
Geometric and Thematic Integration of Spatial Data into Maps

Mark McKenney
Department of Computer Science,

Texas State University
mckenney@txstate.edu

Abstract

The map construction problem (MCP) is defined as a
spatial data integration problem relating to the integration
of region data into map data. Although a purely geomet-
ric integration of regions into a map is known and is ef-
ficient, algorithms preserving thematic data of regions are
much more difficult. A naive approach to the MCP runs in
O((nm lg nm)2 + k) time for m regions composed withn
line segments on average withk line segment intersections.
A newO((n+k)(lg n+m+lgm2)) algorithm is presented
to solve the MCP. The algorithm has been implemented and
experiments show that it is significantly faster than the naive
approach.

Keywords: Geographic information systems, algorithms,
data management, spatial data structures.

1. Introduction

The traditional basic units of spatial representation are
the point, line, and region. Points represent collections of
points in space, lines are used to represent one dimensional
features and networks, such as roads and rivers, and re-
gions represent areas, such as states or countries. These spa-
tial primitives form the foundation of spatial storage tech-
niques; however, spatial visualization typically occurs in the
form of maps. Maps are a familiar concept that incorpo-
rate spatial, thematic, and even temporal data into an intu-
itive representation that inherently manages large amounts
of data in a visual form: for example, adjacency of regions,
connectivity of road networks, and the relationship between
thematic data and spatial and geographical phenomena are
easily identified in maps. Despite the utility of maps, maps
are represented, stored, and managed as collections of their
component points, lines, and regions in spatial systems. For
example, a map of the United States may show the fifty
states as a single map, but in current storage approaches,
fifty separate regions representing the states will be stored,

not a single map. Therefore, the information inherent in
a map is not represented and must be explicitly computed
from a collection of spatial primitives.

The use of maps as primarily a visualization tool in spa-
tial systems leads to two problems: (i) maps are difficult to
reuse in forming new maps or in computing operations over
maps because they are not a data item in themselves, but a
visualization of many separate data items, and (ii) informa-
tion that is naturally encoded into maps, such as adjacency
of items, must be computed on demand because no relation-
ships are maintained among the separate constituents of the
map since they are independent data items. We propose a
new concept of maps in spatial systems in which maps are
individual data items, not conglomerates of separate data
items. This new concept of maps provides three benefits:
(i) visual information and spatial relationships inherentto
map structure are automatically maintained, (ii) map reuse
is facilitated because operations to manipulate, extract in-
formation from, and combine maps as individual data items
are well documented [9, 10, 3], and (iii) algorithms for maps
can be expressed over single map data items instead of col-
lections of spatial primitives, which allows for much more
efficient algorithm implementations enabling map manage-
ment on a large scale. However, the creation of map data
from region data is problematic.

Themap construction problem(MCP) is the problem of
creating a single map data item from a collection of indi-
vidual regions. The MCP is essentially a spatial integra-
tion problem in which separate spatial components and their
associated thematic information must be preserved in the
context of a more complex data item representing an entire
map. In this paper, we consider maps that contain only re-
gion structures, leaving point and line structures to future
work. Given a collection ofm regions, a mechanism is re-
quired to construct a single data item that represents the map
defined by the collection of regions. From a spatial and ge-
ometric perspective, mechanisms exist to combine separate
region items into a single partition of space [1]; however,
maintaining the associated thematic data with portions of
regions that overlap in a map is not addressed. Currently, a



1

2

1

2

1,2

Figure 1. Two labeled regions, and the map
formed when they are overlaid.

map must be computed incrementally by repeatedly adding
a single region to a growing map. Form input regions, this
results inO((mn lg mn)2 + k) complexity, wheren indi-
cates the average size of a region in terms of its representa-
tion andk is the number of intersections among boundary
line segments. We propose a new integration mechanism
that can achieve a map from a collection ofm regions in
O((n + k)(lg n +m + lg m2)) time. An implementation of
the two techniques confirms our mechanism is significantly
faster.

2 Preliminaries

The traditional spatial data type of complex regions [8]
describes a region as a collection offacessuch that faces
must be disjoint or meet at a finite set of points. A face can
contain zero or moreholes, describing area that is not part
of a face, but surrounded by it. For example, Italy contains
multiple faces, its mainland and islands, and a hole that does
not belong to Italy where Vatican City lies. From an imple-
mentation perspective, regions are typically representedby
a set of straight line segments indicating the boundary of the
region (Figure 1).

