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Abstract - Kernel is rhe heart of kernel based learning. To choose 
an appropriate pommeler for  U spec@ kernel is an imporranr 
reseorch issue in the data mining area. In fhis paper we propose 
an oulomatic parameter selection upprouch for polynomiul kernel. 
The algorithm is resred on Support Vector Machines (SVW. The 
purumerer selecrion is considered on /he basis ofprior information 
of the daru disfribution and Bayesian inference. %e new approach 
is resled on dfleerenr sizes of benchmark durasers wirh binary cluss 
problems us well us multi cluss classification problems. 
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1 lntroduction 

Pattern recognition problems have been introduced 
since Fischer’s theory of linear discrimination in the mid 
1930’s. After that, in the 1960’s Rosenblatt proposed the 
perceptron as a new approach to machine learning [I]. In 
more recent times, researchers have focused on solving 
recognition problems with the help of different learning 
algorithms. 

Standard learning systems, say neural networks or 
decision trees, operate on input data after they have been 
transformed into feature vectors & , , , . , F ”   living in a d- 
dimensional space. In such a space, the data point can be 
separated by a surface, clustered, interpolated or otherwise 
analysed. The resulting hypothesis will then be applied to 
test points in the same vector space, in order to make 
predictions. 

There are many cases, however, where the input data 
can’t readily be described by explicit feature vectors: for 
example biosequences, images, graphs and text documents. 
For such datasets, the construction of a feature extraction 
module can be as complex and expensive as solving the 
entire problem. This feature extraction process not only 
requires extensive domain knowledge, but also it is possible 
to lose important information during the process. These 
extracted features play a key role in the effectiveness of a 
system [2]. 

Kernel, the most important ingredient of kernel 
based learning, is an effective alternative to explicit 
feature extraction. The building block of kernel based 
leaming methods [3,4] is a function known as the kernel 
function, i.e., a function returning the inner product 
between the mapped data points in a higher dimensional 
space. The learning then takes place in the feature 
space, provided the learning algorithm can be entirely 
rewritten so that the data points only appear inside dot 
products with other data points. Several linear 
algorithms can be formulated in this way, for clustering, 
classification and regression. The most well known 
example of a kernel based system is the Support Vector 
Machine (SVM) [ S ,  41, but also the perceptron, 
principle component analysis, Nearest Neighbour, and 
many other algorithms have this property. 

There are quite a good number of kemels available 
for kernel based learning. The problem of some kemels 
for SVM is the difficulty in fitting the appropriate 
parameters values. The linear, polynomial and radial 
basis function (RBF) are the most classical kernels used 
from the beginning of SVM research. The linear kernel 
is suitable for linear separable cases. But unfortunately 
most real world problems are not linearly separable. 
Joachims [6] argues SVMs are universal learners. In 
their basic form, SVMs learn linear threshold functions. 
Nevertheless, by a simple ‘plug-in’ of an appropriate 
kernel function, they can be used to learn polynomial 
classifiers, RBF networks, and three layer sigmoid 
neural nets. 

Previous studies [3,7-1 I]  show that there exists no 
special kernel, which has the best generalization 
performance for all kind of problem domains. Parrado- 
Hemandez, el. al., argue it is not clear to get priori 
information which kernel function is the most 
appropriate, and it might be desirable to train a more 
flexible SVM by combining different kernels to solve a 
given problem [IZ]. Selection of the kernel parameter is 
an important research focus in the area of SVMs [13]. 
However, there is no literature concerning how to 
choose the best parameter for polynomial kernel. So, it 
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is really an important research area to choose the most 
significant parameter value for polynomial kernel. 

In this paper, we will explore a simple yet practical 
approach to SVM classification choosing an appropriate 
kemel directly from the training data. The proposed 
approach is based on classical statistical theory and 
Bayesian inference [ 141. Practical validity of the proposed 
approach is demonstrated using several low-dimensional 
and high dimensional as well as binary and multi class 
classification problems. 

This paper is organized as follows. Section 2 gives a 
brief introduction to SVM. Section 3 describes the kemel 
methods. Section 4 describes the distribution test used for 
the datasets and proposed approach to automatic parameter 
selection. Section 5 describes the experimental setup and 
results. Finally, summary and discussions are given in 
section 6 .  

