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Abstract

In this paper, we propose a Q-learning based deflec-
tion routing algorithm that may be employed to resolve
contention in optical burst-switched networks. The main
goal of deflection routing is to successfully deflect a burst
based only on a limited knowledge that network nodes
possess about their environment. Q-learning, one of the re-
inforcement learning algorithms, has been proposed in the
past to help generate deflection decisions. The complexity
of existing reinforcement learning-based deflection routing
algorithms depends on the number of nodes in the network.

The proposed algorithm scales well for larger networks
because its complexity depends on the node degree rather
than the network size. The algorithm is implemented using
the ns-3 network simulator. Simulation results show that
it has comparable performance to an existing reinforce-
ment learning deflection routing scheme while having lower
memory requirements.

1. Introduction

Optical burst switching (OBS) is an emerging technol-
ogy designed to share optical fiber resources across data
networks [1]. Current optical switching technologies for
data communication such as Synchronous Optical Network
(SONET) and Synchronous Digital Hierarchy (SDH) [2]
reserve the entire light-paths from a source to a destination.
Even though a light-path is not fully utilized, it may not
be shared unless its reservation is explicitly released. The
OBS technology overcomes these limitations. The Just in

Time (JIT) [3] and Just Enough Time (JET) [4] signaling
protocols enable statistical resource sharing of a light-path
among multiple traffic flows. Switching in OBS networks
is performed optically, allowing optical/electrical/optical
conversions to be eliminated in the data plane. This elimina-
tion enables high capacity switching with simpler switching
architectures and lower power consumption [5].

In contrast to electrical switches, optical switches do not
possess first-in-first-out (FIFO) buffers to queue data be-
cause optical signals may not be stored. In OBS networks,
data packets are aggregated into bursts. Bursts contending
for the same output link require novel contention resolu-
tion schemes. Wavelength conversion and fiber delay line
schemes require deployment of special hardware modules
while deflection routing requires only software modifica-
tions in the routers [6].

Various deflection routing architectures have been pro-
posed in literature. Slotted and unslotted deflection schemes
were compared [7], [8]. Performance of a simple random
deflection algorithm and loss rates of deflected data were
analyzed [9]–[12]. Various integrations of deflection rout-
ing with wavelength conversion and fiber delay lines were
proposed [13], [14]. When an output link is busy, the de-
flection algorithm selects an alternate output link to deflect
the burst. Deflection protocols were recently enhanced by
enabling neighboring nodes to exchange traffic information.
Hence, each node generates its deflection decisions based
on a better understanding of its surrounding [15]–[17].
Furthermore, heuristic approaches may be used to process
the information gathered from the neighboring nodes.

Reinforcement learning techniques have been recently
employed to generate deflection decisions [18], [19]. Re-



inforcement learning is a trial-and-error based learning ap-
proach. An agent is an autonomous entity that learns either
through direct interactions with the environment or through
analysis of collected data. The agent makes a decision,
receives reinforcement signals from the environment, and
then processes them to improve its future decisions. Q-
learning [20] is a reinforcement learning algorithm that may
be employed by a learning agent that interacts with a dy-
namic environment whose statistical behavior is unknown
and may change over time. A Q-learning agent learns
an action-value function that evaluates the quality (Q) of
taking an action. A node that needs to generate deflection
decisions may employ such an agent.

In this paper, we propose a novel Node Degree Depen-
dent (NDD) signaling algorithm. We have decoupled the
design of the signaling infrastructure from the underlying
learning algorithm and, therefore, the NDD signaling al-
gorithm may employ a variety of reinforcement learning
algorithms. We incorporate the NDD signaling algorithm
and Q-learning into a deflection routing protocol named Q-
NDD that is composed of two main modules: a signaling
module that employs the NDD signaling algorithm and a
learning module that employs the Q-learning algorithm.
The complexity of the proposed signaling algorithm de-
pends on the node degree rather than the network size.
Therefore, it scales better compared to the existing deflec-
tion routing protocols that are based on reinforcement learn-
ing. The NDD signaling algorithm is designed to have a
minimal number of parameters and, hence, does not require
special routing configurations. We implement the proposed
Q-NDD protocol in the ns-3 network simulator [21] and
compare its performance with the reinforcement learning
deflection routing scheme (RLDRS) [19]. Simulation re-
sults show that despite its lower complexity, performance
of Q-NDD is comparable to RLDRS.

