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Abstract

Model interpretation is one of the key aspects of the

model evaluation process. The explanation of the relation-

ship between model variables and outputs is easy for sta-

tistical models, such as linear regressions, thanks to the

availability of model parameters and their statistical signif-

icance. For “black box” models, such as random forest, this

information is hidden inside the model structure. This work

presents an approach for computing feature contributions

for random forest classification models. It allows for the de-

termination of the influence of each variable on the model

prediction for an individual instance. Interpretation of fea-

ture contributions for two UCI benchmark datasets shows

the potential of the proposed methodology. The robustness

of results is demonstrated through an extensive analysis of

feature contributions calculated for a large number of gen-

erated random forest models.

1. Introduction

Models are used to discover interesting patterns in data

or to predict a specific outcome, such as drug toxicity, client

shopping purchases, or car insurance premium. They are

often used to support human decisions in various business

strategies. This is why it is important to ensure model qual-

ity and to understand its outcomes. Good practice of model

development involves: 1) data analysis 2) feature selection,

3) model building and 4) model evaluation. Implement-

ing these steps together with capturing information on how

the data was harvested, how the model was built and how

the model was validated, allows us to trust that the model

gives reliable predictions. But, how to interpret an existing

model? How to analyse the relation between predicted val-

ues and the training dataset? Or which features contribute

the most to classify a specific instance? Answers to these

questions are considered particularly valuable in such do-

mains as chemoinformatics and predictive toxicology [11].

Linear models, which assign instance-independent coeffi-

cients to all features, are the most easily interpreted. How-

ever, in the recent literature, there has been considerable

focus on interpreting predictions made by non-linear mod-

els [4, 8] which do not render themselves to straightforward

methods for the determination of variable/feature influence.

Of interest to this paper is a popular “black-box model” –

the Random Forest model [5]. Its author suggests two mea-

sures of the significance of a particular variable [6]: the vari-

able importance and the Gini importance. The variable im-

portance is derived from the loss of accuracy of model pre-

dictions when values of one variable are permuted between

instances. Gini importance is calculated from the Gini im-

purity criterion used in the growing of trees in the random

forest. However, in [9], the authors argue that the above

importance measures do not allow for a thorough analysis

of a model. Their general representation of variable impor-

tance is often insufficient for the complete understanding of

the relationship between input variables and the predicted

value.

Kuzmin et al. propose in [9] a new technique to calculate

the feature contribution, i.e., the contribution of a variable to

the prediction, in a random forest model with numerical ob-

served values (the observed value is a real number). Unlike

in the variable importance measures [6], feature contribu-

tions are computed separately for each instance/record and

provide detailed information about relationships between

variables and the predicted value: the extent and the kind

of influence (positive/negative) of a given variable. This

new approach was positively tested in [9] on a Quantitative

Structure-Activity (QSAR) model for chemical compounds.

The results were not only informative about the structure of

the model but also provided valuable information for the

design of new compounds.

The procedure from [9] for the computation of feature



contributions applies to random forest models predicting

numerical observed values. This paper aims to extend it

to random forest models with categorical predictions, i.e.,

where the observed value determines one from a finite set

of classes. The difficulty of achieving this aim lies in the

fact that a discrete set of classes does not have the alge-

braic structure of real numbers which the approach pre-

sented in [9] relies on.

The paper is organised as follows. Section 2 provides

a brief description of random forest models. Section 3

presents our approach for calculating feature contributions

for binary classifiers, whilst Section 4 describes its exten-

sion to multi-class classification problems. Section 5 con-

tains applications of the proposed methodology to two real

world datasets from the UCI Machine Learning repository.

Section 6 concludes the work presented in this paper.

2. Random forest

A random forest (RF) of [5] is a collection of tree pre-

dictors grown as follows [6]:

1. the bootstrap phase: select randomly a subset of the

learning dataset – a training set for growing the tree.

