

The Certification of Software Tools with respect to Software Standards

Panuchart Bunyakiati, Anthony Finkelstein and David Rosenblum
Dept. of Computer Science, University College London

London W1CE 6BT
United Kingdom

{p.bunyakiati, a.finkelstein, d.rosenblum}@cs.ucl.ac.uk

Abstract

Software development standards such as the UML
provide complex modeling languages for specifying,
visualizing, constructing, and documenting the artifacts of
software systems [1]. Software tools support the
production of these artifacts according to the model
elements, relationships, well-formedness rules and
semantics defined in the standards. Due to the
complexities of both standards and software tools, it is
difficult to establish the compliance of the software tools
to the standards. It has been suggested that many existing
tools that advertise standard compliance fail to lift up to
their claims. The objective of this work is to propose a
framework for developing systematic, disciplined, and
quantifiable certification schemes to assess the
compliance of these tools to standards and to diagnose
the causes of non-compliance.

1. Introduction

The importance of standard compliance is well
understood in the software engineering community as
software systems must operate across platforms,
environments, or physical machines and interoperate with
other heterogeneous software systems. Software
certification has value because it assures that the software
systems will operate correctly as specified in the
standards. Hence, there exist many certification services
for software products. The Open Group, for example, has
developed conformance test suites and provides
certification services for software systems including
UNIX, Linux, CORBA, LDAP, and WAP. The ADA
Conformity Assessment Authority (ACAA) maintains the
ADA conformity assessment test suite for ADA
compilers. As for software tools, the only software tool
certification program is the SSADM Tools Conformance
Scheme [2] developed in 1993 by the central computer
and telecommunication agency (CCTA). The scheme
measures the extent to which software tools support the

creation of software artifacts that conform to the SSADM
standard. Today, there are much more complex software
development standards imposing complicated structures
and much more precise constraints than those of the
SSADM. We argue that an approach that properly tackles
the problem of certification with respect to complex
software development standards is still missing. By
systematically establishing this framework for developing
software tool certification schemes, we will be able to
control the quality of the certification, assure the
correctness and completeness of the assessment over the
usual ad hoc method.

2. Related Works

Specification-based testing is the practical approach to
assess standard compliance. The compliance test suite
generation can be considered as a branch of constraint
satisfaction problem (CSP) in which the first-order
predicate is given and processed to find models that
satisfy it. For testing linked data structures, TestEra [3]
uses the Alloy Analyzer [4] to search for the structures
constructed from the specification that satisfy the formula.
Korat [5] uses method preconditions written in Java
Modeling Language (JML) to automatically generate all
non-isomorphic test cases up to a bound on a given input
size. As there are many possible ways for the models to
violate the constraint specifications, a test suite must
cover all of these possibilities to be considered as an
adequate standardized test suite. Instead of starting from
the formula and trying to find the models that
satisfy/dissatisfy the formula, we start from the
construction of all possible models, up to the input size
guaranteed by the certificate, and classify these models
into demonstrations and counterexamples using Binary
Decision Diagram (BDD). BDD is a proven technology
widely used in digital design, computer-aided verification
of circuits, and automatic test pattern generation [6]. We
use Crocopat [7], an implementation based on BDD, to
manipulate and classify these test input models.

3. Software Tool Certification Strategic Cube

Software tools are complex software systems that can
not be tested as monolithic structures. Software tools have
various functions and each function has a specified
standard specification to adhere to. For example, the user
interface is built according to the concrete syntax and
notation of a modeling language, while the repository is
constructed as specified in the abstract syntax. These tools
therefore require systematic testing strategies to ensure
their compliance to the various aspects of the standard.

For this, we introduce a holistic view of software tool
certification as a strategic cube shown in figure 1.
Amongst the important factors that must be considered in
the certification of software tools are 1) the functional
architecture of the software tools, 2) the approaches to
certify the quality of software [8] including personnel
accreditation, process certification and product quality
assessment, and 3) perspective of the participants
involving in the certification scheme including the tool
vendors (first party), the tool users (second party) and the
certification authorities (third party). The three-
dimensional cube reveals 63 certification schemes.

