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Abstract

In this paper, we describe influence of viewpoints of
observation in an interactive evolutionary robotics
system. We have been proposed a behavior learning
system ICS (Interactive Classifier System) using in-
teractive evolutionary computation. In this system,
a mobile robot is able to quickly learn rules by direct
teaching of a human operator. ICS is a novel evo-
lutionary robotics approach using a classifier system.
We classify teaching methods into internal observa-
tion and external one, and investigate influence of
observation methods. We have experiments based on
our teaching methods in two kinds of tasks. We found
that teaching methods from different viewpoints of
observation change teaching efficiency because of the
difference between a robot’s recognition and an oper-
ator’s one in an environment.

1 Introduction

In previous robot learning studies, optimization of
control parameters has been applied to acquire suit-
able behaviors in an real environment. Also in most
of such researches, a model of human evaluation has
been used for validation of learned behaviors. How-
ever, since it is very difficult to build a human evalu-
ation function and adjust control parameters, a sys-
tem hardly learns behaviors intended by a human
operator.

In contrast with modeling human evaluation ana-
lytically, we introduce another approach in which a
system learns suitable behaviors using human direct
evaluation without its modeling. Such an interactive
method with Ewvolutionary Computation (EC) as a
search algorithm is called Interactive EC (IEC)[1] ,
and a lot of researches on it have been done thus
far[2][3]. Consequently it can performs subjective
evaluation by human sense. However an operator
suffers from cognitive and physical load. In case of a
robot reinforcement learning in a real environment,

some researches have been worked[4]. Unfortunately
it makes a lot of time for convergence of learning.

To cope with these problems, we have been proposed
Interactive Evolutionary Robotics (IER)[5][6]. Tt is
an interactive EC learning method to design a robot
using EC methods like genetic algorithm, genetic
programming and evolutionary strategy. We expect
TIER to perform high emergent property of ER and
subjective adaptability of IEC. This method quickly
learns effective rules by simple instructions of a hu-
man operator. The objective of IER is to make ini-
tial learning more efficient and learn behaviors that
a human operator intended through interaction with
him /her.

First of all, we developed a learning system based on
classifier system[7] on IER framework, which is able
to adapt to multiplicity of an environment and a vari-
able dynamic state. we call it as Interactive Classifier
System (ICS). Fig.1 give an environment of teaching
using ICS. The major difference between ICS and
a traditional learning classifier system is to intro-
duce an interactive method. Accordingly, we expect
that the system efficiently performs initial learning
in an actual environment and can operate concen-
trative incremental learning. However there is few
framework that an operator observes from robot’s
view. Therefore, the system can not make the best
use of the learning. In this paper, we propose inter-
active method based on internal observation in order
to solve the problem.

Nordin et al.[8][9] work a robot learning using genetic
programming in a real environment. They argue a
real robot learning is possible in a task of an obstacle
avoidance. Unfortunately, it take a long time to learn
the efficient behavior yet. Nicolescu et al.[10] re-
searches learning by interacting with a human like as
our approach. However, it is very different from our
approach for reasons of what it applies experience of
the interaction to evolutionary learning. Mondada
et al.[11] works a robot learning with evolutionary
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Figure 1: Teaching environment

learning as well as Nordin. However they report that
the learning takes scores of hours to converge.

2 Teaching Method Based on Different
Viewpoints of Observation

A robot hardly knows how it modifies behaviors of
itself for a task. Furthermore it may be difficult to
recognizes processing of a task. It is not an observed
approach through an inside viewpoint of a system,
but an observed one through an outside viewpoint
to be able to recognize achieving of a task.

In case of an operator usually teaches to a robot, an
external observer don’t recognize its internal infor-
mation. It is general that an operator teaches to a
robot by guessing its internal information. There-
fore, we had a significant difference between cogni-
tion of an operator and one of a robot, which is called
a perceptual aliasing problem. It become a subject of
discussion when a operator teach skills for a task to
a robot.

In this paper, we prepare the simple setting based
on the observation to examine how the difference
influence to acquired rules by teaching. We call a
method to observe through an outside viewpoint of
a system as teacher view (T'V) (Fig.2), and a method
to observe through an inside viewpoint of a system
as learner view (LV) (Fig.3).

We examine the difference by IER based on teaching
with this TV and LV. To realize this IER, we applied
these methods to developed ICS, which is a robot
learning system based on interactive EC.

