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Abstract—Understanding dynamics of evolution in large social
networks is an important problem. In this paper, we charac-
terize evolution in large multi-relational social networks. The
proliferation of online media such as Twitter, Facebook, Orkut
and MMORPGs1 have created social networking data at an
unprecedented scale. Sony’s Everquest 2 is one such example.
We used game multi-relational networks to reveal the dynamics
of evolution in a multi-relational setting by macroscopic study of
the game network. Macroscopic analysis involves fragmenting
the network into smaller portions for studying the dynamics
within these sub-networks, referred to as ‘communities’. From an
evolutionary perspective of multi-relational network analysis, we
have made the following contributions. Specifically, we formulated
and analyzed various metrics to capture evolutionary properties
of networks. We find that co-evolution rates in trust based ‘com-
munities’ are approximately 60% higher than the trade based
‘communities’. We also find that the trust and trade connections
within the ‘communities’ reduce as their size increases. Finally,
we study the interrelation between the dynamics of trade and
trust within ‘communities’ and find interesting results about the
precursor relationship between the trade and the trust dynamics
within the ‘communities’.

Keywords—Evolution, communities, co-evolution, multi-
relational network, trust dynamics, influence dynamics

I. INTRODUCTION

Understanding evolution of communities [18], [14], [15]
have gained importance over the past decade. Evolution of
communities help researchers identify the evolving nature
of human socialization. The huge amount of social network
data at our perusal has fueled the research in this direction.
Primarily research is performed on uni-relational networks,
which refers to networks having a single set of edges. Most of
the networks dataset that we get hold of 2 represent this kind of
networks. But we are starting to have diverse kinds of datasets.
One of these diverse datasets includes multi-relational data,
where instead of a single set of edges, we have multiple set of
edges. The introduction of multiple sets of edges introduces an
intriguing problem in the context of evolution of communities:
co-evolution. Earlier the researchers did not have to deal with
multiple relations and thus it was enough to handle evolution of
communities based on a single relation. But with the advent of
datasets containing multiple relations, arose the opportunity to

1Massively Multi-player Online Role Playing Games
2https://snap.stanford.edu/data/

study co-evolution of communities in multiple relations. Multi-
relational datasets are very hard to get a hold of, but the way
social network data is increasing, we can assume that these
relations will be available in abundance in the near future.

As discussed earlier, the availability of multi-relational
datasets is not very high. Very few researchers have based their
investigations on these kinds of datasets [2], [6], [5]. One of
them is Cai et. al. in [5] where they have looked at the problem
of community mining in multi-relational datasets. On the other
hand, the present work addresses the problem of measuring co-
evolution dynamics in communities. To start off, the networks
are partitioned into communities, using well known community
detection algorithms [14] and important statics are derived
from them. Next we look at the dynamics inside these commu-
nities discovered by the algorithms. Once we have understood
the evolution in communities, we move our investigation
to quantitatively study co-evolution of communities. Finally,
the direction of influence in the multi-relational network is
determined by statistical exploration of the interplay between
the “interesting” events within the communities.

In this work, we find that the smaller sized communities
have higher connectivity in terms of the trade and the trust
links. The experiments on co-evolution show that the trust
based communities exhibit 60% higher co-evolution rate than
trade based communities. We also find that within the tightly
knit communities, the occurrence of unusual trade dynamics is
followed by unusual trust dynamics. This observation reveals
several insights about the various dynamics occurring within
a large scale multi-relational network.

The main contributions of this work are summarized in the
following manner:

• We formulated and compared metrics to study evolu-
tion in multi-relational network.

• We find that evolution and co-evolution metrics are
strongly dependent on the type of community. Specif-
ically, we find that communities based on the trust
relationship have higher evolution and co-evolution
rates than the trade based communities.

• We find that the dynamics within a community are
influenced by its size. Specifically, we find that the
rate of increase in trust in communities decreases as
the community size increases.
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• Finally, we find precursors of various dynamics within
the communities. For example, unusual events in the
trust dynamics are preceded by unusual trade dynam-
ics.

II. RELATED WORKS

Understanding large networks and community detection
in those networks is a very well researched topic [11], [12],
[5]. Most of the research that have been done in this field is
performed on uni-relational networks [18], [12], [14]. In one
of the works by Borabora et. al [3], multi-relational networks
are studied in the area of computational trust. The primary
objective of the research was to identify robust predictors of
trust in an online virtual environment. In a different work [5],
Cai et al investigate community detection (community mining)
but the study primarily focused on how to perform efficient
detection of communities in a multi-relational setting. Various
aspects of communities have already been studied extensively
in various domains including evolution of communities [4],
[9], [14]. As discussed earlier most of these analyzes were
performed in uni-relational networks. Thus the problem of co-
evolution of the multiple relations in a network within the
communities is not addressed in these literature.