Figure 1 Tool Certification Strategic Cube

In this paper, we focus on the product certification of

the object management tools (the repositories – where
models are stored, retrieved and maintained) by third-
party certification authorities. Our test case generation
technology would allow these third-party organizations,
not necessary be the standard bodies themselves, to
automatically generate the compliance test suites from the
software standards. This availability of the test suites
makes it possible to perform product certification directly,
regardless of who has developed the product and how they
have done it.

4. Unified Modeling Language (UML), Object
Constraint Language (OCL) and Software
Modeling Tools

One of the most important modeling standards today is
the Unified Modeling Language (UML). The UML

standard is very large and complex visual modeling
language specifications. The new version of the UML 2.0
specification consists of six separate large documents.

Being a visual language, the UML is convenient for
communicating design concepts and ideas among a small
group of developers at a whiteboard [9]. For this purpose,
only a small subset of UML is, in fact, needed. The whole
set of the UML 2.1.1 specifications [10], including the
UML infrastructure and superstructure, XML metadata
interchange (XMI), Diagram Interchange and OCL, is
intended for supporting the implementation of software
tools and promoting the interoperability among the tools,
particularly, among modeling tools and Model Driven
Architecture (MDA) tools for model transformation and
code generation.

To establish tool interoperability and to allow the
transformation of models, software tools have to
rigorously comply with the UML standards. In essence,
the UML standard is the description of the ways that
software models can be constructed in UML. The UML
metamodel defines the abstract syntax while the well-
formedness rules, written in OCL, formulate the static
semantics. Putting them together allows the models built
according to the UML specification to be verified and
checked for their consistencies. The correctness and
consistency of UML models with the UML standard are
prerequisite for interchanging models from one tool to
another tool, and for transforming these models from one
language to another language in an automated, tool-
supported development environment.

4.1 The UML metamodel

UML is defined with the metamodeling approach using

the Meta object facility (MOF) [11]. At the very least, a
metamodel described by Essential MOF (EMOF) may
consist of primitive data types, enumeration types,
packages, model elements or classes, and structural
relationships. The structural relationships are specified by
the properties (that are typed elements with multiplicities)
of the classes. Furthermore, a class may have operations
that take parameters and may have super classes. This can
be described as:

Definition 1 A metamodel M = (A, E, C, R) consists of a
finite set A of data types Integer, Real, Boolean, and
String, a finite set E of enumeration types, a finite set C of
classes and a finite set R of a legal relationships that allow
1) the connections from an instance of c in C to its
attribute which may be an a in A or an e in E and 2) the
connections from the instance c to c’ in C.

A model can be represented as an attributed graph [12]

in which the data types in the metamodel become data

value nodes, and the classes become instance nodes. The
edges of the graph are the links with respect to the
structural relationships in the metamodel. Each edge is
assigned with a mapping (s, t) where s is a source node
(the owner of the attribute) and t is a target node (an
attribute value or an owned attribute).

Definition 2 A model m = (V, I, L) consists of a finite set
V of data values, a finite set I of instances of the classes
and a set L of links which are the instances of the legal
relationships. The link l in L connects an instance i in I to
a data value v in V or to an instance i2 in I.

Definition 3 We say that a model m appropriate to M if V
is in A, each instance i in I is an instance of class c in C
and for each link l in L is an instance of a legal
relationship r in R; therefore, when i is an instance of c in
C and v is a data value of a in A and l(i, v), there exists
r(c, a) in R.

4.2 The OCL well-formedness rules

A well-formedness rule is written in OCL [13]. OCL

specifies formal constraints that restrict the construction
of UML models. A well-formedness rule is a constraint
over the metamodel that specifies the condition that
models must satisfy to be consistent with their meta-
model. The semantic of this satisfaction condition,
adapted from [14], is given below.

Definition 4 A well-formedness rule W over the meta-
model M is a relation R(e1,…,ek) where e is in A or E.
And if W and V are well-formedness rules, then so are
~W, W or V, W and V, FAx W, and EXx W.