The remaining samples in the learning dataset form a

so-called out-of-bag (OOB) set and are used to esti-

mate the RF’s goodness-of-fit.

2. the growing phase: grow the tree by splitting the train-

ing dataset at each node according to the value of one

from a randomly selected subset of variables (the best

split) using classification and regression tree (CART)

method [7].

3. each tree is grown to the largest extent possible. There

is no pruning.

The bootstrap and the growing phases require an input of

random quantities. It is assumed that these quantities are in-

dependent between trees and identically distributed. Conse-

quently, each tree can be viewed as sampled independently

from the ensemble of all tree predictors for a given learning

set.

For prediction, an instance is run through each tree in a

forest down to a terminal node which assigns it a class. Pre-

dictions supplied by the trees undergo a voting process: the

forest returns a class with the maximum number of votes.

Draws are resolved through a random selection.

To present our feature contribution procedure in the

following section, we need a probabilistic interpreta-

tion of the forest prediction process. Denote by C =
{C1, C2, . . . , CK} the set of classes and by ∆K the set

∆K =
{
(p1, . . . , pK) :

K∑

k=1

pk = 1 and pk ≥ 0
}
.

An element of ∆K can be interpreted as a probability dis-

tribution over C. Let ek be an element of ∆K with 1 at

position k – a probability distribution concentrated at class

Ck. If a tree t predicts that an instance i belongs to a class

Ck then we write Ŷi,t = ek. This provides a mapping from

predictions of a tree to the set ∆K of probability measures

on C. Let

Ŷi =
1

T

T∑

t=1

Ŷi,t,

where T is the overall number of trees in the forest. Then

Ŷi ∈ ∆K and the prediction of the random forest for the

instance i coincides with a class Ck for which the k-th co-

ordinate of Ŷi is maximal.1

3. Feature contributions for binary classifiers

The set ∆K simplifies considerably when there are two

classes, K = 2. An element p ∈ ∆K is uniquely repre-

sented by its first coordinate p1 (p2 = 1 − p1). Conse-

quently, the set of probability distributions on C is equiva-

lent to the probability weight assigned to class C1.

Before we can present our method for computing feature

contributions, we have to examine the tree growing process.

After selecting a training set, it is positioned in the root

node. A splitting variable (feature) and a splitting value are

selected and the set of instances is split between the left and

the right child of the root node. The procedure is repeated

until all instances in a node are in the same class or further

splitting does not improve prediction. The class that a tree

assigns to a terminal node is determined through majority

voting between instances in that node.

We will refer to instances of the training dataset that pass

through a given node as the training instances in this node.

The fraction of the training instances in a node n belonging

to class C1 will be denoted by Y n
mean. It is the probability

that a randomly selected element from the training instances

in this node is in the first class. In particular, a terminal node

is assigned to class C1 if Y n
mean > 0.5 or Y n

mean = 0.5 and

the draw is resolved in favor of class C1.

The feature contribution procedure for a given instance

involves two steps: 1) the calculation of local increments of

feature contributions for each tree and 2) the aggregation of

feature contributions over the forest. For a child node (c)

and a parent node (p) the local increment corresponding to

a feature f is defined as follows:

LIc
f =







Y c
mean − Y p

mean,
if the split in the parent is

performed over the feature f ,

0, otherwise.

1The distribution Ŷi is calculated by the function predict in the R

package randomForest [10] when the type of prediction is set to prob.



A local increment for a feature f represents the change of

the probability of being in class C1 between the child node

and its parent node provided that f is the splitting feature

in the parent node. It is easy to show that the sum of these

changes, over all features, along the path followed by an

instance from the root node to the terminal node in a tree is

equal to the difference between Ymean in the terminal and

the root node.

The contribution FCf
i,t of a feature f in a tree t for an

instance i is equal to the sum of LIf over all nodes on the

path of instance i from the root node to a terminal node. The

contribution of a feature f for an instance i in the forest is

then given by

FCf
i =

1

T

T∑

t=1

FCf
i,t. (1)

The feature contributions vector for an instance i consists

of contributions FCf
i of all features f .