Researchers in the past decade have extensively investi-
gated the problem of finding influencers in a social network.
The seminal work by Kempe et. al. [10] in 2003 defined the
problem of finding influencers who can maximize the flow of
information in a network. Various researchers have investigated
various methods to maximize influence in a network [7] for
finding correlation and influence in social networks [1]. Kempe
et. al. [10] in their seminal work assumed that the influence
capability between nodes are already provided to the problem.
Subbian et. al. in [17] have moved away from the approach of
assuming influence weights and have instead calculated social
capital inside a network to find influencers.

III. DATA USED

Sony EverQuest II(EQ II) game provides an online envi-
ronment where multiple players can log in and coordinate with
each other to achieve a particular mission. The game provides
several mechanisms such as chat and e-mail for instantaneously
interaction. We used the server logs from this game, and we
extracted the information needed for our experiments from
these logs in which the players perform various interactions
with each other. In this section, we describe the networks used
in our experiments.

A. Trust Network

In EQ II the players are limited by the number of items
they can carry at a time, players buy houses as a temporary
storage to retain their weapons and other accessories. Players
have the ability to share their house access with other players.
The network thus formed in the process is referred to as the
trust network. We have 9 months of data from Jan-01-2006 to
Sep-11-2006 with 51,428 nodes and 72,446 edges where nodes
represent player characters in the game and edges represent a
in game character giving another in game character permission
to access his or her house. Each edge has a time stamp when
the access was granted.

TABLE I: Table showing statistics about the various overlaps
between networks.

Trade Reduced trade Total nodes
Trust 44226 (86%) 27005 (52.5%) 51428

(24.4%) (46.6%)
Total nodes 181488 57935

B. Trade Network

Like the real world, in EQ II players can exchange goods
for coins or other goods. The exchange of items between two in
game characters lead to a formation of trade links. We analyzed
such a network which contains 181,488 nodes and 22,24,450
edges over a period of 9 months from Jan-01-2006 and Sep-
11-2006.

IV. DEFINITIONS

A. Clique Percolation Method (CPM)

Clique percolation method [14] or CPM is a community
detection algorithm to detects communities from k cliques.
CPM uses adjacent cliques to build up a community. Two
cliques are considered adjacent according to CPM if they share
k − 1 edges. A community is defined as a maximal union
of adjacent cliques. k is an user defined parameter and for
this paper we empirically found that CPM performs best when
k = 3.

B. Clauset Newman and Moore Algorithm (CNM)

Clasuet Newman and Moore algorithm [8] or CNM pro-
posed by Clauset et. al. is a community detection algorithm
based on the modularity property [13] of a network. It uses a
variation of the hierarchical based clustering in which the prin-
cipal objective is to maximize the edges inside a community
and minimize inter-community edges in a network.

V. EXPERIMENTS

The following are the description of the various notations
used in computing metrics for different experiments.

Let V = {v1, . . . , vn} be the set of all nodes.

Let E = Etrust
⋃
Etrade be the set of all links. Etrust

represents all the links belonging to the trust relation and
Etrade refers to the links belonging to the trade relation. The
set E is a multi-set, i.e., edges between the same set of actors
can occur more than once. Moreover Et refers to all links that
exist at time t. For each link e ∈ E, we assume that we can
perform the following actions:

src(e) = source node of link e

dst(e) = destination node of link e

Moreover we can perform the following actions on the
multi-relational network:

Ettrust = Etrust ∩ Et

Ettrade = Etrade ∩ Et

Ck represents communities where k = 3

Since CNM does not allow overlapping communities, we
have Ck1 ∩ Ck2 = ∅ ; ∀k1 6= k2



TABLE II: Table showing the counts of communities derived
from Gtrust and G′trade usign CNM and CPM algorithms.

Community type CNM(size> 3) based count CPM(k=3) based count

Trust-communities 2889 2876
Trade-communities 2073 2898

An edge within the community k at time t is defined as
follows:

Et,ktrade = {e ∈ Ettrade|src(e) ∈ Ck and dst(e) ∈ Ck}

Et,ktrust = {e ∈ Ettrust|src(e) ∈ Ck and dst(e) ∈ Ck}
An edge peripheral to the community k at time t is defined

as follows:

P t,ktrade = {e ∈ Ettrade|(src(e) ∈ Ck and dst(e) /∈ Ck) or
(dst(e) ∈ Ck and src(e) /∈ Ck)}

P t,ktrust = {e ∈ Ettrust|(src(e) ∈ Ck and dst(e) /∈ Ck) or
(dst(e) ∈ Ck and src(e) /∈ Ck)}

A. Fragmenting network into communities

Given the multi-relational network G =< V,E >, we have
used Gtrust =< V,Etrust > and Gtrade =< V,Etrade >
networks to construct two types of communities. Using the
Gtrust, we derive communities based on trust relationship be-
tween the nodes and using the Gtrade, we derive communities
based on the trade relationship between the nodes. In order
to detect communities in Gtrust network, the entire network
was viewed as a snapshot for the entire observation period.
The direction of the edges was removed and the weights on
the edges were dropped. Then the communities were detected
on this unweighted, undirected network using two community
definitions: CNM and CPM.