Definition 5 The satisfaction of model m to a well-
formedness rule W is defined as
if W = ~V then M |= W if ~(M |= V),
if W = V1 or V2 then M |= W if M |= V1 or M |= V2,
if W = V1 and V2 then M |= W if M |= V1 and M |= V2.
For the quantifier FA (for all), M |= FAx W if for any e in
A U E, Mx=e |= W. And we shall treat EX (there exists) as
~(FAx ~W).

4.3 Compliance tools

Now we are in the position to define the term “software

modeling tools” precisely. Most importantly, this
definition must reflect the characteristics of the software
tools for they must allow syntactic and semantic
interoperability. The software tools may 1) support the
construction of models by manually creating the models
through graphical user interface (GUI), programming,
importing the models stored in model interchange format

such as the XMI or any other means and 2) provide
verification functionality for checking whether a software
model satisfies the well-formedness rules.

Definition 6 Given a metamodel M and a set of well-
formedness rules Ws, a modeling tool S is a piece of
software that supports the construction of any model m
that appropriate to M and satisfy Ws.

Definition 7 The satisfaction of model m to the well-
formedness rule W can be verified with the verification
function V of the tool S. The function V returns TRUE
when M |= W and returns FALSE otherwise.

5. Compliance Requirements

Compliance is nothing else but the satisfaction of
software implementation to the standard specification.
Compliance points are purely a breakdown of the entire
specification into smaller facets. As we see below there
are primarily four types of compliance points:

5.1 Abstract syntax

Model elements can be best defined as the components

or the building blocks used to construct the models. As we
know, there are a great number of model elements that
may be used to construct a model but, of course, not all of
them are required for every model. However, the
compliance requirement for each tool is exactly the same
in that all the model elements specified in the standard
must be supported. We may assess the fulfillment of this
compliance requirement by tracing the one-to-one
correspondence between the model elements in the tool
and those in the standard.

Definition 8 Let Es be a set of metamodel elements
specified in a standard and Et be a set of metamodel
elements implemented in a compliance tool. Since the
properties of each metamodel element in Es are known, we
can match up every metamodel element in Es to a unique,
identical metamodel element in Et. We say that there is a
one-to-one correspondence between Es and Et if every
element in Es has a corresponding element in Et.

5.2 Well-formedness rules

Each well-formedness rule is a compliance requirement

in itself as each rule defines a constraint. To assess the
compliance to each well-formedness rule, a set of test
input that scrutinizes the behavior of the tools is required.
We will further discuss how the test input is used to test
the compliance of the modeling tools to the well-
formedness rules in section 6.

5.3 Behavioral Semantics

The problem of behavioral compliance of modeling

languages such as those of state machines arises from the
fact that there are many versions of the state machines.
For example, there are classical state chart, Rhapsody
state chart, and the UML state chart. The differences of
these state machines are discussed in [15]. Some
techniques for conformance testing based on state
machine are developed and reported in [16]. The reviewer
of this paper points out the significant issues of handling
temporal constraints in tools and the hierarchical
semantics of state machines. We believe that these issues
are very important and will address the solutions to these
problems in the next stage of the work.

5.4 Model Interchange

A significant step towards tool interoperability is to

establish the compliance of software tools to the XML
Model Interchange (XMI). This compliance would let tool
users exchange models between tools correctly. The XMI
Interoperability Testing Task Force (TTF), a subgroup of
the OMG, has been engaged in development of the test
suites that certify the compliance with respect to the XMI
specification. This XMI compliance test suite for UML
tools is very large and very complex. We have learnt that
the syntactical problem of XMI/UML tool certification by
itself is non-trivial and in fact very challenging.

6. An Approach to Conformance Assessment

Given a software standard for modeling software
systems, and a software tool that supports the software
modeling activities; we claim that, it is possible to
systematically ascertain that the software tools really
comply with the software development standards. To
measure the degree of compliance, Emmerich et al. [17]
suggest that

“Standards generally define practices in terms of
constraints that must hold for documents… The degree of
standards conformance can be established by checking
these documents against the constraints.”