Notice that if the following condition is satisfied:

(U) training instances in each terminal node are of the same

class

then

Ŷi = Y r +
∑

f

FCf
i , (2)

where Y r is the coordinate-wise average of Ymean over all

root nodes in the forest. If this unanimity condition (U)

holds, feature contributions can be used to retrieve predic-

tions of the forest. Otherwise, they only allow for the inter-

pretation of the model.

We will demonstrate the calculation of feature contri-

butions on a toy example using a subset of the UCI Iris

Dataset [3]. From the original dataset, ten records were

selected – five for each of two types of the iris plant: ver-

sicolor (class 0) and virginica (class 1) (see Table 1). A

plant is represented by four attributes: Sepal.Length (f1),

Sepal.Width (f2), Petal.Length (f3) and Petal.Width (f4).

This dataset was used to generate a random forest model

with two trees, see Figure 1. In each tree, the set LD in

the root node collects those records which were chosen by

the random forest algorithm to build that tree. The LD sets

in the child nodes correspond to the split of the above set

according to the value of a selected feature (it is written

between branches). This process is repeated until reaching

terminal nodes of the tree. Notice that the condition (U)

for each tree in this forest is satisfied – each terminal node

contains instances of the same class: Ymean is either 0 or 1.

The process of calculating feature contributions runs in 2

steps: the determination of local increments for each node

in the forest (a preprocessing step) and the calculation of

feature contributions for a particular instance. Figure 1

shows Y n
mean and the local increment LIc

f for a splitting fea-

ture f in each node. Having computed these values, we can

iris.row f1 f2 f3 f4 class

x1 52 6.4 3.2 4.5 1.5 0

x2 73 6.3 2.5 4.9 1.5 0

x3 75 6.4 2.9 4.3 1.3 0

x4 90 5.5 2.5 4.0 1.3 0

x5 91 5.5 2.6 4.4 1.2 0

x6 136 7.7 3.0 6.1 2.3 1

x7 138 6.4 3.1 5.5 1.8 1

x8 139 6.0 3.0 4.8 1.8 1

x9 145 6.7 3.3 5.7 2.5 1

x10 148 6.5 3.0 5.2 2.0 1

Table 1: Selected records from the UCI Iris Dataset. Each

record corresponds to a plant. Features f1, f2, f3, f4 rep-

resent the following attributes: Sepal.Length, Sepal.Width,

Petal.Length and Petal.Width. The plants were classified as

iris versicolor (class 0) and virginica (class 1).

calculate feature contributions for an instance by running it

through both trees and summing local increments of each of

the four features. For example, the contribution of a given

feature for the instance x1 is calculated by summing local

increments for that feature along the path p1 = n0 → n1

in tree T1 and the path p2 = n0 → n1 → n4 → n5 in tree

T2. According to Formula (1) the contribution of feature f2

is calculated as

FCf2

x1
=

1

2

(

0 +
1

4

)

= 0.125

and the contribution of feature f3 is

FCf3

x1
=

1

2

(

−
3

7
−

9

28
−

1

2

)

= −0.625.

The contributions of features f1 and f4 are equal to 0 be-

cause these attributes are not used in any decision made by

the forest. The predicted probability Ŷx1
that x1 belongs to

class 1 (see Formula (2)) is

Ŷx1
=

1

2

(3

7
+

4

7

)

︸ ︷︷ ︸

Ŷ r

+
(
0 + 0.125− 0.625 + 0

)

︸ ︷︷ ︸
P

f FC
f
x1

= 0.0

Table 2 collects feature contributions for all 10 records

in the example dataset. These results can be interpreted as

follows:

• for instances x1, x3, the contribution of f2 is positive,

i.e., the value of this feature increases the probability

of being in class 1 by 0.125. However, the large nega-

tive contribution of the feature f3 implies that the value

of this feature for instances x1 and x3 was decisive in

assigning the class 0 by the forest.

