
OntoMatch: A Monotonically Improving Schema Matching System for
Autonomous Data Integration∗

Anupam Bhattacharjee Hasan Jamil
Department of Computer Science, Wayne State University, USA

anupam@wayne.edu, jamil@cs.wayne.edu

Abstract

Traditional schema matchers use a set of distinct simple
matchers and use a composition function to combine the
individual scores using an arbitrary order of matcher ap-
plication leading to non-intuitive scores, produce improper
matches, and wasteful and counterproductive computation,
especially when no consideration is given to the properties
of the individual matchers and the context of the applica-
tion. In this paper, we propose a new method for schema
matching in which wasteful computation is avoided by a
prudent, and objective selection and ordering of a subset of
useful matchers. This method thus has the potential to im-
prove the matching efficiency and accuracy of many popular
ontology generation engines. Such efficiency and quality
assurance are imperative in autonomous systems because
users rarely have a chance to validate the processing accu-
racy until the computation is complete. Experimental result
to support the claim that such an approach monotonically
improves the matching score at successive application of the
matchers is also provided.

1 Introduction

Increasing interest in autonomous data integration makes
it imperative that we develop accurate and scalable schema
matchers for large scale applications. Schema matchers that
rely on human intervention or user guidance do not perform
too badly in small scale applications where the number of
schemes are low. But applications that require matching a
large and different sets of schemes per user query, cannot
have the luxury of end user guidance. Application in ad
hoc or on-the-fly data integration require such approach to
schema matching. One such practical example is the re-
cently proposed language BioFlow [15] in which the user
view of the database is different from the real world view

∗Research supported in part by National Science Foundation grants
CNS 0521454 and IIS 0612203.

on the internet and the expectation is that the system will
be able to somehow map the user view into the real world
accurately. In this environment users are allowed to ask any
query using BioFlow’s SQL-like syntax using any web site
in an ad hoc manner and as such a fully autonomous schema
matching is not only prudent, its a necessity. To illustrate
the issue on a more intuitive ground, let us consider the fol-
lowing example shown in figures 1(a) and 1(b) extracted
from two popular flight search web sites.

(a) www.delta.com

(b) www.united.com

Figure 1. Flight Search Websites

To find a good fare from Detroit to New York, a user
must search both sites manually and integrate the two
schemes in his mind where he reasons that the terms Leave
and Departing are synonymous. Systems such as Expe-
dia.com or Kayak.com actually resolved such schema het-
erogeneity among a set of predetermined sites including
Delta and United to operate efficiently. In this approach,
the autonomy of both systems, say Expedia and Delta, are
lost as they cannot change without communicating the in-
tention to change to the other side or risk failure. The
downside is that, such systems and approach cannot accom-
modate composition of an arbitrary set of services or web
sites to respond to arbitrary end user queries. On-the-fly
or ad hoc integration systems require this ability to support
a platform where no such prefabricated schema matching
will be needed. But supporting such a flexible environ-
ment is by no means easy mostly because current schema
matchers are not equipped to handle such visions. For ex-
ample, instance-based matchers often rely on prior training
and thus, fail to support automatic schema mapping on-the-
fly where and abundance of prior knowledge about the do-
main of the schemas are not available [17, 21, 14, 12, 11].

Schema matchers usually employ a set of simple match-
ing algorithms such as synonym matching, abbreviation
matching, edit distance matching, and so on, and a score
composition function to combine the individual matching
scores. In most contemporary matchers it is assumed that
all matching algorithms are independent and the final score
can be computed by statically assigning a weight to each al-
gorithm to reflect its contribution such as in [6]. The draw-
back of this approach is that the static weighting may not be
appropriate for an application in hand, and the order of the
application of the matching algorithm does not guarantee
an overall improvement in the matching process as shown
in figure 3. In particular, such composition functions as-
sume that the weight assigned is absolute even if it brings
down the overall score by failing to see that application of a
matching algorithm may be incorrect in the first place. For
example, let us consider the two terms Leave and Depart-
ing we have discussed earlier. For these two terms, editDis-
tance(Leave,Departing) ≤ synonym(Leave,Departing) will
always hold. But systems such as [20, 2, 3, 9] apply match-
ing algorithms without any implicit order, and do not take
the position that application of edit distance matching is not
warranted at all when a synonym matcher succeeds. Not
only that it is inappropriate, we need not spend the time to
blindly compute edit distance only to ignore it at the end
by adjusting the weight to zero and thereby incur wasteful
computational cost without necessarily leading to any im-
provement in the matching quality [10].