The implementation of this approach is the
experimentation on the conditions of compliance,
represented as the work products – the documents - that
the software tools are suppose to create and maintain. A
compliance test case for software modeling tools is a pair
of a test input which is an actual software model and an
expected output which is the preferred result determined
by the constraints in the standard. For each compliance
test case, the software tool imports the test input models,
verifies the models and reports the verification result. This

verification result generated from the software tool under
test is compared with the preferred result and a pass/fail
conclusion for the test case can be made.

6.1 Compliance test suite

The compliance test suite is composed of the test input

models from two categories: those that satisfy the well-
formedness rules (demonstrations) and those that violate
the well-formedness rules (counterexamples).

The demonstrations are required as null hypotheses
that assess the state in which the tools do not reject the
correct models. This is due to the fact that the well-
formedness rules might be implemented incorrectly in an
over-constrained manner. As a result, a correct model may
be rejected because the constraint is to strong. The
counterexamples are required as alternative hypotheses
that assess the state in which the tools do not detect the
errors in the models and even accept incorrect models.
This is of course due to the fact that the well-formedness
rules might be implemented in an under-constrained
manner.

For example, consider an OCL well-formedness rule
and its relevant metamodels in Figure 2. The rule enforces
that an AssociationEnd must have a unique name within
an Association.

self.allConnections->forAll(r1,r2 | r1.name = r2.name

implies r1 = r2)
Figure 2 metamodel and well-formedness rule

As a smallest possible example, for the models that are

bound to one Association, two AssociationEnds, and two
names, we can generate the demonstration (left) and
counterexample (right) as shown in Figure 3 below.

Figure 3 demonstration and counterexample

7. Implementation

7.1 The challenges

Software modeling standards consist of many model

elements and relationships. Add to them the well-
formedness rules constraining these complex structures;
generating a correct and complete compliance test suites is
not straightforward. Firstly, many structures may not be
considered as test input models because they are not valid.
For example, we randomly arrange a model with one
Association, three AssociationEnds, and three names by
taking every instance as a node in a digraph may generate
249 models (over 562 billion), of which only 108 (4 * 3 *
3 * 3) models are valid. Secondly, it is hard to generate a
complete set of test inputs that cover all possible
structures as the size of instances grows, because the size
of the valid models grows exponentially, in some case, at
the rate of O(nn). To generate valid test inputs that contain
up to ten AssociationEnds and ten names will result in
over 10 billion valid test input models. Finally, since well-
formedness rules expressed in first-order logic are
undecidable, to know when to stop the test poses another
challenge. This must take into consideration the size of
instances in the models in the real world and the
practicality of running a very large test suite on the
software tools under test.

7.2 Model Isomorphism

Testing all models in the range typically involves

testing many structurally equivalent models. For example,
the model consisting three AssociationEnds in Figure
4(D0) is equivalent to the model in Figure 4(D1)
structurally (we call this model isomorphic). Both models
have two AssociationEnds share the same name and the
other AssociationEnd has a different name. As there is no
advantage in testing more than one input from one
structurally equivalence class, only one representative of
the two models needs to be tested.

 (D0) (D1)

Figure 4: two isomorphic UML models
To prove that only one representative is required from

each equivalence class, we first give a definition of
structural equivalence, denoted by≅ . Then we will show
that structural equivalence is equivalence relation and that
the family of structural equivalence is a partition of all

model structures. Therefore, a partition is a distinct model
configuration.
Definition 9 Let I0,…,Ie be the sets of instances of e meta
elements and I = I0 ∪∪ ... Ie. A model D is the set M =
M0 ∪∪ ... Me where M0⊆ I0 … Me⊆ Ie and a set of links
L = L0 ∪∪ ... Lr such that, for each relationship Rl(Isource,
Itarget), } M m & M m |)m ,(m { = L targetjsourceijil ∈∈
Definition 10 Let ℘(D) be the function mapping a model
to a list of partition pairs {PP0,…,PPr} such that PPl
represents a pair of integer partitions [Psource, Ptarget] where
Psource = (p0, p1,…, pp) denotes an integer partition with p0 
p1  …  pp. For every partition pair PPl = [Psource, Ptarget],
Psource is the list of the numbers of outward links from each
instance mi in Msource and Ptarget are the list of the numbers
of inward links to each instance mj in Mtarget respectively.
Definition 11 Suppose that D0 and D1 are two models
consisting of instances from I, D0≅ D1 iff ℘(D0) =
℘(D1).

