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Abstract 
 

Software development standards such as the UML 
provide complex modeling languages for specifying, 
visualizing, constructing, and documenting the artifacts of 
software systems [1]. Software tools support the 
production of these artifacts according to the model 
elements, relationships, well-formedness rules and 
semantics defined in the standards. Due to the 
complexities of both standards and software tools, it is 
difficult to establish the compliance of the software tools 
to the standards. It has been suggested that many existing 
tools that advertise standard compliance fail to lift up to 
their claims. The objective of this work is to propose a 
framework for developing systematic, disciplined, and 
quantifiable certification schemes to assess the 
compliance of these tools to standards and to diagnose 
the causes of non-compliance. 
 
1. Introduction 
 

The importance of standard compliance is well 
understood in the software engineering community as 
software systems must operate across platforms, 
environments, or physical machines and interoperate with 
other heterogeneous software systems. Software 
certification has value because it assures that the software 
systems will operate correctly as specified in the 
standards. Hence, there exist many certification services 
for software products. The Open Group, for example, has 
developed conformance test suites and provides 
certification services for software systems including 
UNIX, Linux, CORBA, LDAP, and WAP. The ADA 
Conformity Assessment Authority (ACAA) maintains the 
ADA conformity assessment test suite for ADA 
compilers. As for software tools, the only software tool 
certification program is the SSADM Tools Conformance 
Scheme [2] developed in 1993 by the central computer 
and telecommunication agency (CCTA). The scheme 
measures the extent to which software tools support the 

creation of software artifacts that conform to the SSADM 
standard. Today, there are much more complex software 
development standards imposing complicated structures 
and much more precise constraints than those of the 
SSADM. We argue that an approach that properly tackles 
the problem of certification with respect to complex 
software development standards is still missing. By 
systematically establishing this framework for developing 
software tool certification schemes, we will be able to 
control the quality of the certification, assure the 
correctness and completeness of the assessment over the 
usual ad hoc method. 

 
2. Related Works 
 

Specification-based testing is the practical approach to 
assess standard compliance. The compliance test suite 
generation can be considered as a branch of constraint 
satisfaction problem (CSP) in which the first-order 
predicate is given and processed to find models that 
satisfy it. For testing linked data structures, TestEra [3] 
uses the Alloy Analyzer [4] to search for the structures 
constructed from the specification that satisfy the formula. 
Korat [5] uses method preconditions written in Java 
Modeling Language (JML) to automatically generate all 
non-isomorphic test cases up to a bound on a given input 
size. As there are many possible ways for the models to 
violate the constraint specifications, a test suite must 
cover all of these possibilities to be considered as an 
adequate standardized test suite. Instead of starting from 
the formula and trying to find the models that 
satisfy/dissatisfy the formula, we start from the 
construction of all possible models, up to the input size 
guaranteed by the certificate, and classify these models 
into demonstrations and counterexamples using Binary 
Decision Diagram (BDD). BDD is a proven technology 
widely used in digital design, computer-aided verification 
of circuits, and automatic test pattern generation [6]. We 
use Crocopat [7], an implementation based on BDD, to 
manipulate and classify these test input models. 



3. Software Tool Certification Strategic Cube 
 

Software tools are complex software systems that can 
not be tested as monolithic structures. Software tools have 
various functions and each function has a specified 
standard specification to adhere to. For example, the user 
interface is built according to the concrete syntax and 
notation of a modeling language, while the repository is 
constructed as specified in the abstract syntax. These tools 
therefore require systematic testing strategies to ensure 
their compliance to the various aspects of the standard.   

For this, we introduce a holistic view of software tool 
certification as a strategic cube shown in figure 1. 
Amongst the important factors that must be considered in 
the certification of software tools are 1) the functional 
architecture of the software tools, 2) the approaches to 
certify the quality of software [8] including personnel 
accreditation, process certification and product quality 
assessment, and 3) perspective of the participants 
involving in the certification scheme including the tool 
vendors (first party), the tool users (second party) and the 
certification authorities (third party). The three-
dimensional cube reveals 63 certification schemes.  

 
Figure 1 Tool Certification Strategic Cube 

 
In this paper, we focus on the product certification of 

the object management tools (the repositories – where 
models are stored, retrieved and maintained) by third-
party certification authorities. Our test case generation 
technology would allow these third-party organizations, 
not necessary be the standard bodies themselves, to 
automatically generate the compliance test suites from the 
software standards. This availability of the test suites 
makes it possible to perform product certification directly, 
regardless of who has developed the product and how they 
have done it. 
 