Systems such as [1, 16, 13] on the other hand employ an
ordering relation among the matching algorithms but they
do so statically. Matching that survived the previous match

threshold move on to the next algorithm for matching. Go-
ing back to our example, the ordering relationship editDis-
tance ¹ synonym1 will not produce any match for syn-
onym(editDistance(Leave,Departing)) if the match thresh-
old is set too high to maintain accuracy, whereas comput-
ing editDistance(synonym(Leave,Departing)) based on the
reverse ordering synonym ¹ editDistance is likely to pro-
duce the correct match. Clearly, automatic ordering of the
individual matchers for online matching remains as a huge
challenge as observed in research such as [4, 5, 8, 7]. Our
goal is to avoid the drawbacks of both approaches discussed
above and device a fully dynamic matcher selection func-
tion that always employs the right set of matchers in an in-
tuitive order based on an objective function. We believe
that this approach will eliminate wasteful computation, er-
ratic matching behavior and improve match quality mono-
tonically. Based on these two principles, we developed a
schema matching system, called the OntoMatch, by devel-
oping methods to characterize the matching algorithms and
using those characterizations to design an objective function
for the selection and ordering of the simple matchers.

2 Components of OntoMatch

Before we describe OntoMatch, we formally define a
few concepts we use later in this paper.

Ontology/Scheme An ontology O (or equivalently a
scheme) is defined as a pair (T,R) where T is a non-empty
set of terms {t1, t2, . . . , tm}, and R⊆ T ×T ×χ is a possibly
empty set of relationships of the form {(ti, t j,c)|i 6= j and
i, j ≤ m} among the terms ti, t j ∈ T , and χ = {one-to-one,
one-to-many, many-to-one, many-to-many}.

For example, two ontologies, or schemes, O1 and O2 can
be described as follows:

O1= ({student, major, student no.}, {(student, major,
many-to-one), (student, student no., one-to-one), (ma-
jor, student no., many-to-many)})
O2 = ({std, subject, studentID}, {(std, subject, many-
to-one), (std, studentID, one-to-one), (subject, studen-
tID, many-to-many)})

Term Similarity Let t1 and t2 be two terms in T , and ψ
be any similarity function2. Any two terms t1, t2 are said
to be similar if ψ(t1, t2) < τ for a given threshold τ , where
ψ(t1, t2) ∈ [0,1], and ψ(t1, t2) = 0 and ψ(t1, t2) = 1 respec-
tively mean complete dissimilarity and identity.

We are now ready to formally define schema mapping in
terms of term similarity described above.

1Here editDistance ¹ synonym means edit distance matching must be
employed before synonym matching.

2Such as string edit distance, thesaurus at WordNet [19], etc., or a com-
bination of such functions.

2

Schema Mapping Let O =
⋃

i Oi = (Ti,Ri) be the set of all
ontologies, Ω be a family of matching functions µ , τ be a
similarity threshold, and R be the set of all real numbers
between τ and 1. Then schema mapping between two on-
tologies O1 and O2 is defined as a function Ψ : O×O Ã [Θ :
T ×T 7→ [Φ : 2Ω Ã R]], where [A Ã B] means a set of par-
tial functions and [A 7→ B] means a set of total functions. In
other words, for any two ontologies O1 and O2 in O, and two
terms 11 and t2 in T , Ψ(O1,O2)Θ(t1, t2)Φ({µ1, . . . ,µk}) =
r such that r ∈R. Furthermore, we require that r ≥ τ cho-
sen to be the highest possible value for a given pair of terms
(t1, t2), and that Θ only choose unique pairs. This means
that once a pair of terms is matched with the highest pos-
sible similarity, they both will be excluded from other at-
tempts. Our goal in this paper is to propose a set of func-
tions µi, a function Θ and the overall matching function Ψ .
Notice that Ψ and Φ are partial functions and are not re-
quired to map all elements, but once Ψ makes a choice, Θ
is required to find a set of matching functions µ to match
the terms. As an example, the moment (student, std) is se-
lected as the highest match pair, matching (student, subject)
is no longer possible.