In the trade (Gtrade) network, the communities were identi-
fied on a reduced network G′trade ( as shown in Table I). Note
that the reduction in network is not performed for the trust
network and thus G′trust does not exist. Since the trade links,
unlike trust links, signify instant interactions rather than a long
term relationship, we derive a new trade network G′trade where
the links can be considered better proxy. However, this new
network is used only for the purpose of fragmenting the Gtrade
network in meaningful communities. While accounting for the
various kinds of trade dynamics and trade-trust interplay, we
have used the original trade network, Gtrade. In order to derive
the G′trade from Gtrade, firstly, all the edges in Gtrade are
made undirected. By observing the Gtrade as a snapshot for the
entire observation period, edges in Gtrade are assigned weights
equal to the frequency of appearance of an edge in the entire
observation period. The weights(w) on these edges correspond
to the strength of interaction. We established a threshold of 5
interactions between actors to be represented in the new graph
which will be represented as G′trade throughout the rest of the
paper. The edges having a weight of < 5 are ignored. Finally,
the weights on the edges in G′trade are dropped. Having derived
a unweighted, undirected network G′trade, the communities are
defined on this network using CNM and CPM community
detection algorithms.

B. Statistics for Multi-relational Network

In this section, we discuss some of the statistical properties
of the communities derived in the previous experiment. For the

2 4 6 8 10 12 14 16 18 20
0

200

400

600

800

1000

1200

1400

1600

1800

2000

SIZE

C
O

U
N

T

 

 

CPM

(a)

2 4 6 8 10 12 14 16 18 20
0

200

400

600

800

1000

1200

1400

1600

1800

2000

SIZE

C
O

U
N

T

 

 

CNM

(b)

Fig. 1: Plots showing size distribution of the communities
generated by CPM and CNM respectively.
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Fig. 2: Plots showing size distribution of the communities
generated from the trade network using CPM and CNM.

sake of convenience, we refer to the communities derived from
the Gtrust as trust communities and those derived from G′trade
as trade communities. However, the communities are only a set
of nodes which can have both trust and trade edges.

Table II gives the description of the number of commu-
nities obtained on Gtrust and G′trade using CPM and CNM
definitions. As shown in table II, the number of communities
obtained using CNM is comparable to the number of commu-
nities obtained using CPM algorithms. The difference is due to
the incomplete coverage of the network using CPM definition
for communities.

Figures 1 and 2 show the distribution of community sizes
for the trust and trade communities respectively. Figures 1(a)
and 2(a) show the distribution when the communities are
defined using the CPM algorithm and figures 1(b) 2(b), show
the distribution when the communities are defined using the

TABLE III: Table showing the size of various grouping of trust
communities based on sizes.

Trust communities Group 1 Group 2 Group 3
(size:[3]) (size:[4,10)) (size:[10-))

CNM based (2889) 1154(39.9%) 1482(51.3%) 253(8.8%)
CPM based (2876) 1242(43.2%) 1346(46.8%) 288(10%)

TABLE IV: Table showing the size of various grouping of
trade communities based on sizes.

Trade communities Group 1 Group 2 Group 3
(size:[3]) (size:[4,10)) (size:[10-))

CNM based (2073) 899(43.3%) 869(42.0%) 305(14.7%)
CPM based (2898) 1412(48.7%) 1246(43.0%) 240(8.3%)
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Fig. 3: Evolution of overall trade and trust connectivity in the
network.

CNM. The large variance in sizes of communities motivates us
to analyze the various dynamics of communities by grouping
them based on their sizes. The grouping of communities into
different categories helps in a generic characterization of the
various metrics based on the size of the communities. Thus,
using the information from the size distribution, we categorized
the communities as shown in tables III and IV for trust and
trade communities respectively.

Tables III and IV provide the count of communities in each
of the categories. In both the tables, the first category(group
1) contains communities which have size = 3. As shown in
the table, group 1 communities form a large proportion of
the total communities (approximately 40− 48%) and are thus
kept in a separate category. The second category(group 2)
contains communities which have sizes ranging from 4 to 9. As
shown in the table, the group 2 covers approximately 42−50%
of the total communities. Finally, the third category(group 3)
comprises of communities which have size greater than equal
to 10. This group covers only approximately 10% of total
communities.