2 Support Vector Classifications 

This section reviews the main ideas behind the SVM. 
We mainly formulate the multi class SVM to consider all 
the classes at a time. SVMs are a class of algorithms that 
combine the principles of statistical learning theory with 
optimisation techniques and the idea of a kemel mapping. 
They were introduced in [5], and in their simplest version 
they leam a separating hyperplane between two sets of 
points so as to maximise the margin (distance between the 
plane and closest point). The solution has several 
interesting statistical properties that make it a good 
candidate for valid generalisation. One of the main 
statistical properties of the maximal margin solution is that 
its performance does not depend on the dimensionality of 
the space where the separation takes place [2]. In this way, 
it is possible to work in very high dimensional spaces, such 
as those induced by kernels, without over fitting. 

Let us consider a binary classification task with the 
data sequence D, = (x, , y , ) , ,  . .,(x. , y m )  having 
corresponding targets yI,  ...,ym. The data is divided into two 
parts. The first part Dn = ( x , , y , )  ,..., (x , , ,~ , )  is used for 
training, while the remaining e = m-n pairs constitute the 
testing sequence: 

T~=(~"+ , ,Y"+I ) , . . , , (X~ ,  Y J  (1) 

The training sequence D. is used to design a model 
and the testing part is used to evaluate the model 
performance. 

The decision function for binary SVM is 
f ( x )  =argmax[(o, .x)+o,]  

n = l , . . . , k  . 
(2) 

The natural way to solve multi class problems is to 
construct several hyperplane for the multi classes in a 
single optimisation, for details see [15]. 

Then, we can obtain the multi class SVM decision 
function, which is defined as, 

e 
f(n) = argmadC(cnAj - a n ) ( x i . x )  +ao] (3) 

n j=l 

Where the parameters a," are the solutions of the 
following quadratic optimization problem to be 
minimized: 

Introducing the notation 
1 1 if yi = n 

Ai =Ea; and c" = 
"=I 

The subset of the examples which corresponding 
arnvalues are different than zero are called Support 
Vectors (SVs). 

Due to kernel implicit bias the decision functions 
for binary and multiclass data are formulated as follows: 

f ( x )  = argmax(w,.x) (5) 

f ( x )  = argmax[C(c/Ai - a , ? ) ( x ! . x ) ]  (6) 
t 

" ,=I 

We consider the linear kernel in eq. (6). 

3 Kernel Methods 

We now briefly describe a kernel function. Our 
aim is to introduce mathematical details of the 
polynomial kernel as followed by Mercer's theorem. 
We consider a situation where there is no alternative of 
the nonlinear discriminate function to classification. 
Figure 1. describes the two linearly non separable 
situations. In (a) it is clear that a classifier with a linear 
discriminant function will not perform well while in (b) 
the classes overlap each other and the optimal 
discriminant b c t i o n  is at least roughly linear. 

(a) (b) 

Figure 1. In (a) the optimal discriminant function is 
nonlinear while the optimal classifiers has no errors. In 
(b) the optimal discriminant function is linear while the 
classes overlap and thus the optimal classifier is not 
error free. 

244 

Authorized licensed use limited to: CENTRAL QUEENSLAND UNIVERSITY. Downloaded on April 08,2010 at 06:32:47 UTC from IEEE Xplore.  Restrictions apply. 



The real scenario of the classification problem is 
where the optimal discriminant function is often nonlinear. 
It should be mentioned that using a nonlinear discriminant 
function of course does not guarantee zero training error. 

We will map the vectors xi ,  i = I ,..., n, into a new 
space in the hope that the optimal separating hyperplane in 
new space performs better classifications than the optimal 
hyperplane in the original space. The mapping is 
o : xd t H, where dim(H) 2 d and possibly 
d im(H)  = m [16]. More specifically the mapping that will 
be considered is of the form 

where Ai and vi are the eigen values and the normalized 
eigen functions of all integral operator 

t X  ~ j~(.,~),(~)dv. In the SVM literature the space H is 

often called a feature space and the @(xj)sare called 
feature vectors. Calculating the feature vectors can be 
computationally expensive, or even impossible, if the 
dimension of feature space is high or infinite. It should be 
noted that in the SVM algorithm all the calculations 
involving the @(xj)s appear in the inner products. Instead 
of explicitly mapping the vectors into a high dimensional 
feature space and computing the inner product it is, under 
certain conditions, possible to use a function K ( ~ , ~ )  whose 
value directly gives the inner product between two vectors 
@(u)and@(v). A direct consequence is that by using K the 
inner products can be computed at roughly the same time in 
the feature space and in the original space. In the literature 
the function K(.,.) is usually called a kernel. 