Operation

Figure 2: Teacher view
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Figure 3: Learner view

3 Interactive Classifier System

3.1 System overview

ICS applies XCS[12], which is a kind of Learning
Classifier System (LCS), as evolutionary computa-
tion and introduces a interactive function. XCS
equipped a function to preserve classifiers from over-
generalization to make system’s performance worse.
Moreover, XCS applies restricted mating which is a
kind of strategy based on genetic algorithms. For
these reason, XCS improves learning performance of
traditional CS. It is constructed as a robot learning
model that can not only learn through teaching but
also learn autonomously using XCS.

ICS mainly consists of a rule generation component
(RGC), a sensor processing component (SPC), a dis-
play component (DC) and a reinforcement compo-
nent (RC) (Fig.4). It was implemented with C lan-
guage and GTK+ on Linux. It utilizes Video4Linux
for image processing. The rule generation compo-
nent makes a new classifier from teaching by the op-
erator. The SPC processes each information of some
sensors and camera, and through it for the RGC.
The DC displays by GUI interface and processes the
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Figure 4: Overview of Interactive Classifier
System

input from a joystick. Finally the RC performs learn-
ing by updating parameters in ICS. Fig.5 shows the
developed an interface for the system. The middle of
the left of the interface indicates some matched clas-
sifiers in this time. The middle of the right indicates
robot’s sensor information and state of a joystick.

The experiments are made with a standard miniature
mobile robot Khepera (Fig.6). The mobile robot has
cylindrical shape, a diameter of 6 cm and a height of
5 cm. It possesses two motors and on-board power
supply. The motors can be independently controlled
by a PID controller. It is equipped with eight in-
frared proximity sensors. The eight infrared sensors
are distributed around the robot in a circular pat-
tern. They emit infrared light, receive the reflected
light and measure distances in a short range: 2-5 cm.
The robot is also equipped with a Motorola 68331
micro-controller which can be connected to a com-
puter via serial cable. Moreover, the system utilizes
SONY analog controller DUALSHOCK as a joystick.
Fig.6 shows them respectively.

3.2 ICS procedures

We describe a learning procedure in ICS as follows.

1. At first, a human operates robot with a joystick
by viewing sensor information displayed on GUI,
and the DC processes it.

2. Next, the SPC gets operator’s instruction and
robot’s sensor information.
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Figure 5: User interface

3. The RGC makes new rules from them and adds
them into a rule list. When nothing is input
from the operator, a mobile robot executes au-
tonomous behaviors.

4. Finally, the RC reinforces the classifiers by up-
dating their parameters in the actions which
were previously executed.

In traditional works of robot learning in a real envi-
ronment, a learning takes pretty much time to con-
verge because of learning by trial and error. In this
work, we consider that this learning by trial and er-
ror is a problem in a real environment. However, it
hardly prepare suitable a priori knowledge in an en-
vironment. For this reason, the ICS generate initial
individuals by teaching from human-robot interac-
tion. We can perform efficiently initial learning in
this way.

4 Experiments

4.1 Experiments with cognitive observation

We experimented in a real world to investigate dif-
ference in two teaching methods: TV and LV as
mentioned earlier. Fig.7 shows an experimental en-
vironment. As an experimental task, ICS reduces
the number of steps from any start points to a light
source which set up as a goal in a field surrounded
with white plastic plates. We compared two teach-
ing methods (TV and LV) with a traditional method
in which a robot autonomously learns by simple EC.
To investigate influence by gap between operator’s
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Figure 6: A mobile robot Khepera and a joystick

Table 1: Experimental Parameters

| Parameters | Value |
The number of problems in one experiment 30
The number of expriments 1
Maximum size of the population 300
Probability to do crossover 0.8
Probability of mutating one bit 0.04

recognition and robot’s one, we prepared ezperiment
1 without an obstacle and experiment 2 with some
obstacles.

We consider forty steps as a trial and begin teaching
or autonomous exploration for five trials at random
start points, and test a trial at each of five start
points as examination of learned rules by the teach-
ings or the exploration. It performs this procedure
six times, and consequently we have thirty trials as
examination. Table 1 shows experimental parame-
ters.

An encoding of a classifier is as follows. A classifier is
the twenty bit string “A#0004#1000004##+#1004#:017.
The robot’s condition is the left sixteen bit string, it
represented eight infrared proximity (left eight bit)
and light (right eight bit) sensors around the robot
in a circular pattern respectively (Fig.6). The bit is
“1” if a input sensor value larger than a threshold, or
else “0”. “4#” is a “don’t care” symbol which classi-
fier system employed. The robot’s previous action is
the next two bit string, represented as forward 7117,
left-turn “01”, right-turn “10 ” and back “00”. The
robot’s current action is the two bit string similarly.