C. Analysis of community evolution

In this section, we discuss the experimental design for the
analysis of the community evolution in a multi-relation net-
work. There are multiple aspects of evolution of a community.
We consider the intra-community structure evolving over time.
In order to track the intra-community structure over time, we
define a metric called connectivity. Connectivity can be defined
as a measure of the intra-connectedness of a community.
At any given snapshot of time(t), the connectivity(Q) of a
community(k) can be formally defined as follows:

Qt,ktrade =
|Et,k

trade|
|Ck|×(|Ck|−1) and

Qt,ktrust =
|Et,k

trust|
|Ck|×(|Ck|−1)

Figure 3 shows the connectivity of the entire network
G =< V,E >. As shown in the figure, considering the entire
network as single community, shows that the connectivity is
of the order 10−5 throughout the time window. However, this
does not represent the actual evolution of connectivity occur-
ring in the network. As mentioned earlier, the entire network
is built up from several fragments known as communities.
Figures 4 and 5 show the evolution of average connectivity for
the communities build using different algorithms. The average

connectivity, at a time stamp t, for a specific community
detection algorithm is computed as follows:

Q̄t,Mi

trade =
∑
Qt,k

trade

|Mi| ∀ k ∈Mi and

Q̄t,Mi

trust =
∑
Qt,k

trust

|Mi| ∀ k ∈Mi

where Mi is the set of communities in the ith cate-
gory/group and i ∈ 1, 2, 3

1) Results and discussion: Figure 4 shows the average
connectivity (Q̄) plots for communities based on trust network.
Figure 4(a) corresponds to Q̄ for communities of size = 3.
As shown in the figure, the trust connectivity increases over
time whereas the trade connectivity is non-increasing which
can be considered as a key take-away. This difference owes
to the difference in nature of the trust and trade links; trust
is a relationship link whereas trade is an activity link and
thus instantaneous. This plot compares the connectivity for
CPM defined communities and CNM defined communities for
communities of size 3. From this plot, we find that the maxi-
mum trust connectivity reached is approximately 0.56. This is
obtained when communities are defined using CPM definition.
The maximum trust connectivity for communities defined by
CNM is only 0.33. Another important observation from this
plot is regarding the rate of increase in the trust connectivity.
We find that the rate of increase in trust connectivity is 1.7
times higher for CPM algorithm than for CNM algorithm. We
can also see the proportionately higher (approximately 4 times)
trade connectivity for CPM than for CNM communities for the
entire time period.

Figure 4(b) shows connectivity plots for communities of
size ranging from 4 to 9. Here the maximum trust connectivity
is approximately 0.43 for CPM communities whereas the max-
imum trust connectivity is only 0.23 for CNM communities.
The rate of increase in the trust connectivity is approximately
1.86 times higher in CPM communities than for CNM commu-
nities. Similarly, the trade connectivity is consistently higher
(5 times on average) in CPM communities over CNM commu-
nities. In figure 4(c), the plot shows average connectivity for
communities of size greater than equal to 10. As shown in the
figure, the maximum trust connectivity in CPM communities is
approximately 0.21 whereas the maximum trust connectivity in
CNM communities is only 0.05. The ratio of rate of increase
in trust connectivity in CPM to that in CNM communities
is approximately 4. Unlike smaller communities, the trade
connectivity is consistently very low (0.02 on average) and
negligible for CPM and CNM communities respectively.

Figures 5(a),(b),(c) show the average connectivity (Q̄)
plots for communities based on reduced trade network. In
comparison to the trust based communities, we can see that
the various connectivity are significantly smaller for all sizes
of communities. Figure 5(a) shows the plot for trust and trade
connectivity for communities of size 3. As shown in this
figure, the trade connectivity is higher on average than the
trust connectivity within the communities. The highest trade
connectivity is approximately 0.3 for CPM communities, while
the trade connectivity for CNM communities remains lower
than that for CPM communities for most of the time period.
The ratio of trade connectivity averaged over time between
CPM and CNM is 1.63. For the trust connectivity, the ratio
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Fig. 4: Evolution of trade and trust connectivity within the trust communities(grouped by their sizes)
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Fig. 5: Evolution of trade and trust connectivity within the trade communities (grouped by their sizes)

of rate of increase in trust connectivity between CPM and
CNM is 1.6, while the maximum trust connectivity is only
0.08 for CPM communities. Figure 5(b) shows the connectivity
for communities of size in range [4, 9]. As shown in the
figure, the general trend of trade connectivity is higher than
the trust connectivity. The maximum trust connectivity for
CPM communities is 0.25 whereas it is only 0.15 for CNM
communities. The trade connectivity in CPM was significantly
higher (by approximately 2.5) for certain windows of time
interval. For the trust connectivity, it can be observed that
CPM communities have a maximum trust connectivity of 0.06
whereas the maximum trust connectivity for CNM commu-
nities is 0.04. For communities of size greater than equal
to 10, figure 5(c) summarizes the connectivity measures for
trust and trade links. As shown in figure, the maximum trade
connectivity is as low as 0.1 for CPM whereas maximum trade
connectivity for CNM is only 0.02. Similarly the maximum
trust connectivity for CPM and CNM are 0.035 and 0.016
respectively.