As we discussed in section 1, it is not possible for any
matcher to have correct mappings all the time. Our ap-
proach, in OntoMatch, is to leverage the strengths of ex-
isting matchers in a way that allows for higher quality map-
ping. In this paper, we identify five conventional match-
ers and show how these matchers can be characterized and
their characteristics used to induce an ordering among them
based on the target term pairs. The five simple matchers we
consider in this paper are described briefly below:

Edit Distance Matcher (EDM): Schema, table, and at-
tribute names carry information about their semantic mean-
ings and thus play a vital role in ontology mappings. Most
matchers start with this heuristic as a first step. As an ex-
ample, the terms ”EmployeeName” and ”Empl.Name” may
be treated as semantically synonymous as the edit distance
between them is significantly lower. In this paper, we adopt
the traditional definition of edit distance where it is the num-
ber of corrections needed to make two terms look identical.
The EDM of OntoMatch uses case normalization, diacritic
suppression, blank normalization, link stripping, digit sup-
pression, punctuation elimination etc. Formally, for two
terms t1, t2, δ (t1, t2) = [0,1] and the similarity ψ(t1, t2) is
given by 1−δ (t1, t2).

Abbreviation Matcher (AM): The Abbreviation matcher
equates two terms by abbreviating them. Abbrevi-
ations are often used to represent items in real life
as a shorthand. Given two terms t1, t2, AM returns
1 if t1 = abbreviation(t2) or t2 = abbreviation(t1) or
abbreviation(t1) = abbreviation(t2), otherwise it returns 0.

Synonym Matcher (SynM): Given two terms t1, t2, SynM
returns 1 if the terms are synonymous to each other, other-
wise it returns 0.

Constraint Matcher (CM): Given two terms t1, t2, CM
checks whether the terms are related to each other by some
constraints. For example, both terms may be primary keys
or they may have identical or compatible types. Compatible
types are (integer, number), (real, float), (string, varchar)
and so on. We define a simple distance matrix for CM in
the following way:

dist(t1, t2) =





1 if both terms are primary keys
or both have same types

0.5 if one is primary key and the
is foreign key or vice versa
or both have compatible types
t2xis a foreign key or vice versa

0.25 if both are foreign keys
0 otherwise

Structure Matcher (SM): For nested structures, SM mea-
sures the similarity between the subtrees rooted at the nodes
corresponding to the terms. The more the two subtrees look
alike, the nearer the two terms are. The similarity of two
subtrees are defined by a combination of the cardinality re-
lationships, type homogeneity, and other constraints, and
computed recursively.

3 Characterization of the Term Matchers

The goal here is to determine, given two terms t1 and t2,
how likely it is that a given matcher µ is suitable for match
evaluation. In particular, the question is how do we deter-
mine the goodness of a candidate matcher µ for terms t1
and t2 when a set of matchers {µ1, . . .µk} has already been
chosen, and if it is appropriate, in which order it should be
applied along with the selected set of matchers to produce a
monotonically improving match?

In EDM, an ‘edit’ operation can be performed by either
inserting/deleting a character or replacing the character with
another character. For example, we can transform the term
‘flt’ into ‘flight’ by inserting three characters ‘igh’. Obvi-
ously there are several ways to transform a term into another
term. EDM accomplishes this by a set of edit operations,
such that the total cost of editing is minimum. A sample
cost matrix is: -1 for each match, +1 for a replace operaion,
and +2 for any insert/delete operation. So, the edit distance
between ‘flt’ and ‘flight’ is 6-3=3. We divide the distance
by the maximum of the lengths of the terms to normalize
it into [0, 1] range. Now, as we can see, the greater the
length difference between the two terms, the higher the cost
to convert the terms, and so, the less similar they are.