(J;i;v,(x)3Kv,(xl...). (7) 

The classical kemels of SVMs are linear, polynomial 
and rbf. The most preferable kernel for nonlinear 
classification is polynomial or rbf. 

3.1 Polynomial Kernel 

Let us consider the pth degree polynomial kernel. In 
+ x we can expand order to obtain explicit features 4 : 

the kernel function as follows 

" 

= c c(.,. . .u,J(v,, .. .v,)= ( 4 M V ) )  
lli, ,#=,-r 

*.(U) m , ~  

Although it seems that there are NP different features 
we see that two index vectors i ,  and i2 lead to the same 
feature a,,, = @ , 2  if they contain the same distinct indices 
the same number of times but at different positions [17], 
e.g., i l= ( l , l , 3 )  and i2=(1,1,3) both lead to 
@(U)= u,u,u, = u$,.One method of computing the 

number of different features is to index them by an 
N-dimensional exponent vector 

r = (r, ,..., r N ) E  {0 ,..., pJX,i.e., @,(U)=.; ... U:. 
Since there are exactly p summands we know that each 
admissible exponent vector r must 
obey r, + . . . + rN=,, . The number of different exponent 

vectors r is thus exactly given by r+Y) 
and for each admissible exponent vector r there are 
exactly 

p! 
r, !. . . r,, ! 

different index vectors i E (1,. . . , N } P  leading to r. 
Hence the rth feature is eiven bv 

r, ! , . . rH . 
(9) 

Finally note that the complete polynomial kernel 
is a pth degree polynomial kernel in an N+l- 
dimensional input space by the following identity 

((u,v)+b)P = ( ( (u ,h) (v ,h) f  (10) 

When b is positive the kernel is called 
inhomogeneous and correspondingly, homogeneous 
when b = 0. The inhomogeneous kernel avoids 
problems with the Hessians becoming zero in numerical 
calculation. To prove that this kemel is a Mercer kemel, 
it is sufficient to show that 

I ( ~ u . v . ) ' j ( u ) f ( v ) d u d v ~ O  (11) 

where d is the dimension of the vectors and we have for 
simplicity set b = 0. 

The final classifier with polynomial kemel is 

The final classifier with the rbf kernel is 

where (r is the width of the rbf kernel 

4 Automatic Polynomial 
Parameter Selections 

When a kernel is used it is often unclear what the 
properties of the mapping and the feature space are. It is 
always possible to make a mapping into a potentially 
very high dimensional space and to produce a classifier 
with no classification errors on the training set. 
However, then the performance of the classifier can be 
poor. On the other hand, it is possible that a classifier 
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with an infinite dimensional feature space performs well. 
Thus, the dimension of the feature space is not the essential 
quantity when choosing the right kemel [ 181. Before choose 
the right kernel, it is important to measure the nature of the 
data, i.e., the distribution of the dataset. Our studies as like 
binary SVM, i.e., if the data distribution is normal then we 
suggest choosing the Gaussian or rbf kernel, otherwise 
polynomial kernel. However, we need to find out the 
optimal polynomial degree. 

4.1 Interquartile Range (IQR) 

It is easy way to gauge the normality of the data 
distribution by visually inspection using a histogram, 
normal probability plot, or dot plot. But for an automated 
method we need a machine-readable numeric value from 
some kind of distribution test. The chi-square test can solve 
this problem. It considers the dataset by different samples, 
then checks each sample property for normality. But the 
computational complexity is higher for this method. 
However, we suggest a method IQR based on classical 
statistics to overcome this limitation [19]. The IQR is used 
as a robust measure of scale. It considers the quartile 
values, one is lower and another is upper quartile. Quartiles 
can he defined at the 25th percentile, the 50th percentile, 
the 75th percentile and the 100th percentile. The IQR is the 
distance between the 25th percentile and the 75th 
percentile. The IQR is a measure of variability that can be 
appropriately applied with ordinal variables and therefore 
may be used especially in conjunction with non-parametric 
statistics. 

The lower and upper quartile is 
i q - t  = p(n + 1) 
i q - u  = ~ ( n  + 1) 

(14) 
(15) 

and round to the nearest integer. Where p indicates the 

lower and 6 indicates the upper quartile 

Now, IQR = (n + 1x6 - p) (16) 

Now the hypothesis is, if the data are approximately 

normal then@ 1.3, where s is the standard deviation of 

the population [19]. 