For example, two UML models consist of the set I0 =
{A0} for Association element, the set I1 = {E0, E1, E2} of
AssociationEnd elements, and the set I2 = {N0, N1, N2}
of String values. The two models D0 and D1 will be
regarded as isomorphic iff all partition pairs of the models
are identical. As show in figure 4, the two models are
isomorphic: witness the partition pairs {[(3), (1,1,1)],
[(1,1,1), (2,1,0)]} representing the model D0 on the left
and the partition pairs {[(3), (1,1,1)], [(1,1,1), (2,1,0)]}
representing the model D1 on the right respectively.

Theorem Suppose M is the set of all model structures,
and R is the model isomorphic relation, in other
words }m' m |)',{(≅×∈= MMmmR , then R is an
equivalence relation. Thus, a family

),(|, mcRMmCcMMF ccc ∈∀∈∃⊆=

is by definition a partition of M. Therefore, C is the set of
all distinct model configurations such that

)',(|' mmRCmMm ∈∃∈∀ .
Proof A relation is an equivalence relation if it is
reflexive, symmetry, and transitive. Clearly every model is
structurally equivalent to itself, ℘(m) = ℘(m), so R is
reflexive. Also if model m is structurally equivalent to
model n, the n is structurally equivalent to model m,
℘(m) = ℘(n) ⇔ ℘(n) = ℘(m), so R is symmetry;
and if l is structurally equivalent to m and m is structurally
equivalent to n, then l is structurally equivalent to n, ℘(l)
= ℘(m) & ℘(m) = ℘(n) ⇔ ℘(l) = ℘(n), so R is
transitive. Therefore R is equivalence relation on M. we
prove that a family on an equivalence relation is a
partition, in other words, ∪ Fc=M and ∩ Fc=φ .
Constructing C will give all configurations required in the
test suite.

7.3 Test Generation Tool

The abstract test models are generated with the

combinatorial algorithms that enumerate all test models
within a given bound on the number of instances of the
model elements. We have implemented the tool JULE that
takes a metamodel and the number of instances for the test
input models and generates abstract test models in Rigi
Standard Format (RSF). These abstract test models and
classified into demonstrations and counterexamples using
Crocopat. To generate the compliance test suite, both
demonstrations and counterexamples are concretized into
XMI documents. We report two examples of the results on
using JULE and Crocopat for generating the test suite.
The first example continues our example on the
uniqueness of the AssociationEnds. In practice, it is very
rare to have an Association containing as much as ten
AssociationEnds, but still the test cases are generated
within a reasonable size.
Example 1 The AssociationEnds must have a unique
name within the Association.
self.allConnections->forAll (r1, r2 | r1.name = r2.name implies r1=r2)

#n #structures #test
cases

#demon-
strations

#counter
examples

2 4 2 1 1
3 108 6 3 3
4 2,816 15 7 8
5 81,250 28 13 15
6 2,659,392 55 24 31
7 98,825,160 90 39 51
8 414,392,352 154 64 90
9 194,485,085,478 240 98 142