3

The edit distance between two longer terms and between
two shorter terms could be the same (e.g., ‘student’ vs.
‘studnt’ and ‘co’ vs. ‘com’). Two non equivalent smaller
terms usually have a very low edit distance and thus, have
higher chance of being converted into the other. This hap-
pens frequently when both the terms are expressed in an ab-
breviated form. On the other hand, two semantically equiva-
lent lengthy terms usually have a low edit distance. So, if we
assume a fixed threshold for the cases not using the EDM,
the chances of false positives increases. In other words, the
suitability of EDM depends on at least two properties: the
length of the terms, and the length difference between the
terms. The question then arises, what should be the best
way identify when a term is lengthy. It turns that it is a rel-
ative matter and depends upon the schemas at hand. He we
define a term to be lengthy if its length is longer than the
average length of the terms in associated scheme. The same
rule applies for SynM matchers.

p1 : if l1 ≥ avgl s1 = 1 else s1 = 0
p2 : if l2 ≥ avgl s2 = 1 else s2 = 0
p3 : s3 = |l1− l2|/max(l1, l2)
p4 : s4 = 1− s3
p5 : s5 = 1− (|card1− card2|/max(card1,card2))
p6 : s6 = dist(t1, t2) from constraint matcher

Table 1. Properties used to select matchers

Since abbreviations make terms shorter, we can make an
educated guess that if both terms are lengthy, the chance that
one of them is an abbreviation of the other is least likely, and
consequently least chance of matching occurs when they are
both short. The best result is obtained when one of the terms
is lengthy and the other shorter. In the same way, structure
matcher considers the cardinality, type homogeneity, and
keys constraints of the terms. So, when two terms have dif-
ferent cardinalities, key constraints and incompatible types,
SM is preferentially deselected. Again we often use higher
threshold value for the SM. Thus, even if two terms have
the same key constraint, SM may not be selected. In such
cases, CM tries to match the terms. The intuition is that, the
matching quality of the two terms is high in case that they
match as well as both of them are primary or foreign keys
of their own ontologies. These observations are the basis
for our six properties we list in the table 1 using which we
develop an objective function to select or deselect a matcher
in our algorithm we present in the next section.

4 The OntoMatch Algorithm

The overall ontology mapping process can be divided
into three distinct steps:

1. Select matchers with highest suitability scores,

2. Compute term similarity using the selected matchers,
and

3. Apply stable marriage algorithm to obtain a final map-
ping based on the matching scores, threshold, and the
distance matrix.

For a pair of ontologies, we take each of the terms from
the first ontology and match it against every term in the
other ontology. Thus, after running the algorithm we get
a term × term distance matrix. Now, given a set of match-
ers Ω = {µ1,µ2, . . . ,µn}, for every pair of terms (t1, t2) On-
toMatch first selects Ω ′ ⊆Ω and then applies matchers suc-
cessively from Ω ′ to find a match. A matcher µ is selected
based on a subset of properties from P = {p1, p2, . . . , pk},
where k is the number of properties. Some of the properties
depend on term lengths while the rest depends on the dis-
tance functions as used in constraint matcher. Table 1 shows
the set of properties P, where l1, l2 are lengths of t1 and t2;
avgl is the average length of all terms, and card1,card2 are
cardinalities of two schemas. We use a different set of prop-
erties to select different matchers. For EDM and SynM we
use the property set PEDM = PSynM = {p1, p2, p4}, for AM
we use PAM = {p3}, for SM we use PSM = {p5, p6} and for
CM we use PCM = {p6}.

If we consider PEDM it says that, if both terms are longer,
EDM will get higher score to be selected; if one term is
longer and the other is shorter the score will be less but
probably high enough to apply EDM; and if both terms are
short the score will be lower not to consider EDM. Similarly
for the abbreviation matcher the length difference plays a
vital role in preferentially selecting it. In the same way, if
the terms are keys of the schemas, SM gets higher priority.
We use GORDIAN [18] to automatically identify the keys
of the schemas if they are not given in the schema definition.

Algorithm 1 Algorithm to select the best applicable
matcher
Require: M , where M⊆M, bestMatcher = /0, bestScore = 0

Returns: The most suitable matcher
1: for each matcher m ∈M do
2: score = 0 ;
3: for each property pi ∈ Pm do
4: score = score+ si ;
5: end for
6: if score≥ τm and score > bestScore then
7: bestMatcher = m, bestScore = score;
8: end if
9: end for

10: return bestMatcher ;

Once the best applicable matcher has been identified,
the next step is to apply it to the terms to possibly get
a new pair of transformed terms. For example, the ab-
breviation matcher transforms a term to its abbreviations,
e.g. (‘mobilenumber’, ‘cellnumber’) becomes (‘mobnum’,

4

‘cellnum’). Similarly, the synonym matcher transforms a
term to its synonyms, e.g., (‘mobilenum’, ‘cellnumber’) be-
comes (‘cellnum’, ‘cellnumber’). EDM, SM, and CM have
no transformations on the terms. We continue in this way
unless we get a distance which is less than the threshold for
overall matching. Thus, we get a two dimensional matrix
|O1×O2| denoting the match distances between the terms
of the two ontologies. Algorithm 2 finds the distance be-
tween the terms t1, t2.