• for instances x6, x7, x9, the decision is based only on

the feature f3.



Figure 1: A random forest model for the dataset from Ta-

ble 1. The set LD in the root node contains a local training

dataset for the tree. The sets LD in the child nodes corre-

spond to the split of the above set according to the value of

selected feature. In each node, Y n
mean denotes the fraction

of instances in the LD set in this node belonging to class 1,

whilst LIn
f shows non-zero local increments.

• for instances x2, x4, x5, the contribution of both fea-

tures leads the forest decision towards class 0.

• for instances x8, x10, Ŷ is 0.5. This corresponds to

the case where one of the trees points to class 0 and

the other to class 1. In practical applications, such sit-

uations are resolved through a random selection of the

class. Since Ŷ r = 0.5, the lack of decision of the for-

est has a clear interpretation in terms of feature contri-

Ŷ f1 f2 f3 f4 prediction

x1 0.0 0 0.125 -0.625 0 0

x2 0.0 0 -0.125 -0.375 0 0

x3 0.0 0 0.125 -0.625 0 0

x4 0.0 0 -0.125 -0.375 0 0

x5 0.0 0 -0.125 -0.375 0 0

x6 1.0 0 0 0.5 0 1

x7 1.0 0 0 0.5 0 1

x8 0.5 0 0.125 -0.125 0 ?

x9 1.0 0 0 0.5 0 1

x10 0.5 0 0 0 0 ?

Table 2: Feature contributions for the random forest model

from Figure 1.

butions: the amount of evidence in favour of one class

is counterbalanced by the evidence pointing towards

the other.

4. Feature contributions for general classifiers

When K > 2, the set ∆K cannot be described by a

one-dimensional value as above. We, therefore, generalize

the quantities introduced in the previous section to a multi-

dimensional case. Y n
mean in a node n is an element of ∆K ,

whose k-th coordinate, k = 1, 2, . . . ,K, is defined as

Y n
mean,k =

|{i ∈ TS(n) : i ∈ Ck}|

|TS(n)|
, (3)

where TS(n) is the training set in the node n and | · | de-

notes the number of elements of a set. Hence, if an instance

is selected randomly from a training set in a node n, the

probability that this instance is in class Ck is given by the

k-th coordinate of the vector Y n
mean. Local increment LIc

f

is analogously generalized to a multidimensional case:

LIc
f =







Y c
mean − Y p

mean,
if the split in the parent is

performed over the feature f ,

(0, . . . , 0)
︸ ︷︷ ︸

K times

, otherwise,

where the difference is computed coordinate-wise. Simi-

larly, FCf
i,t and FCf

i are extended to vector-valued quan-

tities. Notice that if the condition (U) is satisfied, Equation

(2) holds with Y r being a coordinate-wise average of vec-

tors Ymean over all root nodes in the forest.

Fix an instance i and let Ck be the class to which the

forest assigns this instance. Our aim is to understand which

variables/features drove the forest to make that prediction.

We argue that the crucial information is that which explains

the value of the k-th coordinate of Ŷi. Hence, we want to

study the k-th coordinate of FCf
i for all features f .



Algorithm 1 FC(RF ,s)

1: k ← forest predict(RF, s)
2: FC ← vector(features)
3: for each tree T in forest F do

4: parent← root(T )
5: while parent ! = TERMINAL do

6: f ← SplitFeature(parent)
7: if S[f ] <= SplitV alue(parent) then

8: child← leftChild(parent)
9: else

10: child← rightChild(parent)
11: end if

12: FC[f ]← FC[f ] + Y child
mean,k − Y parent

mean,k

13: parent← child
14: end while

15: end for

16: FC ← FC / nTrees(F )

17: return FC

Algorithm 2 Ymean(RF, D)

1: for each tree T in forest F do

2: TS ← training set for tree T
3: use DFS algorithm to compute training sets in all

other nodes n of tree T and compute the vector

Y n
mean according to formula (3).

