of the Animation. The evolution of
the animation buffer, between each sub-controller ap-
plication, is illustrated on figure 8. In order to link
different movements, linear interpolations between
animation buffer, active motion data, and eventu-
ally other motion data are applied.

In this example, a sequence is first inserted to the
start the walk . A straight walk cycle is then applied
on the remaining part of the trajectory. Transition
is made by computing the closest configuration be-
tween the data the issued from the walk cycle and
the last data computed with the start sequence. A
“roll-back” is done, and an interpolation is computed
between the starting sequence and the walk cycle in
order to smooth the transition.

At last, a set of postures is imposed, which corre-

spond to the macarena’s dance steps. This is why
at the bottom of the figure 8 the skeleton is shaking
arms.

5 Walk planning

The steering method described in the two previous
sections has been implemented within Move3D [17].
Move3D is a motion planning platform integrating
several randomized algorithms. Main components of
such algorithms are:

- the steering method to compute admissible paths,

- a collision checker which is used both to select the
nodes of the roadmap and to check whether an
admissible path is collision-free or not.

- a roadmap builder in order to generate or extend
the roadmap,

- a roadmap explorer in order to solve specific prob-
lems (which eventually calls the roadmap builder).

Move3D’s global planner uses visibility PRM tech-
nique [18] that captures the configuration space con-
nectivity into a small roadmap. Figure 9 shows an
example of collision free walk automatically com-
puted by our planner.

Counsidering the whole kinematic structure and the
description of the environment in three dimensions
allows us to find solutions in constrained environ-
ments. Figure 9 illustrates this potential, with a re-
sulting trajectory close to the furniture (note that
the skeleton’s arm pass above the piano’s stool). This
result could not be obtained with a bounding cylin-
der around the human model.

6 Conclusion

We have presented a human walk planning method
associating randomized motion planning and motion
capture editing techniques. First results obtained are
promising.

Several developments could improve realism, com-
puting time, and application field. We are inter-
ested in investigating reactive planning methods to
deal with dynamic environments. Character’s con-
troller is also in permanent evolution. Fourier ex-
pansions are not completely satisfying as applicable
only to cyclic motion data. We are investigating a
wavelet based solution. Also, we want to develop
new sub controllers, especially for environment, ob-
jects or characters interaction problems.

Acknoledgment

Thanks to F. Forges from Ex-Machina who gave us
the motion capture data used in our implementa-
tion.

Figure 9: A complete walk planning through a living

room (3 different points of view :

a/ b/ c/)

References

(1]

Bobby Bodenheimer, Chuck Rose, Seth Rosenthal,
and John Pella. The process of motion capture: Deal-
ing with the data. Computer Animation and Simula-
tion '97, Eurographics, pages 3-18, 1997.

R. Boulic, M. Thalmann, and D. Thalmann. A global
human walking model with real-time kinematic per-
sonification. In The visual computer, pages 344-358,
1990.

A. Bruderlin and L. Williams. Motion signal process-
ing. In Proc. SIGGRAPH’95,1995.

Rae Earnshaw, Nadia Magnetat-Thalmann, Demetri
Terzopoulos, and Daniel Thalmann. Computer ani-
mation for virtual humans. IFEFE Computer Graphics
and Applications, pages 20-23, September/October
1998.

P. Faloutsos, M. van de Panne, and D. Terzopou-
los. Composable controllers for physics-based char-
acter animation. In Proc. ACM SIGGRAPH 2001
Conference, Los Angeles, CA, 2001.

James J. Kuffner Jr. Goal-directed navigation for an-

imated characters using real-time path planning and
control. In CAPTECH, pages 171-186, 1998.

(7]

(8]

[10]

(11]

(12]
(13]

(14]

(18]

(19]

(20]

Shih kai Chung. Interactively Responsive Animation
of Human Walking in Virtual Environments. PhD
thesis, George Washington University, May 2000.

L. Kavraki and J. Latombe. Randomized preprocess-
ing of configuration space for fast path planning. In
Proc. IEEE Int. Conf. Robot. Autom. (ICRA), pp.
2138-2145, 1994., 1994.

Lydia Kavraki, Petr Svestka, Jean-Claude Latombe,
and Mark Overmars. Probabilistic roadmaps for path

planning in high-dimensional configuration spaces.
Technical Report CS-TR-94-1519, 1994.

James Kuffner, Masayuki Inaba, and Hirochika Inoue.
Automating object manipulation tasks for humanoid
robots. Proc. of 1st Int. Conf on Robotics and Mecha-
tronics (ROBOMEC’00), pages 2P2-79-103, 2000.

James Kuffner, Satoshi Kagami, Masayuki Inaba, and
Hirochika Inoue. Graphical simulation and high-level
control of humanoid robots. Proc. IEEE/RSJ Int.
Conf. on Intelligent Robots and Systems (IR0S’00),
2000.

Jean-Claude Latombe. Robot Motion Planning.
Boston: Kluwer Academic Publishers, Boston, 1991.

Jean Paul Laumond. Robot motion planning and con-
trol. Springer-Verlag, 1993.

Franck Multon, Laure France, Marie-Paule Cani, and
Gilles Debunne. Computer animation of human walk-
ing: asurvey. The Journal of Visualization and Com-
puter Animation, 10:39-54, 1999. Published under
the name Marie-Paule Cani-Gascuel.

D. Raulo, J.M. Ahuactzin, and C. Laugier. Con-
trolling virtual autonomous entities in dynamic en-
vironments using an appropriate sense-plan-control
paradigm. In Proc. of the 2000 IEEE/RS. Interna-
tional Conference on Intelligent Robots and Systems,
2000.

Charles F. Rose. Verbs and Adverbs : Multidimen-
stonnal motion interpolation using radial basis func-
tions. PhD thesis, Princeton University, June 1999.

T. Siméon, JP. Laumond, and F. Lamiraux. Move3d:
a generic platform for motion planning. In 4th Inter-
nation Symposium on Assembly and Task Planning,
Japan., 2001.

T. Siméon, J.P. Laumond, and C. Nissoux. Visibility
based probabilistic roadmaps for motion planning. In
Advanced Robotics Journal 14(6), 2000.

M. Unuma, K. Anjyo, and R. Takeuchi. Fourier prin-
ciples for emotion-based human figure animation. In
Proc. od SIGGRAPH 95, 1995.

A. Witkin and Z. Popovic. Motion warping. In Proc.
SIGGRAPH’95, 1995.