4. Unified Modeling Language (UML), Object 
Constraint Language (OCL) and Software 
Modeling Tools 
 

One of the most important modeling standards today is 
the Unified Modeling Language (UML). The UML 

standard is very large and complex visual modeling 
language specifications. The new version of the UML 2.0 
specification consists of six separate large documents.  

Being a visual language, the UML is convenient for 
communicating design concepts and ideas among a small 
group of developers at a whiteboard [9]. For this purpose, 
only a small subset of UML is, in fact, needed. The whole 
set of the UML 2.1.1 specifications [10], including the 
UML infrastructure and superstructure, XML metadata 
interchange (XMI), Diagram Interchange and OCL, is 
intended for supporting the implementation of software 
tools and promoting the interoperability among the tools, 
particularly, among modeling tools and Model Driven 
Architecture (MDA) tools for model transformation and 
code generation. 

To establish tool interoperability and to allow the 
transformation of models, software tools have to 
rigorously comply with the UML standards. In essence, 
the UML standard is the description of the ways that 
software models can be constructed in UML. The UML 
metamodel defines the abstract syntax while the well-
formedness rules, written in OCL, formulate the static 
semantics. Putting them together allows the models built 
according to the UML specification to be verified and 
checked for their consistencies. The correctness and 
consistency of UML models with the UML standard are 
prerequisite for interchanging models from one tool to 
another tool, and for transforming these models from one 
language to another language in an automated, tool-
supported development environment. 

 
4.1 The UML metamodel 

 
UML is defined with the metamodeling approach using 

the Meta object facility (MOF) [11]. At the very least, a 
metamodel described by Essential MOF (EMOF) may 
consist of primitive data types, enumeration types, 
packages, model elements or classes, and structural 
relationships. The structural relationships are specified by 
the properties (that are typed elements with multiplicities) 
of the classes. Furthermore, a class may have operations 
that take parameters and may have super classes.  This can 
be described as: 

 
Definition 1 A metamodel M = (A, E, C, R) consists of a 
finite set A of data types Integer, Real, Boolean, and 
String, a finite set E of enumeration types, a finite set C of 
classes and a finite set R of a legal relationships that allow 
1) the connections from an instance of c in C to its 
attribute which may be an a in A or an e in E and 2) the 
connections from the instance c to c’ in C.   

 
A model can be represented as an attributed graph [12] 

in which the data types in the metamodel become data 



value nodes, and the classes become instance nodes. The 
edges of the graph are the links with respect to the 
structural relationships in the metamodel. Each edge is 
assigned with a mapping (s, t) where s is a source node 
(the owner of the attribute) and t is a target node (an 
attribute value or an owned attribute). 

 
Definition 2 A model m = (V, I, L) consists of a finite set 
V of data values, a finite set I of instances of the classes 
and a set L of links which are the instances of the legal 
relationships. The link l in L connects an instance i in I to 
a data value v in V or to an instance i2 in I.  

 
Definition 3 We say that a model m appropriate to M if V 
is in A, each instance i in I is an instance of class c in C 
and for each link l in L is an instance of a legal 
relationship r in R; therefore, when i is an instance of c in 
C and v is a data value of a in A and l(i, v), there exists 
r(c, a) in R. 

 
4.2 The OCL well-formedness rules 

 
A well-formedness rule is written in OCL [13]. OCL 

specifies formal constraints that restrict the construction 
of UML models. A well-formedness rule is a constraint 
over the metamodel that specifies the condition that 
models must satisfy to be consistent with their meta-
model. The semantic of this satisfaction condition, 
adapted from [14], is given below. 

  
Definition 4 A well-formedness rule W over the meta-
model M is a relation R(e1,…,ek) where e is in A or E. 
And if W and V are well-formedness rules, then so are 
~W, W or V, W and V, FAx W, and EXx W.  

 
Definition 5 The satisfaction of model m to a well-
formedness rule W is defined as 
if W = ~V then M |= W if ~(M |= V), 
if W = V1 or V2 then M |= W if M |= V1 or M |= V2, 
if W = V1 and V2 then M |= W if M |= V1 and M |= V2. 
For the quantifier FA (for all), M |= FAx W if for any e in 
A U E, Mx=e |= W. And we shall treat EX (there exists) as 
~(FAx ~W).       