Algorithm 2 Algorithm to calculate the distance matrix
Require: a pair of terms (t1, t2), and a set of simple matchers M

1: score = 0 ;
2: matcher m =get best matchers from M by algorithm 1;
3: terminate the algorithm and return score if infinite loop oc-

curs;
4: get distance dist by applying matcher m to t1, t2;
5: score = (score+1−dist)/2;
6: if score≤ τ then
7: return score ;
8: end if
9: if m = SynM or m = AM then

10: transform (t1, t2) to (t ′1, t
′
2) by applying m;

11: else
12: (t ′1, t

′
2) = (t1, t2)

13: end if
14: call this algorithm with t ′1, t

′
2,M ;

15: return score ;

One we have such a metric at hand, the next task is
to select a list of matching as the final output of the On-
toMatch algorithm. Of several available greedy approaches
for such a selection from a distance matrix, we choose the
stable marriage algorithm. Given an |m× n| distance ma-
trix (m ≤ n) the algorithm can select m matched elements
out of n elements such that the least distant pair of ele-
ments is selected first and removed from the matrix. The
correspondence with distance ≤ τ is then filtered out from
m correspondences. These are basically the final output of
the OntoMatch algorithm.

5 Experimental Results

We demonstrate the effectiveness and strengths of On-
toMatch in three ways. First, OntoMatch performs better on
the synthetic data than other popular matchers. Second, ex-
perimental results indicating that OntoMatch provides the
best ordering of the subset of the simple matchers among
all possible orderings and subset selections of the matchers.
Lastly, we show that OntoMatch improves the quality of
matching monotonically while other matchers behave un-
predictably and often significantly poorly than OntoMatch.

We evaluate the performance of the matcher against the
synthetic data available in the UIUC web integration repos-

itory. Of several data sets available to download from the
repository, we chose the BAMM extracted query schemas
and Tel-8 schemas. The BAMM section contains four
types of schemas: automobile, books, movies, and music.
From each category, we selected a schema and compared
it against all other schemas of the same category. From
the available existing composite matchers, we selected CU-
PID and COMA. From the available simple matchers of
COMA library, we selected the same set of simple match-
ers OntoMatch uses. We use the area under precision recall
curve (AUPRC) as a performance measure. As can be seen
from Figure 2, OntoMatch shows greater precision and re-
call than CUPID and COMA.

Figure 2. Precision Recall Curve

To establish our second claim, we compare the order-
ing and matcher selection of OntoMatch against all possi-
ble orderings and subset selections of the five simple match-
ers. There are 324 such possible compositions (5P1 +5 P2 +5
P3 +5 P4 +5 P5−1). We consider all the combinations on the
synthetic data, select the best scorer composition for each
matching (we call it random matcher), and finally compare
it with OntoMatch using AUPRC measure. Figure 2 shows
the performance of OntoMatch over the random matcher.
As expected, the ordering provided by OntoMatch is clearly
better than all other possible combinations.

Finally, to show the high quality matching performance
of OntoMatch, we compare the matching scores generated
by the four matchers after successive application of the sim-
ple matchers. For the sake of simplicity and brevity, we only
show the result of the music domain. In this category, On-
toMatch performs substantially better than the other match-
ers. Figure 3 shows the average score of the total matches
after every successive application of the simple matchers.
After applying every simple matcher, the scores vary un-
predictably in the case of the three other matchers, whereas

5

Figure 3. Match Quality Comparison

in OntoMatch, it is always monotonic improvement of pre-
cision and recall.