4.2 Polynomial Degree Selection 

S 

To choose an appropriate degree for polynomial 
kernel is an important issue. We compute the training error 
of the data for each possible degree and choose the best one 
for classification [14]. 

The data model is that an input vector x of length m 
multiplies a coefficient matrix A to produce an output 
vector y of length d, with Gaussian noise added; 

y = A x + e  (17) 

e -  N(0 ,V)  (18) 
P(Y/x ,A,V)-  N ( k V )  (19) 

This is the conditional model for y only. 

The scenario is that we are given a dataset of 
exchangeable pairs D = [b, ), . . . , b, ,.,)]. Collect 

Y = [ y ,  ...yN] and x = The distribution of Y 
given X under the model is 
P(Y I X .A,V)= 

(20) 
P(Y, I x,.A,V) 

I 

= ~ + + ~ ~ V - ' [ A X U ' A ~  /2nvl#'l  -~Yx 'A '+YY' ) )  

A conjugate prior for A is the matrix normal 
density, which implies the posterior for A as well as for 
Y will be matrix normal. A random d by m matrix 
normal distributed with parameters M, V, and K if the 
density of A is 
P(A) - N(M,V,K) 

Where M is d by d, and K is m by m. This 
distribution has two covariance matrices: V for the rows 
and K for the columns. If V is diagonal, then the rows 
of A are independent normal vector. 

Now, we consider 
S . = X X ' + K  
S ~ . = V X ' + M K  

S , = W ' + M K M '  

S6, =s, -s,s:s: 
Then the likelihood (20) times conjugate prior (21) is 

p(v . A  I x .v)= exp( ~ +(v  as - zs, A T  + s ,  D (22) 1 
x r x p ( - i s ( V ~ ' k A  -S,S:)r-(A-S,S:y + S A ,  D) 

Returning the joint distribution (22) and 
integrating out A gives the evidence for linearity, with 
V known: 

This can be also drive from (19), (21) and the 
properties of the matrix-normal distribution. The 
invariant prior reduces this to 

s I,I = YY ' - (a + I)-' YX ' (XX )-' XY r ( 2 5 )  
By zeroing the gradient with respect to a , we find 

md (26) 
that the evidence is maximized when 

a =  
t r ( V - ' Y X ' ( X X  ' ) - 'XY ' ) - m d  

This estimator behaves in a reasonable way: it 
shrinks more when N is small, m is large, or the noise 
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level V is large, in order to reduce over fitting. Equation 
(26)  offered estimation for the optimal polynomial degree 
to solve classification problem. 

5 Experimental Results 

Our aim was to test the efficiency of this new 
approach to automatic parameter selection for SVM 
classifications tasks. We used the data sets from two 
different sources. The dataset pid was collected from 
Knowledge Discovery Central [20] and rest from UCI 
repository [21]. We were considered binary class problems 
as well as multiclass problems. A split-sample strategy was 
used for application of the prediction methods. Randomly 
selected 70% of the data are used to learn the predictive 
model. The remaining 30% was used to test the model. 

The datasets are described in Table 1 with number of 
attribute, instances and classes. The IQR values are also 
mentioned in the same table as well as the predicted 
polynomial degree. The experimental results have been 
introduced in Table 2, 3 and 4. We considered the 
polynomial degree from 2 to 5 and the rbf width from 0.2 to 
1 with 0.2 intervals in classical approach. The datasets dna, 
germen, glass, h-d, pid and pima are not normally 
distributed and the rest of the datasets are normally 
distributed by the prior information from training data. The 
glass and pid datasets IQR values are less than normality 
value. So the classification error percentage of some non no- 

# of # of 
Dataset Attribute Instances 

Table 1. The datasets are described with number of 
attributes, instances, classes and IQR values. 

#of  
Class IQRIs 

german 1000 1.59 
glass 214 0.86 

h-d 303 1.43 

pid 486 1.2 
pima 768 1.44 
tictactoe 9 958 2 1.35 

wine 13 178 3 1.3 

rmal datasets with polynomial kemel is lower than rbf 
kemel. The polynomial with optimal degree (ploy-od) 
performed better classification accuracy for german, h-d 
and tictactoe dataset. It also performed equal error rate 
for dna, glass and pima within a single iteration 
compared to classical polynomial. Our, method 
performed worse on those datasets which were perfectly 
normal distributed. The bold face in Table 2 indicates 
the lowest error percentage for a dataset. For some of 
datasets the training errors were reduced in our 
proposed method. The number of support vectors is 
similar between classical polynomial kernel and our 
approach. 
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1.5 3 5  