 
4.3 Compliance tools 

 
Now we are in the position to define the term “software 

modeling tools” precisely. Most importantly, this 
definition must reflect the characteristics of the software 
tools for they must allow syntactic and semantic 
interoperability. The software tools may 1) support the 
construction of models by manually creating the models 
through graphical user interface (GUI), programming, 
importing the models stored in model interchange format 

such as the XMI or any other means and 2) provide 
verification functionality for checking whether a software 
model satisfies the well-formedness rules.  

 
Definition 6 Given a metamodel M and a set of well-
formedness rules Ws, a modeling tool S is a piece of 
software that supports the construction of any model m 
that appropriate to M and satisfy Ws. 

 
Definition 7 The satisfaction of model m to the well-
formedness rule W can be verified with the verification 
function V of the tool S. The function V returns TRUE 
when M |= W and returns FALSE otherwise. 

 
5. Compliance Requirements 
 

Compliance is nothing else but the satisfaction of 
software implementation to the standard specification. 
Compliance points are purely a breakdown of the entire 
specification into smaller facets. As we see below there 
are primarily four types of compliance points: 

 
5.1 Abstract syntax  

 
Model elements can be best defined as the components 

or the building blocks used to construct the models. As we 
know, there are a great number of model elements that 
may be used to construct a model but, of course, not all of 
them are required for every model. However, the 
compliance requirement for each tool is exactly the same 
in that all the model elements specified in the standard 
must be supported. We may assess the fulfillment of this 
compliance requirement by tracing the one-to-one 
correspondence between the model elements in the tool 
and those in the standard. 

 
Definition 8 Let Es be a set of metamodel elements 
specified in a standard and Et be a set of metamodel 
elements implemented in a compliance tool. Since the 
properties of each metamodel element in Es are known, we 
can match up every metamodel element in Es to a unique, 
identical metamodel element in Et. We say that there is a 
one-to-one correspondence between Es and Et if every 
element in Es has a corresponding element in Et.  

 
5.2 Well-formedness rules 

 
Each well-formedness rule is a compliance requirement 

in itself as each rule defines a constraint. To assess the 
compliance to each well-formedness rule, a set of test 
input that scrutinizes the behavior of the tools is required. 
We will further discuss how the test input is used to test 
the compliance of the modeling tools to the well-
formedness rules in section 6. 



 
5.3 Behavioral Semantics 

 
The problem of behavioral compliance of modeling 

languages such as those of state machines arises from the 
fact that there are many versions of the state machines. 
For example, there are classical state chart, Rhapsody 
state chart, and the UML state chart. The differences of 
these state machines are discussed in [15]. Some 
techniques for conformance testing based on state 
machine are developed and reported in [16]. The reviewer 
of this paper points out the significant issues of handling 
temporal constraints in tools and the hierarchical 
semantics of state machines. We believe that these issues 
are very important and will address the solutions to these 
problems in the next stage of the work.  

 
5.4 Model Interchange 

 
A significant step towards tool interoperability is to 

establish the compliance of software tools to the XML 
Model Interchange (XMI). This compliance would let tool 
users exchange models between tools correctly. The XMI 
Interoperability Testing Task Force (TTF), a subgroup of 
the OMG, has been engaged in development of the test 
suites that certify the compliance with respect to the XMI 
specification. This XMI compliance test suite for UML 
tools is very large and very complex. We have learnt that 
the syntactical problem of XMI/UML tool certification by 
itself is non-trivial and in fact very challenging.  
 
6. An Approach to Conformance Assessment 
 

Given a software standard for modeling software 
systems, and a software tool that supports the software 
modeling activities; we claim that, it is possible to 
systematically ascertain that the software tools really 
comply with the software development standards. To 
measure the degree of compliance, Emmerich et al. [17] 
suggest that  

“Standards generally define practices in terms of 
constraints that must hold for documents… The degree of 
standards conformance can be established by checking 
these documents against the constraints.” 

The implementation of this approach is the 
experimentation on the conditions of compliance, 
represented as the work products – the documents - that 
the software tools are suppose to create and maintain. A 
compliance test case for software modeling tools is a pair 
of a test input which is an actual software model and an 
expected output which is the preferred result determined 
by the constraints in the standard. For each compliance 
test case, the software tool imports the test input models, 
verifies the models and reports the verification result. This 

verification result generated from the software tool under 
test is compared with the preferred result and a pass/fail 
conclusion for the test case can be made. 

 
6.1 Compliance test suite 

 
The compliance test suite is composed of the test input 

models from two categories: those that satisfy the well- 
formedness rules (demonstrations) and those that violate 
the well-formedness rules (counterexamples).  