6 Summary and Future Research

In this paper, we presented a new approach toward the
ordering of a set of matchers for higher quality automatic
ontology matching. Our approach was based on the claim
that a fixed ordering of matchers lead to poor match quality.
The approach is not instance or application dependent and
does not require any prior training making it suitable for
ad hoc data integration applications. We have also demon-
strated that an objective function can be used to dynami-
cally select a set of matchers and establish their match or-
dering to guarantee monotonic improvement of the match
quality. Thus OntoMatch avoids wasteful computation and
improves overall efficiency as shown in the experimental
results. Our results also indicate that our approach was bet-
ter than the leading contemporary matchers. Moreover, the
add-on property of this technique makes it flexible and ex-
tensible to use any number of matchers for better matching
prospects. We view our present work as a first step towards
the development of a robust dynamic schema matching sys-
tem. Hence our plan for future work includes the formu-
lation of a better objective function and development of a
theoretical foundation for matcher selection that does not
depend upon a static enumeration of the matcher property.
We also plan to develop a system where the actual proper-
ties of matchers can be used to judge their suitability.

References

[1] A. Anaby-Tavor, A. Gal, and A. Trombetta. Evaluating
matching algorithms: the monotonicity principle. IJCAI
Workshop on Information Integration on the Web, pages 47–
52, 2003.

[2] D. Aumueller, H. H. Do, S. Massmann, and E. Rahm.
Schema and ontology matching with coma++. SIGMOD
Conference, pages 906–908, 2005.

[3] M. Benerecetti, P. Bouquet, and S. Zanobini. Soundness of
schema matching methods. Second European Semantic Web
Conference, pages 211–225, 2005.

[4] P. A. Bernstein, S. Melnik, and J. E. Churchill. Incremental
schema matching. VLDB, pages 1167–1170, 2006.

[5] P. Bohannon, E. Elnahrawy, W. Fan, and M. Flaster. Putting
context into schema matching. VLDB, September.

[6] H. Do and E. Rahm. Coma - a system for flexible combina-
tion of schema matching approaches. VLDB, 2002.

[7] A. Doan, P. Domingos, and A. Y. Halevy. Reconciling
schemas of disparate data sources: A machine-learning ap-
proach. SIGMOD Conference, 2001.

[8] A. Doan, P. Domingos, and A. Y. Levy. Learning source
description for data integration. WebDB, pages 81–86, 2000.

[9] D. Engmann and S. Maßmann. Instance matching with
coma++. pages 28–37, 2007.

[10] A. Gal. On the cardinality of schema matching. In OTM
Workshops, pages 947–956, 2005.

[11] A. Gal. Why is schema matching tough and what can we do
about it? SIGMOD Record, 35(4):2–5, 2006.

[12] A. Gal, G. A. Modica, H. M. Jamil, and A. Eyal. Automatic
ontology matching using application semantics. AI Maga-
zine, 26(1):21–32, 2005.

[13] G. Gal A., Modica and H. Jamil. Improving web
search with automatic ontology matching. Available at
http://citeseer.ist.psu.edu/558376.html, 2003.

[14] A. Heß. An iterative algorithm for ontology mapping capable
of using training data. European Semantic Web Conference,
pages 19–33, June 2006.

[15] H. Jamil and B. El-Hajj-Diab. BioFlow: A web-based declar-
ative workflow language for Life Sciences. In 2nd IEEE
Workshop on Scientific Workflows, pages 453–460. IEEE
Computer Society, 2008.

[16] J. Madhavan, P. A. Bernstein, and E. Rahm. Generic schema
matching with cupid. VLDB, pages 49–58, 2001.

[17] N. F. Noy. Semantic integration: a survey of ontology-based
approaches. SIGMOD Rec., 33(4):65–70, December 2004.

[18] Y. Sismanis, P. Brown, P. J. Haas, and B. Reinwald. Gordian:
efficient and scalable discovery of composite keys. In VLDB,
pages 691–702, 2006.

[19] M. M. Stark and R. F. Riesenfeld. Wordnet: An electronic
lexical database. In Eurographics Workshop on Rendering,
1998.

[20] A. Thor, T. Kirsten, and E. Rahm. Instance-based matching
of hierarchical ontologies. BTW, 103:436–448, 2007.

[21] F. van Harmelen. Ontology mapping: A way out of the med-
ical tower of babel? 10th Conference on Artificial Intelli-
gence in Medicine, pages 3–6, July 2005.

6