Data Data 
,A 

i I4 14 34 *I 61 04 14 

(c) dot plot 
I . ,  

Figure 2 Graph for data distribution le4 The german datasrt IF rcpresented in (a), (b) 
and (c) 3nd wine ditiscti, reprcsentrd in (d), ( e )  and (0 

Figure 2 represents the graphical view of the german 
and wine datasets. From Table I we can see that wine is a 
normally distributed dataset but german is not. The german 
dataset has more outlier than wine. Figure 2 supports our 
argument and shows three well known normality test 

methods, histogram, normal probability test and dot 
plot. The histogram and the dot plots bell-shape of the 
german dataset is far different than normal distribution 
curve, on the other hand wine data set’s graph has 
similarity with the bell-shape of normality curve. 

Table 2. The percentage of error for the test data with polynomial and rbf kernel. The optimal 
polynomial degree is placed within bracket. 

Dataset poly poly-od rbf 

german 

pima 
tictactoe 

56.25 59.38 56.25 56.25 35 (9) 

0.2 0.4 0.6 0.8 1 

41.58 32.67 30.69 31.68 29.7 
46 46.74 46.74 46.74 46.03 

33.78 32.77 31.42 30.41 29.05 

28.41 25 25 22.73 18.18 
25.87 21.68 24.48 24.48 25.17 

40.63 51.56 51.56 51.56 51.56 

26.94 21.92 23.74 26.03 26.03 
3.93 4.29 3.93 6.43 10.36 
3.45 3.45 3.45 3.45 5.11 

Table 3. The percentage of SVs for polynomial and rbf kernel 

Data set poly 

bupa 84.4 46.3 44.3 44.3 
2 3  4 5 

dna 67.34 86.19 97.23 97.83 
german 36.2 49.9 84.2 100 
glass 42 46 46 48 
h-d 31.6 41.4 46.5 100 
pid 71.1 40.2 38.8 39.4 
pima 78.7 48.8 38.8 40.1 
tictactoe 8 23.2 45.1 75.2 
urine 22.5 27.5 30.8 30.8 

- 
44.3 

97.23 
100 

48.7 
100 

38.8 
40.1 
100 

100 
~ 

rbf 

0.2 0.4 0.6 0.8 1 

100 94.3 89.8 88.9 88.5 
68.88 68.88 68.88 68.88 68.88 

100 100 99.4 93.8 88.2 
100 96 89.3 89.3 88.7 
100 100 95.8 82.3 75.8 
100 90.7 79.6 75.2 74.3 
100 87.4 81.2 77.8 76.9 

19.53 47.39 57.72 67.95 70.66 
100 100 85 63.3 55.8 
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6 Discussions 

We proposed an approach for automatic parameter 
selection for polynomial kernel. We tested our algorithm on 
SVM. The algorithm is based on classical statistical theory 

Table 4. Train error for polynomial classical kernel and with new 
approach. 

Dataset poly poly-od 

- - 
bupa 
&a 

german 

h-d 
pid 
pima 
tictactoe 

wine 

glass 

- 

2 3 4 5 
55.33 53.28 54.92 52.46 

0 0 0 0 
61.08 0 0 29.12 
56.67 54 50.67 43.33 
30.23 0 0 0 
26.53 28.57 22.16 21.57 
23.68 59.2 21.49 20.77 
67.11 57.52 57.67 52.95 

0 0 0 

- 
54.92 

0 
1.67 

22.727 
7.9 

22.16 
20.71 
49.26 

0 - 
IQR and Bayesian, inference. We suggest to consider the 
IQR value from 1.3 to 1.4 for normality test. The main 
benefit of this technique is to reduce the cost of 
classification for learning algorithm and help to make a 
quick decision. Another prominent feature of the presented 
approach is that it is easy to search the appropriate value to 
test the dataset normality. Our method is five times faster 
than classical polynomial approach. The rbf kernel 
performed better on those datasets with an  IQR values 
range 1.3-1.4. We suggest choosing polynomial kernel for 
those datasets with IQR values lower bound is below 1.3 
and upper hound is above 1.4. 

In our further research, we will test our method with 
larger dataset as well as larger number of classes. We have 
an additional target to test the method with 10 fold cross 
validation and also explore how to reduce the training error. 
This idea could he also explored with some other new 
kernels. Moreover, we have plans to study how to choose 
the optimal parameter value for rhf kemel. 