In this paper, we refer to maps as defined in the model
of spatial partitions [7, 3]. We choose this model because
it is mature, and a full algebra is defined around it, includ-
ing operations and predicates. In short, a spatial partition
defines a collection of regions such that regions either meet
along boundaries, or are pairwise disjoint. Each region is
assigned a uniquelabel, which models thematic informa-
tion. Regions are not allowed to overlap. If two regionsr

ands do overlap, their intersection is computed and three
regions are actually inserted into the map, the intersection
of r ands, and the differencesr − s ands− r. The label of
the intersecting portions of the regions will contain the la-
bels of both regions; thus, threeregion primitives, each with
unique labels, represent the original two regions. Figure 1
depicts and example.

The combination of the geometric portions of regions in
2-dimensional space into a map is achieved through line
segment intersection algorithms. In this paper, we em-
ploy a version of theplane sweep algorithmfor comput-

ing overlays of regions and maps [1, 5]. Given two in-
put regions, their overlay consists of both regions overlaid
on each other such that boundary line segments intersect
only at end points. The plane sweep algorithm proceeds by
sweeping an imaginary line over a pair of regions or maps,
R andW . Each time the line encounters a new line seg-
ment on the boundary of one of the input geometries, that
segment is added to a list of segments actively being consid-
ered, known as theactive list. Each time the line moves past
a segment, that segment is removed from the active list. The
active list stores the line segments in the order in which they
intersect the sweep line; thus, if the sweep line is traveling
in thex direction of a euclidean plane, the segments in the
active list are sorted based on they value of their intersec-
tion point with the imaginary sweep line. Because segments
in the active list are sorted, the segments in the active listad-
jacent to a segments from regionR that is newly inserted
into the active list contains the information necessary to de-
termine whethers lies on the interior, boundary, or exterior
of W . This knowledge is deduced because each line seg-
ment carries two identifiers, one indicating the region that
lies above the segment, and the other indicating the region
that lies below the segment. If no region lies above or below
a segment, then a default label indicating the exterior of the
region is assigned. The plane sweep algorithmprocesses
one segment in each iteration of the algorithm. Processing
a segment involves discovering if it intersects any other line
segments, adding it to the active list, and determining which
region interiors lie above and below the segment by looking
at its immediate neighbors in the active list.

In implementation, the sweep line does not move con-
tinuously in a sweep line algorithm, but instead progresses
based on segment endpoints. Therefore, each segment is
actually represented twice, once for its beginning end point,
and once for its ending end point, and the segments are
sorted. Because segments are represented twice, the no-
tion of a halfsegmentis used to represent them. We de-
fine the typehalfsegment = {(s, d, l, r)|s ∈ segment, d ∈
bool, l, r ∈ Z} where a segment is a straight line segment
between two endpoints andl andr are labelscorrespond-
ing to the portion of the embedding space that lies above or
to the left of the line that the halfsegment lies on, and the
portion that lies below and to the right, respectively. Thus,
a halfsegment is said to have twosides, a left and right side
corresponding to each label. As a matter of notation, we
refer tol as theabove labelof h, andr as thebelow label
of h. For a halfsegmenth = (s, d, l, r), if d is true (false),
the smaller (greater) endpoint ofs is thedominating point
of h, andh is called aleft (right) halfsegment. Hence, each
segments is mapped to two halfsegments(s, true, l, r) and
(s, false, l, r). Let dp be a function which yields the dom-
inating point of a halfsegment andlen be a function that
returns the length of a halfsegment. For two distinct half-



segmentsh1 = (s1, d1, l1, r1) andh2 = (s2, d2, l2, r2) with
a common endpointp, let α be the enclosed angle such that
0◦ < α ≤ 180◦. Let a predicaterot(h1, h2) be true if, and
only if, h1 can be rotated aroundp throughα to overlaph2

in counterclockwise direction. We define a total order on
halfsegments as:

h1 < h2 ⇔
dp(h1) < dp(h2) ∨
(dp(h1) = dp(h2) ∧ ((¬d1 ∧ d2) ∨
(d1 = d2 ∧ rot(h1, h2)) ∨
(d1 = d2 ∧ collinear(s1, s2) ∧ len(s1) < len(s2))))

