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Abstract 

While handling deformable linear objects (DLOs), such 
as hoses, wires or leaf springs, with an industrial robot 
at high speed, unintended and undesired oscillations 
that delay further operations may occur. This paper 
analyzes oscillations based on a simple model with one 
degree of freedom (DOF) and presents a method for 
active open-loop damping. Different ways to interpret 
an oscillating DLO as a system with 1 DOF lead to 
translational and rotational adjustment motions. Both 
were implemented as a manipulation skill with a sepa-
rate program that can be executed immediately after 
any robot motion. We showed how these manipulation 
skills can generate the needed adjustment motions 
automatically based on the readings of a wrist-mounted 
force/torque sensor. Experiments demonstrated the 
effectiveness under various conditions.  

1. Introduction 

Manipulating deformable linear objects (DLOs), such as 
hoses, wires, or leaf springs with an industrial robot 
system involves coping with many uncertainties. At the 
start of each manipulation operation, it is hard to deter-
mine the exact shape of a DLO. In many situations, the 
DLO is even oscillating. Both shape and oscillation 
depend on the object’s manipulation history and may 
vary for each individual DLO. In addition, they are 
influenced by the inevitable action of gravity, inertia, 
and contact forces. Unfortunately, these variations are 
typically very difficult to predict with sufficient preci-
sion. Thus, purely model-based approaches are likely to 
fail in real world situations. In order to compensate for 
these uncertainties, an obvious approach is based on the 
use of sensors. 

Many researchers investigated manipulation tasks in-
volving deformable objects. Kraus and McCarragher 

used a wrist-mounted force/torque sensor to insert a 
bending beam into a narrow slit [6], Nakagaki et al. 
used a force/torque sensor and a vision system to insert 
a wire into a hole under friction [7]. Inspired by Hase-
gawa [3], Henrich et al. [1], [4], [8] and Schlechter [9] 
developed a complete set of force-based manipulation 
skills for changing a single contact state between a DLO 
and its polyhedral environment. 

Although the dynamic effects of deformable objects 
cannot be neglected, especially when the objects are 
moved at high speeds by a robot arm, the effects of 
oscillations were not taken into account in the work 
described above. As shown in Figure 1, the uncertainty 
resulting from oscillation may cause failure during the 
insert-into-hole operation. If these oscillations caused 
by inertia can be depressed during all motions or elimi-
nated as soon as possible after each motion by a sepa-
rate manipulation skill, previous work can be reused as 
it is. 
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Figure 1: A quick operation (1) causes vibration (2), 
resulting in uncertainty and failure, e.g., when inserting 
a DLO into a hole (3) 

Oscillation reduction of flexible structures has been a 
research topic for many researchers: Chen et al. have 



reviewed previous work and presented a passive, open-
loop approach for vibration-free handling of deformable 
beams [2]. Similar ideas dealing with rigid bodies can 
be found in [5] and [10]. However, application of the 
method presented in [2] is limited to relatively simple 
trajectories and assumes a stable workpiece at the start 
of each motion. Considering the complex manipulations 
involved in practical situations, such as avoiding obsta-
cles, picking-up, insert-into-hole, etc., the stable start 
condition cannot be satisfied easily. 

With respect to manipulation, only oscillations that may 
cause failure of the next operation need to be elimi-
nated. Yue discussed a purely model-based method to 
reduce the vibration of DLOs using adjustment motions 
[11]. Since the effectiveness depends on how well the 
model matches the real DLOs and how well the simu-
lated robot operation matches the real operation, it is 
possible to design a nearly perfect adjustment motion 
for one given situation, which is most likely to fail in all 
other situations. 

Therefore, resuming the work of Yue and Henrich [12], 
force/torque sensor-based manipulation skills to actively 
damp DLO oscillations were developed. These manipu-
lation skills can be executed right after any robot mo-
tion. They perform an open-loop adjustment motion, 
which is generated automatically inside the manipula-
tion skill by analyzing data from a force/torque sensor 
mounted on the robot’s wrist. In order to reduce the 
undesired oscillations to an acceptable level in lots of 
different situations, a simple, quite general model of an 
oscillating 1-dimensional mass/spring system supported 
by sensor data is used. 

The rest of the paper is organized as follows: In Section 
2, the theoretical adjustment motion needed for an oscil-
lating mass spring system with only one degree of free-
dom is analyzed. Section 3 describes how the parame-
ters for the adjustment motion can be obtained from 
sensor data. In Section 4, two possible ways of adopting 
the calculations to an oscillating DLO are introduced. 
Finally, some experimental results are presented in 
Section 5. 

2. Active Damping of a 1 DOF Mass/Spring 
System 

First, a system with only one degree of freedom (1 
DOF) is considered. It consists of a mass m fixed to the 
end of a linear spring with stiffness k and damping coef-
ficient c. The spring is held by the robot. The gripper 

position is given as a function of time xG(t); the position 
of the mass is xM(t) (Figure 2).  