This paper is organized as follows. Reinforcement learn-
ing, its applications to deflection routing, introduction to Q-
learning, and the scalability of the existing deflection rout-
ing protocols based on reinforcement learning are presented
in Section 2. We describe the proposed Q-NDD deflection
routing protocol in Section 3. The performance of the Q-
NDD is evaluated in Section 4. We conclude with Section 5.

2. Reinforcement Learning Agents for Deflec-
tion Routing

An agent that learns how to interact with a dynamic
environment through trial-and-error may use reinforcement
learning techniques for decision-making [22]. Reinforce-
ment learning consists of three abstract phases irrespective
of the learning algorithm:

• An agent observes the state of the environment and
selects an appropriate action.

• The environment generates a reinforcement signal and
transmits it to the agent.

• The agent employs the reinforcement signal to im-
prove its subsequent decisions.

Therefore, a reinforcement learning agent requires infor-
mation about the state of the environment, reinforcement
signals from the environment, and a learning algorithm.
Enhancing a node in an OBS network with a reinforcement
learning agent that generates deflection decisions requires
three components:

• function that maps a collection of the environment
variables to an integer (state)

• decision-making algorithm that selects an action based
on the state

• signaling mechanism for sending, receiving, and inter-
preting the feedback signals.

Q-learning [20] is a simple reinforcement learning algo-
rithm that has been employed for path selection in deflection
routing. The algorithm maintains a Q-value Q(s, a) in a
Q-table for every state-action pair. Let st and at denote
the encountered state and the action executed by an agent
at a time instant t. Furthermore, let rt+1 denote the
reinforcement signal that the environment has generated for
performing action at in state st. When the agent receives
the reward rt+1, it updates the Q-value that corresponds to
the state st and action at as:

Q(st, at)←Q(st, at)+ (1)

α×
[
rt+1 + γmax

at+1

Q(st+1, at+1)−Q(st, at)
]
,

where 0 < α ≤ 1 is the learning rate and 0 ≤ γ < 1 is the
discount factor.

The Q-learning path selection algorithm [18] calculates
a priori a set of candidate paths P = {p1, . . . , pm} for
tuples (si, sj), where si, sj ∈ S and S = {s1, . . . , sn}
denotes the set of all edge nodes in the network. The Q-
table stored in the ith edge node maintains a Q-value for
every tuple (sj , pk), where sj ∈ S\{si} and pk ∈ P .
S and P are the sets of states and actions, respectively.
The Q-value is updated after each decision is made and the
score of the path is reduced or increased depending on the
received rewards. The algorithm does not specify signaling
method or procedure for handling the feedback signals.
RLDRS [19] also employs the Q-learning algorithm for
deflection routing. The advantage of RLDRS is its precise
signaling and rewarding procedures. The Q-learning path



selection algorithm and RLDRS are not scalable because
their complexity depends on the size of the network. For
example, in case of the Q-learning path selection algo-
rithm [18], the size of the Q-table depends on the size of the
network and the set of candidate paths. Therefore, it may be
infeasible to store a large Q-table for larger networks. The
proposed NDD signaling algorithm reduces the number of
required feedback signals and its complexity depends only
on a node degree.

3. The Node Degree Dependent Deflection
Routing Algorithm

We describe here the proposed NDD signaling algorithm
and the messages that need to be sent across the network in
order to enhance an OBS node with decision-making ability.
The NDD algorithm provides a signaling infrastructure that
an OBS node may require in order to learn and optimally
deflect the bursts in an OBS network.

The flowchart of the signaling algorithm is shown in
Fig. 1. We consider an OBS network with N nodes.
Each network node maintains a Q-table and all nodes are
NDD compatible. A burst header that contains the control
information associated with a burst is transmitted ahead of
the burst. The burst header messages received by a node
are passed to the NDD module. The module inspects the
routing table for the next hop and then checks the status
of the optical interfaces. If the desired optical interface is
available, the optical cross-connects are configured accord-
ing to the path defined by the routing table. If the interface
is busy and the burst has not been deflected earlier by any
other node, the current states of the optical interfaces and
the output port defined by the routing table are passed to the
Q-learning module. The states of the optical interfaces are
mapped to an ordered string of 0s and 1s, where idle and
busy interfaces are denoted by 0 and 1, respectively. We
refer to the information passed to the Q-learning module as
a state. The Q-learning module inspects the Q-table entry
for the current state. If there is an entry, the learning module
selects for deflection the output port that is associated with
the maximum Q-value. However, if the learning module
is unable to find a Q-table entry for the encountered state, it
first initializes an entry for that state by assigning uniformly
drawn random Q-values to all possible actions and then se-
lects the action with the maximum Q-value. The Q-learning
module returns to the NDD module the best selected output
port for burst deflection. The following information is then
added to the burst header:

• a unique ID number used to identify the feedback
message that pertains to a deflection

• the address of the node that initiated the deflection,

to be used by other nodes as the destination for the
feedback messages

• a deflection hop counter DHC, which is incremented
each time other nodes deflect the burst.