To summarize, we find that the various connectivity mea-
sures, such as for trade and trust connectivity, are higher
when communities are defined using CPM algorithm rather
than CNM algorithm. This explains the difference between
the different community definitions based on the difference
in the community dynamics. Furthermore, we compared the

communities derived from the trust network and the reduced
trade network. Based on the above mentioned experiments
and observation, we find that the trust connectivity is sig-
nificantly higher in trust based communities than in trade
based communities. These results are significant in regards to
empirically show the difference between communities which
are based on trust relationship and the communities which are
based on trade relationship. Although the trade activities are
higher in trade based communities, the low trust connectivity
corresponds to weaker strength of such communities as will
be evident in the following experiments.

D. Analysing evolution of activity-relationship overlaps in
communities

In this section, we extend the previous analysis to capture
the co-evolutionary aspect of trust and trade within communi-
ties. As described in the previous section, the connectedness
within a community is measured using the connectivity metric.
However, this metric captures the trust and the trade connec-
tivity of the communities independently. Capturing interdepen-
dence between the trust and trade links within communities is
an important and interesting problem. Thus we define metrics
to compute overlap between the trust and trade links within
the communities. The overlap between trust and trade can be
defined in two ways as follows:
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Fig. 6: Analysis of evolution of proportion of trade links overlap with trust links within trust communities.
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Fig. 7: Analysis of evolution of proportion of trade links overlap with trust links within trade communities.

1) Directed overlap:: Given a snap-shot of a community
k at a time-stamp t, the directed overlap is the ratio of the
directed trade links that overlap with the directed trust links
to the total number of directed trade links in the community
k at t. It can be mathematically represented as follows:

Ot,kdirected =
|{e∈Et,k

trade|e
′=(src(e),dst(e))∈Et

trust}|
|Et,k

trade|

2) Undirected overlap:: Given a snap-shot of a community
k at a time-stamp t, the undirected overlap is the ratio of the
undirected trade links that overlap with the undirected trust
links to the total number of trade links in the community k at
t. It can be mathematically represented as follows:

Ot,kundirected =
|{e∈Et,k

trade|e
′={(src(e),dst(e))or(dst(e),src(e))}∈Et

trust}|
|Et,k

trade|

3) Results and discussion: Figures 6 and 7 show the
plots for the various overlap metrics of communities. Fig-
ures 6(a),(b),(c) show the overlap metrics for communities
derived from the trust network. The x-axis in these plots
corresponds to time in weeks and the y-axis is the overlap
metric. Each plot shows 4 curves: directed CPM correspond-
ing to directed overlap when communities are defined using
CPM algorithm, undirected CPM corresponding to undirected
overlap for CPM communities, directed CNM corresponding to
directed overlap for CNM communities and undirected CNM
for undirected overlap in CNM communities. As shown in the
figures, the overall trend of all the four metrics is approx-

imately similar for communities of sizes greater than 4. The
overlap trend is, however, slightly different for communities of
size = 3. In figure 6(a), we find that directed overlap in CNM
communities do not have an overall increasing trend. After
an initial increase until 7th week, the trend is non-increasing
unlike directed overlap in CPM communities and undirected
overlaps. In comparison to communities of size greater than
3, we see that the undirected overlap in CNM communities
has similar trends as undirected overlap in CPM communities,
unlike the trend in communities of size greater than 3.

Figures 7(a),(b),(c) show the overlap metrics for communi-
ties derived from reduced trade network. Figure 7(a) shows the
overlap metrics for communities of size 3. As shown in this
figure, all the 4 overlap metrics assume a non-increasing trend
after initial increase until week 7 or 8. It can also be seen that
the overlap metrics for CNM communities are in general lower
than that for CPM communities. In figures 7(b) and (c) the
overlap metrics are shown corresponding to the communities
of size in range [4, 9] and those with size greater than 9
respectively. For communities with size in range [4, 9] there is
an increasing trend for all the metrics and both the directed and
undirected overlap for CNM are in general lower than those for
CPM communities. The highest overlap is approximately 0.29
for CPM communities. For larger communities (size greater
than 9), the trend is slightly different. In general, both the
directed and undirected overlaps for CNM communities are



slightly higher than those for CPM communities though the
maximum overlap of 0.31 is obtained in CPM communities
considering undirected overlap between trade and trust.

To summarize, there are two main observations from this
experiment. Firstly, we compare the overlap metrics for trust
based communities and trade based communities. For the trust
based communities the maximum overlap is approximately
95% whereas for the trade based communities the maximum
overlap is about 30% only. The significant difference in the
overlap of the two is a strong indicator that the communities
defined on trade relationship fail to achieve the expected
dynamics of a effective community. In general it is expected
that strong trust within communities will also derive strong
trade activities within the communities as we can see the high
percentage of overlap in case of trust based communities.
Secondly, we find that very small sized communities (of
size 3) show slightly different overlap dynamics than other
communities of larger size.