A fitness function of ICS defined as follows. Re-
ward F' is computed by the sum of eight light sensors

Figure 7: Ezxperimental Environment

through a sigmoid function.
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In the case of TV, the operator can not recognize
a small obstacles as the robot can perceive although
he/she looks a whole environment. To represent TV,
an operator teaches a robot using a camera which
looks a whole environment. Fig.8 shows information
through GUI by a camera which sets up the environ-
ment.

In the case of LV, an operator can not look a whole
environment although it can recognize directly a
small obstacles and a recognition error which the
robot can perceive. To implement LV, ICS uses GUI
which indicates some sensor values. Since an opera-
tor hardly recognize an environment by reading only
numerical values of sensor data, we developed GUI
interface which can represent sensor values graphi-
cally. Fig.9 shows such sensor information through
GUI interface.

In the experiment 1, we examined the number of
reach times to a light source from five start points.
Fig.10 shows the number of times to reach to a light
source (goal of the task) at test trials from five start
points. Though LV begins to success the task at early
stage, it doesn’t success later. On the other hand,
TV improves robot’s learning and achieves the task
from all five start points before LV. TV improves
a robot’s learning in the simple environment which
cognitive difference is little by teaching is easy be-
cause an operator looks a whole environment. How-
ever, the difference is not so large.

In the experiment 2, we introduced an obstacle in the
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environment of experiment 1 to investigate the effect
by a more difficult task. The obstacle was made of
the transparent plastic board because of perception a
direction of a light source. A robot must reach to the
light source as avoiding the obstacle. We compared
a teaching method by TV with LV in the same way
as experiment 1.

We examined the number of steps to a light source.
The number of steps to a light source shows Fig.11.
Since ICS hardly uses information of proximity sen-
sors and acquires effective rules by using only in-
formation of light sensors in the environment 1, the
difference of cognition between an operator and a
robot is a little. For this reason, the difference of
two teaching methods was not so large.
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Figure 11: Steps to Light Source

However ICS hardly learns from teaching of an op-
erator in case of experiment 2 because there is the
difference between the situation of the robot which
an operator estimated by observation from the out-
side and the one of the robot in the real world. LV
actually creates effective rules because an operator
performed teaching as he/she checks robot’s internal
status.

After we have experiments TV and LV each twenty
trials, we test a trial at each of five start points as
examination using each created rules. Table 2 shows
the experimental results.

The robot can not reach to a light source at any start
points of five in the examination of TV. On the other
hand, the robot reached to a light source by six steps
and nine steps respectively at two of five start points
in the examination of LV. We can see that ICS can
create effective rules independently of start points



Table 2: Ezxperimental Results of Ezxploit

Step to Reach to
Light Source Goal
[times [ 1 [2][3[4[5] total |
™V | - |-1|-|-]- 0
LV 619(-1|-]- 2

Table 3: Created Rules by LV Method

| Condition | Action | Prediction | Teach |
O#HOHO#H###H#O#10## 14 10 413.7 2
OO0 10###0##000# 1 ### 01 364.0 1
OO###0#000#1#0#01# 11 292.0 4
###000000101001011 11 256.0 1

since LV improves the robot’s learning by teaching.

Table 3 shows ten rules which have best values of
the system prediction in created ones after twenty
trials with LV. ICS created effective and common-
sense rules like as the robot moves forward when the
light source faces in front of the robot and it moves
right when the light source faces right. In this ta-
ble, Prediction is a fitness of a classifier and Teach is
whether it is taught by human or its offspring. Its
number is the number of which a taught classifier al-
ternate generations. We can see teaching improves
very well because all the rules whose the system pre-
diction is high created from teaching or its offspring.

Though an operator did not teach a robot to go back
in the both experiments, the robot goes back for
avoiding an obstacle when the robot collides with
a wall and reaches to a light source. Because ICS
created these rules by which a robot works in coop-
eration with human.

5 Conclusion

In this paper, we proposed a novel interactive
method from the viewpoint of observation and in-
vestigated its effects in a real world experiments. It
was found that internal observation increase the ef-
fects according to arise the difference between the
robot’s recognition and operator’s one in more com-
plex environment.
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