When a burst is to be deflected at a node for the first time,
the node records the current time as the deflection time
DfT along with the ID assigned to the burst. The Drop
Notification (DN) timer is initiated and the burst is deflected
to the port that is selected by the Q-learning module. A
maximum value for the DN timer is set to DNmax, which
indicates expiration of the timer. The purpose of this timer
is to reduce the number of feedback signals.

After a decision is made to perform a deflection, the Q-
learning module waits for the feedback. The Q-learning
module makes no new decisions during the idle interval.
The deflected burst is discarded when either:

• its DHC reaches the maximum permissible number of
deflections DHCmax

• it reaches a fully congested node.

The node that discards the deflected burst assembles a
feedback message composed of the burst ID, DHC, and the
time instant when the burst was discarded (drop time DrT).
The feedback message is then sent to the node that initiated
the deflection.

When the node that initiated the deflection receives the
feedback message, it calculates the total travel time TTT
that the burst has spent in the network after the first deflec-
tion:

TTT = DrT −DfT. (2)

The TTT and DHC values are then used by the Q-learning
module to update its statistics. If no feedback message
is received until the DN timer expires, the node assumes
that the burst has arrived successfully to its destination.
The node may then update its learning module with the
reinforcement signal that contains TTT = 0 and DHC =
0. A decreasing function with the global maximum at (0, 0)
may be used as a reward function to map TTT and DHC to
a real value r. The Q-learning module updates the Q-value
of the current state and the selected action as:

Q(s, a)← Q(s, a) + α
(
r −Q(s, a)

)
. (3)

An OBS node records the best action selected by the Q-
learning module. These records are used if a node needs to
deflect a burst:

• that has been deflected earlier

or

• during an idle interval.
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Figure 1. The flowchart of the proposed signaling algorithm. The DN timer denotes the drop
notification timer. Nodes wait for feedback signals until this timer reaches DHCmax.

In order to reduce the excess traffic generated by the number
of feedback messages, a node receives feedback messages
only when it deflects bursts that have not been deflected
earlier. Hence, deflecting a burst that has been deflected
earlier does not enhance the node’s decision-making ability.

4. Performance Evaluation

We evaluate performance of the proposed Q-NDD de-
flection routing protocol. We have also implemented RL-
DRS [19] in order to compare these algorithms based
on burst loss probability, average end-to-end delay, and
number of deflections. For simulation scenarios, we use
the National Science Foundation (NSF) network topology
shown in Fig. 2. We also compare these algorithms in terms
of memory and Central Processing Unit (CPU) time by
simulating randomly generated graphs of 100, 500, 1,000,
and 2,000 nodes. In all simulation scenarios, we allow up to
two deflections per burst (DHCmax = 2). The burst header
processing time is set to 0.1 ms.

4.1. Simulation of the NSF Network

The topology of the NSF network shown in Fig. 2 was
generated by extracting the geodetic coordinates [23] of the
NSF network nodes from the Google Earth [24]. These
coordinates are then transformed to Cartesian coordinates.
The nodes are connected using bidirectional 1 Gbps fiber
links with 8 or 64 wavelengths. The learning rate is set
to α = 0.1 and the maximum drop notification timer to
DNmax = 50 ms.

Multiple Poisson traffic flows with a data rate of 0.5
Gbps are transmitted randomly across the network. Each
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Figure 2. Topology of the NSF network after
the 1989 transition. Nodes 9 and 14 were
added in 1990.

Poisson flow is 50 bursts long with each burst containing
12.5 kB of payload. The burst arrival process depends
on the aggregation algorithm [25] that is deployed in a
node. However, the Poisson process has been widely used
for performance analysis of OBS networks because it is
mathematically tractable [26], [27]. We use the heavy-tailed
Poisson-Pareto burst process (PPBP) with Hurst parameter
H = 0.7 [28] to compare the Q-NDD and RLDRS algo-
rithms. The simulation scenarios are repeated five times
with various random assignments of nodes as sources and
destinations. The simulation results are averaged over five
simulation runs. The burst loss probability and the average
number of deflections as functions of the number of Poisson
flows for 8 and 64 wavelengths scenarios are shown in
Fig. 3.