E. Analysis of communities’ strength

In this section, we study the evolution of communities
when the communities are not treated as isolated units unlike
previous experiments. In this multi-relation network, the vari-
ous communities simultaneously co-exist and engage in vari-
ous forms of interaction(trust and trade links) with each other.
We define metrics to study the evolution of communities when
both external(peripheral) and internal(within) interactions are
possible for the communities. We have defined a metric to
capture this phenomenon. This metric is called the inter to intra
link ratio in the communities. Given a snapshot of a community
k (within a network G) at time stamp t, the inter to intra link
ratio for the community k is defined in the following manner.

St,ktrade =
|P t,k

trade|
|Et,k

trade|

St,ktrust =
|P t,k

trust|
|Et,k

trust|

The overall inter-intra link ratio can be computed as
follows:

Sttrade =
∑K
k=1 S

t,k
trade

Sttrust =
∑K
k=1 S

t,k
trust

1) Results and discussion: Figures 8(a) and 8(b) show
the evolution of the inter to intra link ratio for communities.
Figure 1 shows the inter-intra links ratio for trade and trust
links for trust based communities. As shown in the figure,
the inter-intra trade link ratio is approximately 7.7 (averaged
for the entire time period). High value of inter-intra trade
link ratio indicates the inter community trade interactions is
7.7 times the intra community trade interactions. The ratio
fluctuates within 7 to 9. However, the inter-intra trust link ratio
is as low as0.1. Low inter-intra trust link ratio is significant
because more trust links are formed within the community than
between the communities. It is surprising to find in the trust
based communities, the inter community trade is significantly
higher in comparison to intra (or within) community trade.

Figure 8 shows the inter-intra links ratio for trade and trust
links for trade based communities. As shown in the figure,
the inter-intra trade link ratio is approximately 1.25 in the
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Fig. 8: Analysis of evolution of inter to intra link ratio.

beginning of the time period and this ratio gradually increases
to 1.8 (approximately) by the end of the time period. Unlike
the above case of trust based communities where within trust
value was significantly higher, the within trade links for the
trade communities are slightly lesser than the inter community
trade links. This behavior of excess inter community trade
links is attributed to the once in a while trade interaction
within communities. Here we see that these once-in-a-while
interactions between communities increase over time. The
inter-intra trust links ratio is comparatively higher in this case.
It is interesting to see that ratio starts as high as 5 and decline
rapidly at the beginning of the time period to nearly 3.5.
Thereafter, this ratio remain persistent with the range of 3.5 to
3.75 throughout the time period. It is interesting to see that the
inter community trust is higher in the trade based communities.

To summarize,there are two interesting findings about the
inter-intra connectivity of communities. Firstly, for the trust
based communities we find that trust links are significantly
concentrated within the community whereas the trade links
are more significant between the communities than within a
community. Secondly, for the trade based communities, we
find that the trade links are equally concentrated within and
outside a community whereas the trust links are significantly
more between the communities than within a trade community.
Both these findings signify a opposite role play of trust and
trade in terms of inter-intra link dynamics.

F. Analysing influencers of events in communities

In this final section of experiments, we discuss the ex-
periment design to estimate the direction of influence in the
dynamics of communities. Given the multi-relational nature
of the communities and as shown earlier, there are two dy-
namics happening in any community: trade or trust dynamics.
The term ‘direction of influence’ corresponds to a statistical
estimate of whether one dynamics is a precursor to another
dynamics or if both the dynamics are co-occurring together
with statistical significance.

Although, any magnitude of connectivity can be said as
the dynamics of a community, however, for the purpose of
this experiment we define dynamics within a community as
the occurrence of an event. An event is defined as follows:

Event: An event refers to uncommon dynamics within
the community. Given the number of links of a certain
type ∈ {trust, trade}, |Et,ktype|, for a community k at t, a time
series(tsktype) of links for k can be constructed by varying t ∈



TABLE V: Table showing the statistics about the different
types of interesting events occurring in the CNM based trust
communities.

Events λ=1.0 λ=1.5 λ=2.0 λ=2.5
Sudden drop 179(6.20%) 116(4.02%) 70(2.42%) 43(1.49%)
(trust)
Sudden jump 2883(99.79%) 2883(99.79%) 2882(99.76%) 2854(98.79%)
(trust)
Sudden drop 128(4.43%) 33(1.14%) 5(0.17%) 0(0%)
(trade)
Sudden jump 1555(53.82%) 1555(53.82%) 1542(53.37%) 1487(51.47%)
(trade)

TABLE VI: Table showing the statistics about the direction
of influence in the CNM based trust communities which
experienced interesting event (sudden jump) in both trade and
trust dynamics.