Figure 2 depicts an example sequence of the sweep line
algorithm. In Figure 2, part of the sweep line algorithm
is shown in which two triangles are combined into a map.
Line segments are shown with their labels on each side. The
sweep line is dotted, and the segments currently in the ac-
tive list are shown dashed. The sweep line visits halfseg-
ments in halfsegment order. The labels of all halfsegments
behind the sweep line are finalized, anything in front of the
sweep line must still be processed. Note the final step de-
picted: when the halfsegment is added to the sweep line, it
is clear (based on the labels of the segment being added and
the labels of the segment below it in the sweep line) that
the interiors of both triangles intersect above the segment.
This intersection of triangle interiors is indicated in thela-
bels of the segment. Therefore, the sweep line progression
provides the ability to compute the necessary geometric in-
formation to integrate regions into maps. Furthermore, the
opportunity to integrate thematic information exists, butthe
complexity of handling thematic information can be dra-
matic since an arbitrary number of regions may intersect.

3 Integrating Regions Into a Map

In this section, we describe our proposed algorithm that
integrates regions and their associated thematic values into a
map form that maintains all spatial and thematic data from
the input regions. The input to our algorithm is a set of
regions. We assign each region a label in the form of a
unique integer identifier, known as theregion identifier, that
will be used to link each region with its thematic data. We
then prepare the regions for input to the algorithm.

3.1 Preparing the Input

As mentioned previously, the plane sweep algorithm can
detect line segment intersections, and determine whether
the currently processed line segment lies in the interior,
boundary, or exterior of other regions. The input to the
plane sweep algorithm is a set of halfsegments sorted in
halfsegment order. Our version of the algorithm requires

0 1

0

1

0

1

0

2
0 2

02

0 1

0

1

0

1

0

2
0 2

02

0 1

0

1

0

1

0

2
0 2

02

0 1

0

1

0

1

0

2
0 2

02

0 1

0

1

0

1

0

2
0 2

02

0 1

0

1

0

1

0

2
0 2

02
2

1,2

0 2

1

0

0 2

Figure 2. A partial example sequence of a
sweep line algorithm integrating two triangles
into a map. Segments are shown with labels
indicating where triangle interiors lie. Note
that only labels to the left of the sweep line
are finalized. The label 0 indicates the exte-
rior of both triangles.

that each halfsegment carry two labels, indicating the iden-
tifiers of all regions that respectively lie immediately above
and below the halfsegment. Initially, the halfsegments
forming an individual region will each have the region iden-
tifier for that region on one side, and the region exterior la-
bel on the other. Some data representations will only store
segments, or halfsegments that do not carry labels; in this
case, the halfsegments can be generated and labels assigned
to the appropriate sides of the halfsegments inO(n lg n)
time for each input region ofn halfsegments on average [6].
Once the halfsegments for all input regions are prepared,
they must be sorted into a single list. Form regions contain-
ing n halfsegments on average, sorting takesO(mn lg mn)
time.

3.2 Spatial Processing of a Halfsegment

Once the algorithm input is computed, the plane sweep
portion of the algorithm commences. We assume a sweep
line that travels from left to right across the euclidean plane
in the x direction. The plane sweep portion of the algo-
rithm serves two main functions: (i) detect and remedy line
segments that intersect at points other than end points, and



(ii) merge the labels of the intersecting portions of regions.
These functions are managed simultaneously within the al-
gorithm. Recall that the plane sweep algorithm proceeds by
processing a single halfsegment at a time. At each step of
the algorithm in which a left halfsegmenth is being pro-
cessed,h is inserted into the active list, and the immediate
neighbors ofh in the active list are computed. These neigh-
bors area andb, the neighbor halfsegment that lies above
h and belowh in the active list, respectively. The intersec-
tion points betweenh anda, andh andb are computed, the
segments ∈ {a, b} that forms the least intersection pointp

with h in halfsegment order is chosen.h ands are removed
from the active list, split according top, and the resulting
segments that are less thanh in halfsegment order are in-
serted back into the active list. This step is the traditional
computation of line segment intersections performed by the
sweep line.