The demonstrations are required as null hypotheses 
that assess the state in which the tools do not reject the 
correct models. This is due to the fact that the well-
formedness rules might be implemented incorrectly in an 
over-constrained manner. As a result, a correct model may 
be rejected because the constraint is to strong. The 
counterexamples are required as alternative hypotheses 
that assess the state in which the tools do not detect the 
errors in the models and even accept incorrect models. 
This is of course due to the fact that the well-formedness 
rules might be implemented in an under-constrained 
manner. 

For example, consider an OCL well-formedness rule 
and its relevant metamodels in Figure 2. The rule enforces 
that an AssociationEnd must have a unique name within 
an Association.  

 
 
 
 
 
 
 
 
 

 
self.allConnections->forAll(r1,r2 | r1.name = r2.name 

implies r1 = r2) 
Figure 2 metamodel and well-formedness rule 

 
As a smallest possible example, for the models that are 

bound to one Association, two AssociationEnds, and two 
names, we can generate the demonstration (left) and 
counterexample (right) as shown in Figure 3 below. 
 

 
Figure 3 demonstration and counterexample 

 



7. Implementation 
 
7.1 The challenges 

 
Software modeling standards consist of many model 

elements and relationships. Add to them the well-
formedness rules constraining these complex structures; 
generating a correct and complete compliance test suites is 
not straightforward. Firstly, many structures may not be 
considered as test input models because they are not valid. 
For example, we randomly arrange a model with one 
Association, three AssociationEnds, and three names by 
taking every instance as a node in a digraph may generate 
249 models (over 562 billion), of which only 108 (4 * 3 * 
3 * 3) models are valid. Secondly, it is hard to generate a 
complete set of test inputs that cover all possible 
structures as the size of instances grows, because the size 
of the valid models grows exponentially, in some case, at 
the rate of O(nn). To generate valid test inputs that contain 
up to ten AssociationEnds and ten names will result in 
over 10 billion valid test input models. Finally, since well-
formedness rules expressed in first-order logic are 
undecidable, to know when to stop the test poses another 
challenge. This must take into consideration the size of 
instances in the models in the real world and the 
practicality of running a very large test suite on the 
software tools under test. 

 
7.2 Model Isomorphism 

 
Testing all models in the range typically involves 

testing many structurally equivalent models. For example, 
the model consisting three AssociationEnds in Figure 
4(D0) is equivalent to the model in Figure 4(D1) 
structurally (we call this model isomorphic). Both models 
have two AssociationEnds share the same name and the 
other AssociationEnd has a different name. As there is no 
advantage in testing more than one input from one 
structurally equivalence class, only one representative of 
the two models needs to be tested. 

 

 
          (D0)          (D1) 

Figure 4: two isomorphic UML models 
To prove that only one representative is required from 

each equivalence class, we first give a definition of 
structural equivalence, denoted by≅ . Then we will show 
that structural equivalence is equivalence relation and that 
the family of structural equivalence is a partition of all 

model structures. Therefore, a partition is a distinct model 
configuration. 
Definition 9 Let I0,…,Ie be the sets of instances of e meta 
elements and I = I0 ∪∪ ... Ie. A model D is the set M = 
M0 ∪∪ ... Me where M0⊆ I0 … Me⊆ Ie and a set of links 
L = L0 ∪∪ ... Lr such that, for each relationship Rl(Isource, 
Itarget), } M m &  M m | )m ,(m { = L targetjsourceijil ∈∈  
Definition 10 Let ℘(D) be the function mapping a model 
to a list of partition pairs {PP0,…,PPr} such that PPl  
represents a pair of integer partitions [Psource, Ptarget] where 
Psource = (p0, p1,…, pp) denotes an integer partition with p0  
p1  …  pp. For every partition pair PPl = [Psource, Ptarget], 
Psource is the list of the numbers of outward links from each 
instance mi in Msource and Ptarget are the list of the numbers 
of inward links to each instance mj in Mtarget respectively.  
Definition 11 Suppose that D0 and D1 are two models 
consisting of instances from I, D0≅ D1 iff ℘(D0) = 
℘(D1). 

For example, two UML models consist of the set I0 = 
{A0} for Association element, the set I1 = {E0, E1, E2} of 
AssociationEnd elements, and the set I2 = {N0, N1, N2} 
of String values. The two models D0 and D1 will be 
regarded as isomorphic iff all partition pairs of the models 
are identical. As show in figure 4, the two models are 
isomorphic: witness the partition pairs {[(3), (1,1,1)], 
[(1,1,1), (2,1,0)]} representing the model D0 on the left 
and the partition pairs {[(3), (1,1,1)], [(1,1,1), (2,1,0)]} 
representing the model D1 on the right respectively. 