Precursor λ=1.0 λ=1.5 λ=2.0 λ=2.5
Trade 551 (35.50%) 542(34.92%) 537(34.92%) 537(36.63%)
Trust 494(31.83%) 532(34.28%) 542(35.24%) 507(34.58%)
Co-occurrence 507(32.67%) 478(30.80%) 459(29.84%) 422(28.79%)
Total 1552 1552 1538 1466
communities

[0, T ] . An event is said to have occur in the dynamics of the
community k if:

tsktype(t)− L(tsktype) > 0∃t ∈ [0, T ]

where, L(tsktype) = µ(tsktype) + λ× ρ(tsktype)

µ: mean

ρ: standard deviation

λ: event parameter

The events can be further sub-categorized based on the trust
and trade dynamics as follows:

1) Sudden jump(trust):An event is called sudden jump
in trust dynamics when type=‘trust’ and λ ∈ {1, 1.5,
2, 2.5}

2) Sudden drop(trust):An event is called sudden drop in
trust dynamics when type=‘trust’ and λ ∈ {-1, -1.5,
-2, -2.5}

3) Sudden jump(trade):An event is called sudden jump
in trade dynamics when type=‘trade’ and λ ∈ {1, 1.5,
2, 2.5}

4) Sudden drop(trade):An event is called sudden drop in
trade dynamics when type=‘trade’ and λ ∈ {-1, -1.5,
-2, -2.5}

Tables V and VIII show the distribution of trust com-
munities across the various events. The community definitions
being used are CNM and CPM respectively. Similarly, tables X
and XIII show the distribution of trade communities across the
four events. The community definitions being used are CNM
and CPM respectively. These tables give an estimate of the
probability of the occurrence of an event.

Given the information about the events in communities,
in the next step we select communities for two types of
analysis: precursor direction (direction of influence) for sudden
jump events and precursor direction(direction of influence)
for sudden drop events. In order to determine direction of
influence in either of the above two cases, we select only
those communities in which both trade and trust events occur
anywhere in the time period [0, T ].

TABLE VII: Table showing the statistics about the direction
of influence in the CNM based trust communities which
experienced interesting event (sudden drop) in both trade and
trust dynamics.

Precursor λ=1.0 λ=1.5
Trade 49(61.25%) 4(28.6%)
Trust 24(30%) 9(64.4%)
Co-occurrence 7(8.75%) 1(7%)
Total 80 14
communities

1) Results and discussion: We discuss these results in two
parts. First we discuss the findings for the trust based com-
munities and then we discuss the findings of the trade based
communities. As described earlier, the trust based communities
can be defined using (1)CNM or (2)CPM algorithms. We first
discuss the results for CNM based trust communities. Table V
gives statistics for the above mentioned unusual events within
the communities. From this table, we find that sudden jump
events in trust dynamics happen in nearly all the communities
(99− 98%). The sudden jump event in trade dynamics is the
next significant event occurring in approximately (51− 53%)
of communities. Sudden drop event in trust dynamics is a rare
event(1.5 − 6%) and fewer communities (1.5%) are found
with this event as the threshold(λ) is increased from 1 to 2.5.
Moreover the sudden drop event occurs very rarely (> 4%)
and there is no community with this event when λ = 2.5.
In table VI, we describe the relationship between the various
unusual events within the communities. As shown in this table,
the total community rows describe the count of communities
when both the sudden jump in trade dynamics and sudden
jump in trust dynamics happen in a community during its
evolution. The precursor/ influencer relationship describe the
order of occurrence of the trade and trust unusual events
within a community. The first row describes the count of
the communities in which the trade event occurred before the
trust event during the its evolution. We find that approximately
35− 36.6% of communities first experienced a unusual trade
dynamics followed by a unusual trust dynamics. While the
trust event was precursor to trade event for about 32 − 35%
of the communities, we also find that 29− 32.6% of commu-
nities experienced both an unusual trade and trust dynamics
simultaneously. From this table we find that trade event is a
precursor of trust event along the same lines as was reported in
[16] with a slightly higher probability than the opposite case
though the difference is not significant in this case. Table VII
shows the relationship between the unusual drop in trust and
trade dynamics of a community. Similar to the sudden jump
event (table VI), we find the precursor of unusual drop event in
communities. As shown in the table, a total of 80 communities
experienced both a sudden drop in trade and a sudden drop in
trust for λ = 1 and only 14 communities have both the events
when λ = 1.5. For higher values of λ we do not find any
communities with such characteristics. Here in this table we
find that for lower values of λ(= 1.0) trade is the precursor
while for λ = 1.5 trust is precursor. Thus it is hard to find any
consistency about any precursor event in case of unusual drop
event in CNM based trust communities.

Table VIII summarizes the statistics for the unusual events
in the CPM defined trust communities. As shown in this table,
sudden jump is trade dynamics is the most significant event
across all λ values. Almost 69− 72.6% of total communities
experience this event. The sudden drop in trust dynamics and



TABLE VIII: Table showing the statistics about the different
types of interesting events occurring in the CPM based trust
communities.