In a first phase, the gripper position remains unchanged. 
Considering the balance of forces, the position xM,1(t) of 
the mass is the solution to the following differential 
equation: 

( )( )dxkxkxcxm GMMM +⋅=⋅+⋅+⋅ 01,1,1, &&&  

(d is the distance between the gripper and the mass at 
rest).  
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Figure 2: Mass/spring system with one degree of free-
dom. A mass m is suspended to a spring with stiffness k 
and damping c 

If the mass is released at time 0 at a distance x0 from its 
position at rest, the initial conditions for the solution are 
given as: 
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Assuming low damping, the desired solution is:  
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In a second phase, the oscillations from the first phase 
are damped actively. Therefore, the gripper is moved 
between some points in time t0 and t1. It is at rest before 
t0 and after t1. The motion is a (co)sine function with the 
same period ω as the workpiece oscillation, with the 



amplitude xmax and the phase ϕ, representing the point in 
time t0: 

 ( ) ( )ϕω −⋅⋅= txtxG cosmax  
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This implies that xG(t) = xmax for all t ≤ t0 and t ≥ t1. 

Of course, the gripper motion disturbs the balance of 
forces and the motion of the suspended mass reacts to 
the gripper motion. Similar to the undisturbed case, the 
mass’s resulting position xM,2(t) is the solution to the 
following differential equation: 

( ) ( ) 02,2,2, =−−⋅+−⋅+⋅ dxxkxxcxm GMGMM &&&&  

Replacing xG by the above chosen motion type, this 
leads to: 
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Of course, the mass’s motion and speed are continuous 
at t0.  

( ) ( )02,01, txtx MM =  
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From those initial conditions, the following solution is 
obtained:  
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The point in time t0 (ϕ) is chosen in a way that the mass 
no longer oscillates at t1:  

( ) 012, =txM&  

( ) 012, =txM&&  

This system of equations is solved with respect to ϕ and 
xmax: 
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With decreasing damping c, the phase ϕ and the ampli-
tude xmax converge: 
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The free oscillation, the gripper motion and the resulting 
damped motion of the mass are illustrated in Figure 3. 
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Figure 3: The free oscillation from phase 1 (black), the 
gripper motion (gray) and the resulting damped motion 
of the mass (gray, dashed) 

3. Parameter Determination from Sensor Data 

Using the theory about the adjustment motion necessary 
to actively damp the oscillation, the needed parameters 
are determined using a wrist-mounted force/torque 
sensor. The force measured by a non-calibrated sensor 
is given by: 



( ) ( ) ( )( ) offsetGM FdxtxktF +−−⋅= 01,   

Foffset is a constant offset. If the sensor is calibrated and 
if the motion direction of the mass is parallel to the 
gravity vector, this offset is equal to the weight of the 
mass. 

The phase of the movement is equal to the phase of the 
force and can be determined by the first extremum in 
the force signal. Let us call this extremum F(0). Thus, 
the following two extrema are F(T/2) and F(T) with T 
the period of the motion. Using these, ω can be calcu-
lated as 2π/T. The force-offset Foffset and the damping 
coefficient α can be found from the difference between 
two consecutive extrema as follows: 
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Analogously, for F(0) − F(T /2), 
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thus: 
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Now, as the robot motion is started right after the occur-
rence of the third extremum, the displacement x0 at this 
point in time is still needed in order to calculate the 
adjustment motion. Obviously x0 can be obtained from 
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The stiffness k of the spring can be found from 
k = m(α2+ω2) if the mass m is known. Of all parameters, 

the mass m can be determined most easily, in some 
situations even online (Foffset = mg). 

4.  Active Damping of an Oscillating DLO 

In this section, a real oscillating DLO is considered. For 
simplification, a homogenous leaf spring of length L 
and mass m is assumed. Only the dominant mode of 
oscillation is regarded. The vibration is supposed to be 
free within a plane perpendicular to gravity. Under this 
last assumption, gravity force can be omitted. Using a 
calibrated sensor, the mass of the spring as well as the 
location of the center of gravity, which may lead to the 
spring length, can be determined via gravity force and 
moment. In this situation, all parameters for the active 
damping can be obtained on-line from sensor data!  
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Figure 4: Leaf spring oscillation approximated by 
1 DOF translational oscillation of its center of mass 