 
Theorem Suppose M is the set of all model structures, 
and R is the model isomorphic relation, in other 
words }m' m |)',{( ≅×∈= MMmmR , then R is an 
equivalence relation. Thus, a family 

),(|, mcRMmCcMMF ccc ∈∀∈∃⊆=  

is by definition a partition of M. Therefore, C is the set of 
all distinct model configurations such that 

)',(|' mmRCmMm ∈∃∈∀ . 
Proof A relation is an equivalence relation if it is 
reflexive, symmetry, and transitive. Clearly every model is 
structurally equivalent to itself, ℘(m) = ℘(m), so R is 
reflexive. Also if model m is structurally equivalent to 
model n, the n is structurally equivalent to model m, 
℘(m) = ℘(n) ⇔  ℘(n) = ℘(m), so R is symmetry; 
and if l is structurally equivalent to m and m is structurally 
equivalent to n, then l is structurally equivalent to n, ℘(l) 
= ℘(m) & ℘(m) = ℘(n) ⇔  ℘(l) = ℘(n), so R is 
transitive. Therefore R is equivalence relation on M. we 
prove that a family on an equivalence relation is a 
partition, in other words, ∪ Fc=M and ∩ Fc=φ .  
Constructing C will give all configurations required in the 
test suite. 



7.3 Test Generation Tool 
 
The abstract test models are generated with the 

combinatorial algorithms that enumerate all test models 
within a given bound on the number of instances of the 
model elements. We have implemented the tool JULE that 
takes a metamodel and the number of instances for the test 
input models and generates abstract test models in Rigi 
Standard Format (RSF). These abstract test models and 
classified into demonstrations and counterexamples using 
Crocopat. To generate the compliance test suite, both 
demonstrations and counterexamples are concretized into 
XMI documents. We report two examples of the results on 
using JULE and Crocopat for generating the test suite. 
The first example continues our example on the 
uniqueness of the AssociationEnds. In practice, it is very 
rare to have an Association containing as much as ten 
AssociationEnds, but still the test cases are generated 
within a reasonable size. 
Example 1 The AssociationEnds must have a unique 
name within the Association. 
self.allConnections->forAll (r1, r2 | r1.name = r2.name implies r1=r2) 

#n #structures #test 
cases 

#demon- 
strations 

#counter 
examples 

2 4 2 1 1 
3 108 6 3 3 
4 2,816 15 7 8 
5 81,250 28 13 15 
6 2,659,392 55 24 31 
7 98,825,160 90 39 51 
8 414,392,352 154 64 90 
9 194,485,085,478 240 98 142 

10 10,130,000,000,000 378 150 228 
As for another example, the below OCL constraint on 

the Classifier may require a much larger number of test 
cases. We reduce its complexity by generating the 
instances of Operation and Method but not Reception. 
This can be done easily in JULE by setting the size of 
Reception to 0. For this rather complex rule (involving six 
model elements), the result also confirms that the test suite 
that covers all possible false can be generated within a 
reasonable size of the test input models.   
Example 2 No BehavioralFeature of the same kind may 
match the same signature in a Classifier 
self.feature->forAll(f, g | 
(((f.oclIsKindOf(Operation) and g.oclIsKindOf(Operation)) 
or(f.oclIsKindOf(Method) and g.oclIsKindOf(Method )) 
or(f.oclIsKindOf(Reception) and g.oclIsKindOf(Reception))) and 
f.oclAsType(BehavioralFeature).matchesSignature(g)) implies f = g) 
#n #structures #test 

cases 
#demon- 
strations 

#counter 
examples 

1 4 2 2 0 
2 256 12 8 4 
3 46,656 42 22 20 
4 16,777,216 120 56 64 
5 10,000,000,000 300 126 174 
6 8,916,100,448,256 696 275 421 
7 11,112,006,825,558,000 1470 549 921 

8. Conclusion and Future Works 
This paper presents the strategic framework for 

software tool certification together with a compliance test 
suite generation technique. In the next step, we will 
evaluate these framework and techniques on realistic 
software tools including the UCLUML repository which 
was automatically generated with the UCLMDA tool [18]. 
Also we will run the test suite on some open source and 
commercial tools including ArgoUML, Poseidon, 
Enterprise Architect, MagicDraw and AndroMDA. These 
tools are known to support the well-formedness 
verification of the UML models. From these case studies, 
the correctness of the assessment, and the validity of the 
certification will be evaluated. 
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