4: end for

Pseudo-code to calculate feature contributions is pre-

sented in Algorithm 1. Its inputs consist of a random forest

model RF and an instance s which is represented as a vec-

tor of feature values. In line 1, k is assigned a prediction

of the random forest RF for the instance s. The following

line creates a vector of real numbers indexed by features

and initialized to 0. Then for each tree in the forest RF
the instance s is run down the tree and feature contributions

are calculated. The quantity SplitFeature(parent) iden-

tifies a feature f on which a split is performed in the node

parent. If the value of that feature f is lower or equal to

the threshold SplitV alue(parent), the route continues to

the left child of the node parent. Otherwise, it goes to the

right child (each node in the tree has either two children or

is a terminal node). A position corresponding to the feature

f in the vector FC is updated according to the change of

values of Ymean,k between the parent and the child.

Algorithm 2 provides a sketch of the preprocessing step

to compute Y n
mean for all nodes n in the forest. The pa-

rameter D denotes the set of instances used for training of

the forest RF . In line 2, TS is assigned the set used for

growing tree T . This set is further split in nodes accord-

ing to values of splitting variables. We propose to use DFS

(depth first search) to traverse the tree and compute the vec-

tor Y n
mean once a training set for a node n is determined.

There is no need to store a training set for a node n once

Y n
mean has been calculated.

5. Applications

In this section, we demonstrate how feature contributions

can be applied to improve understanding of a random forest

model. An extensive comparative study of feature contri-

butions is beyond the capacity of a short conference paper.

Therefore, we consider one example of a binary classifier

using the UCI Breast Cancer Wisconsin Dataset [1] (BCW

Dataset) and one example of a general classifier for the UCI

Iris Dataset [3]. We complement our studies with a robust-

ness analysis.

5.1. Breast Cancer Wisconsin Dataset

The UCI Breast Cancer Wisconsin Dataset contains

characteristics of cell nuclei for 569 breast tissue samples;

357 are diagnosed as benign and 212 as malignant. The

characteristics were captured from a digitized image of a

fine needle aspirate (FNA) of a breast mass. There are 30

features, three (the mean, the standard error and the aver-

age of the three largest values) for each of the following

10 characteristics: radius, texture, perimeter, area, smooth-

ness, compactness, concavity, concave points, symmetry

and fractal dimension.

To reduce correlation between features, the min-max

(minimal-redundancy-maximal-relevance) method was ap-

plied and the following features were removed from the

dataset: 1, 3, 8, 10, 11, 13, 12, 15, 19, 10, 21, 24, 26. A

random forest model was generated on 2/3 randomly se-

lected instances using 500 trees. The other 1/3 of instances

was used for testing. The test set validation showed that

the model accuracy was 0.9682 (only 6 instances out of 189

were classified incorrectly); similar accuracy was achieved

when the model was generated using all the features.

We applied our feature contribution algorithm to the

above random forest binary classifier. To align notation with

the rest of the paper, we denote the class “malignant” by 1

and the class “benign” by 0. Aggregate results for the fea-

ture contributions for all 569 instances and both classes are

presented in Figure 2. Light-grey bars show medians2 of

contributions for instances of class 1 (malignant), whereas

black bars show medians of contributions for instances of

class 0. Notice that there are only a few significant features

in the graph: F7 – the mean of the cell concavity, F14 – the

standard deviation of the cell area, F23 – the mean of the

cell perimeter and F28 – the average of three largest mea-

surements of concave points. This selection of significant

2The median is a robust estimator for the expectation of a distribution.
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Figure 2: Medians of feature contributions for each class

for the BCW Dataset. The light grey bars represent contri-

butions toward class 1 and the black bars show contributions

towards class 0.
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Figure 3: The left panel shows permutation based variable

importance and the right panel displays Gini importance for

a RF binary classification model developed for the BCW

Dataset. Graphs generated using randomForest package in

R.

features is in agreement with the results of the permutation

based variable importance (the left panel of Figure 3) and

the Gini importance (the right panel of Figure 3). Interpret-

ing the size of bars as the level of importance of a feature,

our results are more in line with those provided by the Gini

index. However, the main advantage of the approach pre-

sented in this paper lies in the fact that one can study the

reasons for the forest’s decision for a particular instance.