3.3 Thematic Processing of a Halfsegment

Once the spatial portion of the processing of halfseg-
menth is complete, the second function of the algorithm
proceeds. The goal of the second part of the algorithm is
to maintain thematic information associated with regions in
the presence of multiple overlapping regions. Recall that if
regions overlap in the spatial partition map model, then the
overlapping portions of the regions carry the labels of all the
overlapping regions. We proceed with this discussion using
examples. Consider Figure 4a in which two regions overlap.
The region’s have identifiers which we assume are reflected
in the halfsegment’s labels. The segments in the figure are
labeled. For figures where segments are labeled, we use the
notation1l and1r to indicate the left and right halfsegments
corresponding to segment1, respectively. The plane sweep
begins and processes halfsegments1l, 2l, 2r, and3l, all of
which belong to the same region and do not intersect any
other halfsegments. When the plane sweep algorithm be-
gins to process5l, the active list contains1l and3l; 1l is the
neighbor below5l and3l is the neighbor above5l in the ac-
tive list. It follows from halfsegment ordering that the above
label of the halfsegment below5l in the active list will indi-
cate which region5l lies inside, or if it lies in the exterior of
all other regions. Therefore,5l lies in the interior of region
1 because the interior of region 1 lies above1l, and this will
be reflected in its above label. Because the interior of region
2 lies above5l, it follows that the interiors of both region 1
and region 2 lie above5l. From the spatial partition defi-
nition, we follow the convention that overlapping portions
of regions receive the labels of all regions involved in the
overlap; therefore a new label is assigned to the overlapping
portion, and the labels of5l must be changed to reflect the
new topology (label management details will be discussed
below). When the plane sweep algorithm processes4l, it

1

2

1

2

3

4

5

6

7

8

1

2

1

2

3

4

5

6

7

8

3
9

10

11

a b

Figure 3. Two regions superimposed (a), and
the result of their integration into a map (b).
Segments are labeled.

will only have one neighbor in the active list:5l. An inter-
section is detected between the two, and the segments are
split. Because no segments exist in the active list below4l,
it cannot lie in the interior of another region, and its labels
remain unchanged. If the overlapping portion of the region
1 and 2 receives the identifier 3, then Figure 4b indicates
the result of the algorithm. Because the label 3 indicates the
overlapping portion of regions 1 and 2, some record keeping
must exist to indicate that region identifier 3 is equivalentto
the pair of region identifiers 1 and 2.

Managing the labels of a pair of overlapping regions, as
in the example above, is relatively straightforward; how-
ever, difficulty arises in cases where multiple regions over-
lap. For example, in Figure 4 three regions are shown, all
of which overlap other regions. Again, computing the line
segment intersections is straightforward, but managing re-
gion identifiers becomes much more challenging. For in-
stance, when segment8l is processed, the halfsegment be-
low it in the active list is5l. In order for us to correctly
label the above label of8l as the overlap of regions 1, 2, and
3, the above label of5l must indicate that its above label is
the overlap of regions 1 and 2, or we must proceed further
down the active list than the halfsegment immediately be-
low the one currently being processed. The time complex-
ity bounds of the plane sweep algorithm rely on the fact that
only the immediate neighbors of a segment in the active list
are examined when processing the current segment, so we
cannot look beyond the immediate neighbors without caus-
ing anO(n2) time complexity. Therefore, we must devise
a mechanism such that when a halfsegmenth is processed,
all regions whose interiors intersecth can be identified by
examining only the halfsegment belowh in the active list.
In essence, the labels ofh must be merged with the labels
of the halfsegment belowh in the active list to reflect the
overlapping regions; we denote thislabel merging.

A successful label merge of a halfsegment results in
the halfsegment’s labels indicating the identifiers of all re-
gions that lie immediately above and below the halfseg-
ment. Therefore, the label of a halfsegment must be a set of
region identifiers indicating all regions whose interiors lie



2

3

1

1

2

3

4

5

6

7

8

9
10

2

3

1

1

2

3

4

5

6

7

8

9
10

a b

Figure 4. Three overlapping regions with la-
beled segments.

on either side of the halfsegment. For example, when half-
segment8l in Figure 4a is processed, it must indicate that
the interiors of regions 1 and 2 lie immediately below the
halfsegment, and the interiors of regions 1, 2, and 3 lie im-
mediately above it. The original above and below labels of
halfsegment8l are 3 and 0, respectively, where 0 indicates
the exterior of the region. When8l is processed, we can de-
termine the identifiers of all regions that must be involved
in labels of8l by looking at the above label of the halfseg-
ment below it in the active list,5l. Because5l is less than
8l in halfsegment order, it will be processed before8l and
its labels will be known when8l is processed. The above
label of5l must indicate that the interiors of regions 1 and
2 lie above it. Therefore, the identifiers for regions 1 and 2
must be merged into8ls labels, indicating that8l lies within
regions 1 and 2. When9l is processed, the halfsegment be-
low it in the active list,8l, indicates that region identifiers 1,
2, and 3 must be merged with the labels of9l. Because the
labels of9l indicate that it bounds region3, the identifier for
region3 will not be added to the above label of9l (i.e., the
interior of region 3 does not extend above9l). Therefore,
the above and below labels of9l must indicate the region
identifiers 1 and 2, and 1, 2, and 3, respectively. Formally,
a label merge is represented as the following:

Definition 1 let h = (p, q, A, B) be a halfsegment and
hb = (pb, qb, Ab, Bb) be the halfsegment belowh in the
active list whenh is being processed by the plane sweep al-
gorithm. Becauseh is not processed, it will have the iden-
tifier of the input region it bounds as one of its labels, and
the other will be the identifier of the exterior. Alabel merge
is then:
A = A ∪ (Ab − B)
B = B ∪ (Ab)

These formulas follow directly from the definition of regions
and the fact that a boundary always separates the interior
of a region from the exterior of a region.

When a halfsegment is being processed, it will always
have exactly one identifier in one of its labels, and the ex-
terior identifier in the other label. The halfsegment below

it in the active list may have many region identifiers in its
above label. It follows from the definition of halfsegment
merging that computing the below label of the current half-
segmenth involves removing a single region identifier from
the above label of the halfsegment belowh in the active list.
Furthermore, removing the below label ofh from the above
label of the halfsegment belowh in the active list and insert-
ing the above label ofh also involves removing and adding
single region identifiers. Therefore, the label merges can
be expressed as three separate operations in which a single
region identifier is added or subtracted to a set of region
identifiers. When integratingm regions, the size of the set
of region identifiers on the halfsegment below the halfseg-
ment being processed is bounded bym; therefore, efficient
insertion and removal operations are required. Thus, we as-
sume these sets of region identifiers are implemented as a
height bounded binary search tree which supports removal
and insertion inO(lg m) time.

If many regions overlap in a map, then a label may con-
tain many region identifiers. Storing a list of region iden-
tifiers for each segment forming the boundary of a map is
inefficient in terms of space, especially when a map must be
stored on disk; therefore, we maintain a mapping that de-
fines a relationship betweenlabel identifiersand labels. A
label identifier is a unique identifier that corresponds to a la-
bel. Because a label may contain many region identifiers, it
is bounded by the number of regions being integrated. A la-
bel identifier can be implemented as a single integer, which
is much more storage efficient and fits with the definition of
halfsegments which specifies that labels are single integers,
and not sets of integers. Again, a height bounded binary
search tree is a good candidate for implementing this map-
ping and maintainingO(lg m2) time complexity for adding,
removing, and looking up elements.O(lg m2) behavior is
the worst case in which all possible combinations of over-
lapping regions exist, which is rare in practice. A reverse
mapping from labels to label identifiers is also required and
can be implemented efficiently using a trie, providing inser-
tion and lookup inO(m) time form input regions [2, 4].

When a halfsegmenth is being processed by the sweep
line algorithm, the halfsegment belowh is computed and its
label is found. That label is copied twice, and a label merge
is performed with the label for the region aboveh and be-
low h respectively with each copy. The result of the label
merges are labels indicating all regions whose interiors lie
immediately above and belowh. Because many halfseg-
ments may contain identical labels, and these labels may
contain up tom region identifiers form input regions, rep-
resenting each label with a label identifier can drastically
reduce the memory requirements of the algorithm in situ-
ations when labels contain many region identifiers. There-
fore, a trie associating labels with label identifiers is queried
to see if the computed label is already assigned to another