7 References 

[ I ]  D. E. Rumelhart, G. E., Hinton, and R. J. Williams. Learning 
internal representations by error propagation. In parallel 
distributed processing: Explorations in the macrostructures 
of cognition, volume I ,  pages 318-362, Cambridge, MA, 
1986. 

[2] H. Lodhi, C. Saunders, N. Cristianini, C. Watkins, J. Shawe- 
Taylor, Text classification using string kemels, Appeared in 
Journal of Machine Learning Research, 2003. 

[3] N. Cristianini and J. Shawe-Taylor. An introduction to 
support vector machines, Cambridge University Press, 
Camhdridge, UK, 2000. 

[4] V. Vapnik. The Nature of Statisticol Learning Theory. 
Springer Verlag, New York, 1995. 

[SI E. Boser, 1. M. Guyon, and V. N. Vapnik. A training 
algorithm for optimal margin classifiers. In D. Haussler, 
editor, Proceedings of the 5" Annual ACM Workshop on 
Compuralional Learning Theory, pages 144-152, 
Pittsburgh, PA, 1992. ACM Press. 

[6] T. Joachims, Text categorization with support vector 
machines: learning with many relevant features. In 
European Conference on Machine Learning (ECML). 
1998. 

[7] A. Zien, G. Ratsch, S. Mika, B. Scholkopf, C. Lemmen, 
A. Smola, T. Lengauer, and K.-R. Muller. Engineering 
support vector machine kemels that recognize translation 
initiation sites. German Conference on Bioinformatics, 
1999. 

[XI B. Scholkopf, and A. Smola. Learning with Kemels: 
Support Vector Machines, Regularization, Optimisation, 
and Beyond. The MlTPress, England, 2002. 

[9] S. Ali, and A. Abraham, An Empirical Comparison of 
Kernel Selection for Support Vector Machines, 2nd 
International Conference on Hybrid Intelligent Systems, 
SoJi Computing Systems: Design, Management and 
Applications, 10s Press, The Netherlands, pp. 321-330, 
2002. 

Uniqueness of the SVM 
solution. In Proceedings of the Twelfrh Conference on 
Neural Information Processing Systems. S. A. Solla, 
T. K. Leen, and K.-R. Muller (Eds.), MIT Press, 1999 

[ I l l  S. Ali, M. U. Chowdhuly and S. R. Subramanya, 
Nonlinear Discrimination Using Support Vector Machine, 
Proceedings of thel8th Internotional Conference on 
Computers and Their Applications, pages 287-290, 
Hawaii, USA, March 26-28,2003, 

[ 121 E. Parrado-Hemander. I. Mora-Jimenez, J. 
Arenas-Garcia, A. R. Figueiras-Vidal, A Navia-Vazquez, 
Growing support vector classifiers with controlled 
complexity, Pattern Recognition, page 1479.1488, v.36, 
2003. 

[I31 W. Wang, Z .  Xu, W. Lu and X. Zhang. Determination of 
the spread parameter in the Gaussian kernel for 
classification and regression, Neurocomputing, Elsevier 
Science, 2002. 

[14] T. P. Minka, Baysian linear regression, MIT, USA, 
2001. 

[I51 J. Weston., and Watkins, Multi-class support vector 
machines, presented at the Proc. ESANN99, M. 
Verleysen, Ed., Brussels, Belgium, 1999. 

[I61 V. Vapnik., Statistical Learning Theory. John Wiley & 
Sons, 1998. 

[I71 R. Herbrich., Learning Kernel Classfiers Theory and 
Algorithms. The MIT Press, England, 2002. 

[IS] P. Erasto., Support Vector Machines - Backgrounds and 
Practice, PhD Thesis, RolfNevanlinna Institute, 2001 

[I91 W. Mandenhall and T. Sincich., Statistics For 
Engineering and the Sciences, 4'h ed. Prentice Hall, 
1995. 

[20] Loh. W., Knowledge Discovery Central, Data Sets, 
<httu://www.KDCentraI.comi>, 2002. 

1211 C. Blake., and C. J. Merz., UCf Repository of Machine 
Learning Databases. Irvine, CA: University of 
California, 1999. 

[IO] C. Burges and D. Crisp. 

249 

Authorized licensed use limited to: CENTRAL QUEENSLAND UNIVERSITY. Downloaded on April 08,2010 at 06:32:47 UTC from IEEE Xplore.  Restrictions apply. 