We also simulate the NSF network with 400 simultane-
ous PPBP traffic flows and 8 wavelengths. Performance
of the Q-NDD protocol and RLDRS in terms of burst
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(c) 64 wavelengths: low to moderate load
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(d) 64 wavelengths: low to moderate load
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(e) 64 wavelengths: moderate to high load
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(f) 64 wavelengths: moderate to high load

Figure 3. Burst loss probability (left column) and average number of deflections (right column) as a
function of the number of Poisson flows in the NSF network simulation scenario with 8 wavelengths
and 64 wavelengths. For readability, two cases were plotted for each 64 wavelength graph: 1,000 to
2,000 Poisson flows and 2,000 to 3,000 Poisson flows.
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Figure 4. Burst loss probability as a function
of the arrival rate of the Poission component
of the PPBP traffic with 8 wavelengths and
400 simultaneous traffic flows.

loss probability as a function of arrival rate of the Poisson
component of the PPBP traffic is shown in Fig. 4. Even
though the complexity of the Q-NDD protocol is reduced to
the degree of a node, simulation results show that Q-NDD
performs better than RLDRS in case of low to moderate
traffic loads. However, Q-NDD initiates larger number of
deflections compared to RLDRS.

The RLDRS-based signaling algorithm takes into ac-
count the number of hops to the destination when generating
the feedback signals. Therefore, RLDRS performs better
in terms of average end-to-end delay and average number
of hops traveled by bursts. Performance of Q-NDD and
RLDRS in terms of average end-to-end delay and average
number of hops is shown in Fig. 5 and Fig. 6, respectively.

4.2. Comparison of Memory Requirements and
CPU Time

We use the Boston University Representative Internet
Topology Generator (BRITE) [29] to generate random
Waxman graphs [30] with 100, 500, 1,000, and 2,000 nodes.
An edge that connects nodes u and v exists in a Waxman
graph with a probability

Pr
(
{u, v}

)
= β exp

(−d(u, v)
Lδ

)
, (4)

where d(u, v) is the distance between nodes u and v, L is
the maximum distance between any two nodes, and β and
δ are parameters in the range (0, 1]. We set β = 0.2 and
δ = 0.15 in simulation scenarios. The nodes are randomly
placed and each node is connected to three other nodes
using bidirectional single wavelength fiber links. Sources
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(b) 64 wavelengths

Figure 5. Average end-to-end delay as a func-
tion of number of flows in the NSF network
scenario with 8 and 64 wavelengths.

and destinations of traffic flows are randomly selected. The
number of the PPBP traffic flows for scenarios with 100,
500, 1,000, and 2,000 nodes are 600, 3,000, 6,000, and
12,000, respectively. Simulations are performed on the
Dell Optiplex-790 with 16 GB memory and the Intel Core
i7 2600 processor. The comparison of memory require-
ments and CPU time of Q-NDD and RLDRS is shown
in Table 1. Both algorithms initially require the same
memory. However, as the simulations proceed and new
entries are populated into the Q-tables, the memory usage
of RLDRS grows faster compared to Q-NDD. For example,
in the 1,000 node case, both algorithms use 1,723 MB
at the beginning of simulations. The maximum memory
requirements for Q-NDD and RLDRS are 1,754 MB and
1,775 MB, respectively. The simulation results also show
that Q-NDD requires less CPU time compared to RLDRS.
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Figure 6. Average number of hops traveled
by bursts as a function of number of flows
in the NSF network scenario with 8 and 64
wavelengths.

The memory usage of Q-NDD and RLDRS is shown in
Fig. 7.

5. Conclusion

In this paper, we introduced a low-complexity signaling
algorithm that employs the Q-learning algorithm for de-
flection routing in OBS networks. The complexity of the
proposed algorithm depends only on a node degree.

Simulation results indicate that the proposed NDD sig-
naling algorithm requires less memory and CPU resources.
These resource requirements become more significant as the
size of the network grows. Furthermore, burst loss proba-
bility of the Q-NDD protocol is comparable to an existing
reinforcement learning-based deflection routing algorithm.
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Figure 7. Memory used in the network with
2,000 nodes. The graphs were generated by
using 70 equally spaced time instances over
each simulation run.
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