Comparison of feature contributions for a particular in-

stance with medians of feature contributions for all in-

stances of one class provides valuable information about the

forest’s prediction. In a typical case when most of the trees

vote for class 1 the feature contributions for that instance

are very close to the median values (see Figure 4). This hap-

pens in around 80% of all instances predicted to be in class

1. However, when the decision is less unanimous, the anal-

ysis of feature contributions may reveal interesting infor-

mation. As an example, we have chosen instances 194 and

Instance Id benign (class 0) malignant (class 1)

3 0 1

194 0.298 0.702

537 0.234 0.766

Table 3: Percentage of trees that vote for each class in RF

model for a selection of instances from the BCW Dataset.
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Figure 4: Comparison of the medians of feature contribu-

tions over all instances of class 1 (black bars) with feature

contributions for instance number 3 (light-grey bars) from

the BCW Dataset.

537 (see Table 3) which were classified as malignant (class

1) by a strong majority of trees but with a significant num-

ber of trees expressing an opposite view. Figure 5 presents

feature contributions for these two instances (grey and light

grey bars) against the median values for class 1 (black bars).

The largest difference can be seen on the contribution of

feature F23: it is highly negative for two instances under

consideration compared to a large positive value commonly

found in instances of class 1. Recall that a negative value

contributes towards the classification in class 0. There are

also three new significant attributes (F2, F17 and F22) that

contribute towards the correct classification. Feature F22 is

judged as moderately important by both of the variable im-

portance methods in Figure 3. However, features F2 and

F17 are located towards the bottom of both panels. It is,

therefore, surprising to note that the contribution of these

three new features was instrumental in correctly classifying

instances 195 and 537 as malignant. This highlights the fact

that features which may not generally be important for the

model may, nonetheless, be important for classifying spe-

cific instances. The approach presented in this paper is able

to identify such features, whilst the standard variable im-

portance measures for random forest cannot.

5.2. Iris Dataset

In this section we use the UCI Iris Dataset [3] to demon-

strate interpretability of feature contributions for multi-
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Figure 5: Comparison of the medians of feature contribu-

tions over all instances of class 1 (black bars) with feature

contributions for instances number 194 (grey bars) and 537

(light-grey bars) from the BCW Dataset.

classification models. We generated a random forest model

on 100 randomly selected instances. The remaining 50 in-

stances were used to assess the accuracy of the model: 47

out of 50 instances were correctly classified. Then we ap-

plied our approach for determining the feature contributions

for the generated model. Figure 6 presents medians of fea-

ture contributions for each of the three classes. In contrast

to the binary classification case, feature contributions are

positive for all classes. A positive feature contribution for

a given class means that the value of this feature directs the

forest towards assigning this class. A negative value points

towards the other classes.

Feature contributions provide valuable information

about the reliability of random forest predictions for a par-

ticular instance. It is commonly assumed that the more trees

voting for a particular class, the higher the chance that the

forest decision is correct. We argue that the analysis of

feature contributions offers a more refined picture. As an

example, take two instances: 120 and 150. The first one

was classified in class Versicolour (88% of trees voted for

this class). The second one was assigned class Virginica

with 86% of trees voting for this class. We are, therefore,

tempted to trust both of these predictions to the same extent.

Table 4 collects feature contributions for these instances.