For small oscillation amplitudes, the spring may be 
regarded as a translational 1 DOF mass/spring system 
with its complete mass concentrated at the center of 
mass (Figure 4). The adjustment motion is parallel to 
the oscillation direction, which is perpendicular to the 
spring’s orientation at rest. This type of adjustment 
motion is called translational. All calculations can be 
adopted from Sections 2 and 3 (d = 0). As the moment 
can more easily be measured accurately, the force can 
be determined by the spring length L: 
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On the other hand, the spring may be regarded as an 
undeformable beam of mass m fixed to a torsion spring 
(moment linearly dependent on deflection angle) with 
stiffness k’ ([k’]=Nm/rad) and damping c’ 
([c’]=Nm/(rad/s)) held in the gripper. Thus, the rota-
tional center lies at the end of the gripper. The gripper 



orientation angle is given as a function of time θG(t) and 
the orientation angle of the beam is θM(t) (Figure 5). 
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Figure 5: Leaf spring oscillation approximated by 
1 DOF rotational oscillation θ(t) of an undeformable 
beam fixed to a torsion spring held by the gripper 

A beam of mass m and length L can be modeled as N 
equidistant (distance=L/N) small masses (mass=m/N). 
Thus, with N approaching infinity, the inertial moment 
of the beam can be found as follows: 
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Substituting this into the equilibrium of moments, the 
orientation θM(t) of the beam can be found as the solu-
tion to the following differential equation: 

( ) ( ) 0''' =−⋅+−⋅+⋅ GMGMM kcm θθθθθ &&&&  

All calculations from Sections 2 and 3 can be adopted 
by simply changing x into θ, F into M, adding primes (’) 
to the coefficients m, c and k, and finally substituting 
m’ = mL2/3. The adjustment motion based on these 
assumptions is called rotational. 

5. Experimental Results 

The manipulation skills based on both the translational 
and the rotational adjustment motion were implemented 
using Adept’s V+ robot language on a Stäubli RX 130 
equipped with a wrist-mounted force/torque sensor 
90M31A from JR3. The adjustment motions were lim-

ited to one period of the workpiece oscillation (n = 2). 
This is the fastest possible adjustment if the DLO is to 
be stabilized at the originally intended position. Sensor 
data is processed using an appropriate onboard low-pass 
filter with a cutoff frequency of 7.8 Hz and a delay of 
around 130 ms in order to locate the extrema with a 
simple, ordinary procedure. In the experiments a steel 
leaf spring of length L = 53 cm with 18 mm × 0.5 mm 
cross section and mass m = 35 g, an aluminum beam of 
length L = 100 cm with 15 mm × 2 mm cross section 
and mass m = 80 g, and a brass beam of length 
L = 73cm with 10 mm × 2 mm cross section and mass 
m = 118 g were used as workpieces. The first 3 cm of 
all DLOs were used to hold them with the robot gripper. 
Let l be the perpendicular DLO endpoint deflection 
from its position at rest. Figure 6 shows that the average 
residual relative amplitude of the endpoint deflection 
(l/L [%]) over ten experiments depended on the begin-
ning amplitude for both kinds of adjustment motions 
and the different sample workpieces.  
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Figure 6: Average residual relative amplitude ([%]) of 
the endpoint deflection over ten experiments depended 
on the beginning amplitude for both kinds of adjustment 
motions and the different workpieces 

The duration of an adjustment motion depended on the 
period of the oscillation plus a constant delay (0.5 s) to 
assure that there were no remaining inertial effects from 
robot deceleration other than a proper DLO oscillation. 
Thus, for the aluminum beam, an active damping ma-
nipulation skill took 2.4 seconds, for the brass beam it 
required 2.3 seconds and for the steel ruler 2.7 seconds. 
On the other hand, the decay time for a decrease of  
oscillation amplitude from around 10% down to about 



2% without adjustment motion was around 30 seconds 
for all three sample objects; decay time to less than 1% 
deflection was longer than 50 seconds. 

In the current implementation, the sensor is not cali-
brated and thus the manipulation skills require the 
length L and mass m of the workpiece as parameters. 
Since the presented model does not exactly fit reality, it 
is possible (and may be useful) to fine-tune the adjust-
ment motions for special situations (expected range of 
amplitudes, materials, …) using a correction factor or 
non-complex term for the amplitude xmax of the adjust-
ment motion. 

6. Summary and Future Work 

In this paper, workpiece oscillations were analyzed 
based on the simple model of a mass/spring system with 
one degree of freedom. Furthermore, a strategy for 
active damping of these oscillations was presented. It 
was shown how the parameters for the active damping 
can be obtained from sensor data. As a result of differ-
ent methods to approximate the behavior of a DLO 
using this 1 DOF model, two types of adjustment mo-
tions, translational and rotational, were found. Both 
were implemented as manipulation skills. In experi-
ments, the effectiveness of these easily and transpar-
ently attachable adjustment motions was shown. In the 
near future we will try to integrate the influence of grav-
ity, thus allowing for other planes of oscillation. The 
possibilities of determining all parameters (such as: 
plane of oscillation, direction for the translational ad-
justment motion, …) on-line will be investigated, per-
haps implementing a calibrated sensor. 
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