10 10,130,000,000,000 378 150 228
As for another example, the below OCL constraint on

the Classifier may require a much larger number of test
cases. We reduce its complexity by generating the
instances of Operation and Method but not Reception.
This can be done easily in JULE by setting the size of
Reception to 0. For this rather complex rule (involving six
model elements), the result also confirms that the test suite
that covers all possible false can be generated within a
reasonable size of the test input models.
Example 2 No BehavioralFeature of the same kind may
match the same signature in a Classifier
self.feature->forAll(f, g |
(((f.oclIsKindOf(Operation) and g.oclIsKindOf(Operation))
or(f.oclIsKindOf(Method) and g.oclIsKindOf(Method))
or(f.oclIsKindOf(Reception) and g.oclIsKindOf(Reception))) and
f.oclAsType(BehavioralFeature).matchesSignature(g)) implies f = g)
#n #structures #test

cases
#demon-
strations

#counter
examples

1 4 2 2 0
2 256 12 8 4
3 46,656 42 22 20
4 16,777,216 120 56 64
5 10,000,000,000 300 126 174
6 8,916,100,448,256 696 275 421
7 11,112,006,825,558,000 1470 549 921

8. Conclusion and Future Works
This paper presents the strategic framework for

software tool certification together with a compliance test
suite generation technique. In the next step, we will
evaluate these framework and techniques on realistic
software tools including the UCLUML repository which
was automatically generated with the UCLMDA tool [18].
Also we will run the test suite on some open source and
commercial tools including ArgoUML, Poseidon,
Enterprise Architect, MagicDraw and AndroMDA. These
tools are known to support the well-formedness
verification of the UML models. From these case studies,
the correctness of the assessment, and the validity of the
certification will be evaluated.
9. Acknowledgements

Panuchart Bunyakiati acknowledges the support from
the University of the Thai chamber of commerce, the
comments of Wolfgang Emmerich and his colleagues and
the reviewers of this paper who provide useful
suggestions.
10. References
[1] J. Rumbaugh, I. Jacobson, and G. Booch, The Unified Modeling
Language Reference Manual, Addison Wesley, 2004.
[2] CCTA, Testing criteria for the SSADM version 4 tools conformance
scheme, HMSO, London 1994.
[3] D. Marinov and S. Khurshid, “TestEra: A novel framework for
automated testing of Java programs”, Proc. 16th IEEE International
Conference on Automated Software Engineering (ASE), San Diego, CA,
November 2001.
[4] D. Jackson, Software Abstractions, MIT Press, MA, 2006.
[5] C. Boyapati, S. Khurshid and D. Marinov,“Korat: Automated testing
based on Java predicates”, Proc. the 2002 International Symposium on
Software Testing and Analysis (ISSTA), Rome, Italy, July 22--24, 2002.
[6] A.Miczo, Digital Logic Testing and Simulation 2nd edition, John
Wiley & Sons, New Jersey, 2003.
[7] D. Beyer,”Relational Programming with CrocoPat”, Proc. the 28th
international conference on Software engineering, pages 807-810, 2006.
[8] J. Voas,”The Software Quality Certification Triangle”, The Journal
of Defence Software Engineering, Nov 1998.
[9] R. C. Martin, UML for Java Programmers, Prentice Hall, 2003.
[10] OMG, Unified Modeling Language (UML) version 2.1.1,
http://www.omg.org/technology/documents/formal/uml.htm, 2007.
[11] OMG,The Meta Object Facility (MOF) 2.0 Core Specification,
Object Management Group, 2004.
[12] K. Hölscher, P. Ziemann and M. Gogolla,“On translating UML
models into graph transformation systems“, Journal of Visual Language
and Computing, 2006.
[13] OMG, The Object Constraint Language (OCL)
Specification version 2.0, Object Management Group, 2006.
[14] C. H. Papadimitriou, Computational Complexity, Addison Wesley,
1994.
[15] M. L. Crane and J. Dingel,”UML vs. Classical vs. Rhapsody
Statecharts: Not All Models are Created Equal”, Proc. MoDELS/UML,
Jamaica, October 2005.
[16] A. Gargantini, “Conformance Testing”, Model-Based Testing of
Reactive Systems, Springer, 2004.
[17] W. Emmerich, A. Finkelstein, S. Antonelli, S. Armitage, and R.
Stevens,“Managing standards compliance”, IEEE Transactions on
Software Engineering, vol. 25, no. 6, 1999.
[18] J. Skene and W. Emmerich,”Specifications, not Meta-Models”,
Proc. ICSE 2006.