Recall that the highest contribution to the decision is com-

monly attributed to features 3 (Petal.Length) and 4 (Petal

Width), see Figure 6. These features also make the highest

contributions to the predicted class for instance 150. The in-

decisiveness of the forest may stem from an unusual value

for the feature 1 (Sepal.Length) which suggested a different

class. In contrast, the instance 120 shows standard (low)

contribution of the first two features and unusual contribu-

tions of the last two features: very low for feature 3 and

high for feature 4. Recalling that features 3 and 4 tend to

contribute most to the forest’s decision (see Figure 6) with

values between 0.25 and 0.35, the low value for feature
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Figure 6: Medians of feature contributions for each class

for the UCI Iris Dataset.

Instance
Sepal Petal

Length Width Length Width

120 0.059 0.014 0.053 0.448

150 -0.097 0.035 0.259 0.339

Table 4: Feature contributions for selected instances from

the UCI Iris Dataset.

3 is non-standard for its predicted class, which increases

the chance of it being wrongly classified. Indeed, both in-

stances belong to class Virginica while the forest classified

the instance 120 wrongly as class Versicolour and the in-

stance 150 correctly as class Virginica.

5.3 Robustness analysis

For the validity of the study of feature contributions, it

is crucial that the results are not artefacts of one particular

realization of a random forest model but that they convey

actual information held by the data. We therefore propose a

method for robustness analysis of feature contributions. We

will use the UCI Breast Cancer Wisconsin Dataset studied

in Subsection 5.1 as an example.

We removed instance number 3 from the original dataset

to allow us to perform tests with an unseen instance. We

generated 100 random forest models with 500 trees with

each model built using an independent randomly generated

training set with 379 ≈ 2/3 · 568 instances. The rest of the

dataset for each model was used for its validation. The aver-

age model accuracy was 0.963. For each generated model,

we collected medians of feature contributions separately for

training and testing datasets and each class. The variation

of these quantities over models for class 1 and the training

dataset are presented using a box plot in Figure 7a. The

top of the box is the 75% quantile, the bottom is the 25%
quantile, while the bold line in the middle is the median.

Whiskers show the extent of minimal and maximal values

for each feature contribution. Notice that the variation be-

tween simulations is moderate and conclusions drawn for

one realization of the random forest model in Subsection
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(a) Training datasets
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(b) Testing datasets
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(c) An unseen instance

Figure 7: Feature contributions for 100 random forest models.

5.1 would hold for each of the generated 100 random forest

models.

A testing dataset contains those instances that do not take

part in the model generation. One can, therefore, expect

more errors in the classification of the forest, which, in ef-

fect, should imply lower stability of the calculated feature

contributions. Indeed, the box plot presented in Figure 7b

shows a slight tendency towards increased variability of the

feature contributions when compared to Figure 7a. How-

ever, these results are qualitatively on par with those ob-

tained on the training datasets. We can, therefore, conclude

that feature contributions computed for a new (unseen) in-

stance provide reliable information. We further tested this

hypothesis by computing feature contributions for instance

number 3 that did not take part in the generation of models.

The statistics for feature contributions for this instance over

100 random forest models are shown in Figure 7c. Similar

results were obtained for other instances.

6. Conclusions

Feature contributions provide a novel approach towards

black-box model interpretation. They measure the influence

of variables/features on the prediction outcome and provide

explanations as to why a model makes a particular deci-

sion. In this work, we extended the feature contribution

method of [9] to random forest classification models and we

proposed a framework for the robustness analysis. Using

UCI benchmark datasets we showed the robustness of the

proposed methodology. We also demonstrated how feature

contributions can be applied to understand the dependence

between instance characteristics and their predicted classi-

fication and to assess the reliability of the prediction. The

relation between feature contributions and standard variable

importance measures was also investigated. The software

used in the empirical analysis was implemented in R as an

add-on for the randomForest package and is currently be-

ing prepared for submission to CRAN [2]. Application of

feature contributions for model interpretation is particularly

valuable for drug discovery or predictive toxicology, which

is the topic of our ongoing research.
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