halfsegment and already has an associated label identifier.
If the label has not yet been encountered, then a new label
identifier is created for the label, and the trie is updated.
A height balanced binary tree is also updated to reflect the
mapping from the label identifier to its corresponding la-
bel. Therefore, for each halfsegment visited by the plane
sweep algorithm, a trie must be queried and possibly modi-
fied twice, and a height balanced binary tree must be queried
and possibly modified twice, leading to a time complexity
of O(m + lg m2) for m regions for each halfsegment vis-
ited by the plane sweep. The optimal plane sweep has a time
complexity ofO(n lg n+k) for n segments withk intersec-
tions; however, the version of plane sweep that is used more
typically in practice (and the version we use for implemen-
tation) has complexityO(n lg n+k lg n) ⇔ O((n+k) lg n)
wheren + k segments are visited and thelg n term reflects
operations on data structures necessary for each segment
visited by the algorithm. Therefore, the overall time com-
plexity of the algorithm isO((n + k)(lg n + m + lg m2)).
The space complexity of the algorithm depends on the num-
ber of unique labels created during the integration. In the
worst case, every region will overlap every other region in
such a way thatm2 labels will exist form regions. Because
each unique label is stored, and every segment from regions
must be stored, the space complexity isO(m2 + n + k)
for m regions containingn line segments withk intersec-
tions. In practice, the number of unique labels generated
is typically much less thenm2; furthermore,m is typically
much smaller thann, especially in geographic data sets, so
a larger space or time complexity on them term is accept-
able.

We have implemented the region integration algo-
rithm described in this paper, as well as the traditional
O((nm lg nm)2 + k) algorithm, in C++. Although the
proposed algorithm is clearly faster in terms of algorith-
mic complexity, a practical comparison verifies the utility
of the new algorithm. We ran the new and traditional algo-
rithms over geographic data sets consisting of the counties
of Florida, Alabama, and Texas. The input counties were
taken from freely available US Census data sets, and the
counties for each state were integrated into a single map
of the state. The algorithms were run on a computer with a
2.8GHz processor and 2GB of RAM. Table 1 shows the run-
ning times of the algorithms, and the sizes of the resulting
maps. Our new algorithm is clearly more efficient than the
traditional method, and scales much better for larger input.

4. Conclusion

In this paper, we have introduced the map construction
problem as a data integration problem requiring the han-
dling of both geometric and thematic aspects of spatial data.
We proposed a new algorithm that solves the map construc-

State Halfsegments New
Algorithm (s)

Traditional
Algorithm (s)

FL 129,718 12.291 80.295
AL 159,346 16.891 149.319
TX 517,938 60.954 1095.028

Table 1. Running times for the new algorithm
and the traditional algorithm for constructing
maps consisting of the counties of Florida,
Arizona, and Texas. The number of halfseg-
ments in each resulting map is shown. Each
time is the average of three runs of the re-
spective algorithm for the given data.

tion problem form regions containingn line segments on
average inO((n + k)(lg n + m + lg m2)) time complex-
ity andO(m2 + n + k) space complexity. This algorithm
creates new opportunities for the use of maps as reusable
data items, rather than simply visualizations. Future work
includes the extension of the proposed algorithm to include
spatial point and line objects.

References

[1] J. Bentley and T. Ottmann. Algorithms for Reporting and
Counting Geometric Intersections.IEEE Trans. on Comput-
ers, C-28:643–647, 1979.

[2] R. de la Briandais. File Searching Using Variable Length
Keys. InProc. AFIPS Western Joint Computer Conference,
1959.

[3] M. Erwig and M. Schneider. Formalization of Advanced
Map Operations. In9th Int. Symp. on Spatial Data Han-
dling, pages 8a.3–17, 2000.

[4] E. Fredkin. Trie Memory. Communications of the ACM,
3(9):490–499, 1960.

[5] M. McKenney.Map Algebra: A Data Model and Implemen-
tation of Spatial Partitions for Use in Spatial Databases and
Geographic Information Systems. PhD thesis, University of
Florida, August 2008.

[6] M. McKenney. Region extraction and verification for spatial
and spatio-temporal databases. InSSDBM, Lecture Notes in
Computer Science, pages 598–607. Springer, 2009.

[7] M. McKenney and M. Schneider. Topological Relationships
Between Map Geometries. InAdvances in Databases: Con-
cepts, Systems and Applications, 13th International Confer-
ence on Database Systems for Advanced Applications, 2007.

[8] M. Schneider and T. Behr. Topological Relationships be-
tween Complex Spatial Objects.ACM Trans. on Database
Systems (TODS), 31(1):39–81, 2006.

[9] M. Scholl and A. Voisard. Thematic Map Modeling. In
SSD ’90: Proceedings of the first symposium on Design and
implementation of large spatial databases, pages 167–190,
New York, NY, USA, 1990. Springer-Verlag New York, Inc.

[10] C. D. Tomlin. Geographic Information Systems and Carto-
graphic Modelling. Prentice-Hall, 1990.