Events λ=1.0 λ=1.5 λ=2.0 λ=2.5
Sudden drop 1887(65.6%) 1136(39.5%) 539(18.7%) 287(9.9%)
(trust)
Sudden jump 1785(62%) 1027(35.7%) 555(19.3%) 282(9.8%)
(trust)
Sudden drop 104(3.6%) 9(0.3%) 0(0.0%) 0(0.0%)
(trade)
Sudden jump 2089(72.6%) 2089(72.6%) 2075(72%) 1992(69%)
(trade)

TABLE IX: Table showing the statistics about the direction
of influence in the CPM based trust communities which
experienced interesting event (sudden jump) in both trade and
trust dynamics.

Precursor λ=1.0 λ=1.5 λ=2.0 λ=2.5
Trade 1127(83.5%) 647(83.8%) 315(79.5%) 136(73.5%)
Trust 72(5.5%) 29(3.8%) 16(4%) 12(6.5%)
Co-occurrence 150(11%) 96(12.4%) 65(16.5%) 37(20%)
Total 1349 772 396 185
communities

sudden jump in trust dynamics are significant for λ = 1.0 and
fewer communities experience these events as λ is increased.
These fractions range from 6% to 10%. We also find that
sudden drop in trade dynamics is again a rare event because
less than 3.6% of total communities experience this event. In
table XIV, we describe relationship between the trade and trust
sudden jump events occurring in the communities. The third
row of this table shows the count of communities for which
both sudden jump in trade and sudden jump in trust occurs
during their evolution. Unlike CNM defined communities, we
find a stronger indicator of precursor from this table. Across all
the values of λ, we find that in 73.5− 83.5% of communities
with both trade and trust event, the sudden jump in trade
dynamics is followed by a sudden jump in trust dynamics.
From this table we can clearly see that unusual trait in trust
behaviour in a community is preceded by a unusual trait
in trade behaviour within a community. Although we find
a similar behavior in case of CNM defined communities,
this behavior is strongly manifested in case of CPM defined
communities which by definition are more tightly knit than
CNM defined communities.

We now discuss the results for communities derived from
trade network. Following the same pattern as for the results for
trust based communities; we first discuss the results for CNM
defined communities. Table X shows the statistics for various
interesting events occurring in CNM defined communities.
As shown in this table, sudden jump in trade happens in
nearly all of the communities (96 − 100%). Sudden jump
in trust occurs in approximately 40% of the communities
across all values of λ. Sudden drop in trust and trade are
rare events in communities. Table XI describes the relationship
between sudden jump in trade and sudden jump in trust for the
communities which experiences both the events in course of

TABLE X: Table showing the statistics about the different
types of interesting events occurring in the CNM based trade
communities.

Events λ=1.0 λ=1.5 λ=2.0 λ=2.5
Sudden drop 90(4.34%) 63(3.04%) 42(2.03%) 30(1.45%)
(trust)
Sudden jump 829(39.99%) 829(39.99%) 825(39.80%) 810(39.07%)
(trust)
Sudden drop 108(5.21%) 35(1.69%) 2(0.096%) 0(0%)
(trade)
Sudden jump 2073(100%) 2073(100%) 2063(99.52%) 1993(96.14%)
(trade)

TABLE XI: Table showing the statistics about the direction
of influence in the CNM based trade communities which
experienced interesting event (sudden jump) in both trade and
trust dynamics.

Precursor λ=1.0 λ=1.5 λ=2.0 λ=2.5
Trade 367 (44.27%) 322(35%) 303(36.55%) 259(31.74%)
Trust 217(26.18%) 261(29%) 286(34.50%) 286(35.0%)
Co-occurrence 245(29.55%) 246(29.67%) 227(27.38%) 204(25.00%)
Total 829 829 816 749
communities

TABLE XII: Table showing the statistics about the direction
of influence in the CNM based trade communities which
experienced interesting event (sudden drop) in both trade and
trust dynamics.

Precursor λ=1.0 λ=1.5 λ=2.0
Trade 32(71.1%) 6(46.15%) 0(0.0%)
Trust 9(20%) 5(38.46%) 1 (100%)
Co-occurrence 4(8.9%) 2(15.38%) 0(0.0%)
Total 45 13 1
communities

TABLE XIII: Table showing the statistics about the different
types of interesting events occurring in the CPM based trade
communities. These interesting events are based on the dy-
namics of trade and trust within these communities.

Events λ=1.0 λ=1.5 λ=2.0 λ=2.5
Sudden drop 192(6.6%) 172(5.9%) 135(4.65%) 107(3.7%)
(trust)
Sudden jump 1274(44%) 1274(44%) 1269(43.8%) 1245(43%)
(trust)
Sudden drop(trade) 149(5%) 23(0.8%) 2(0.07%) 1(0.0%)
(trade)
Sudden jump(trade) 2898(100%) 2897(99.9%) 2879(99%) 2756(95%)
(trade)

their evolution. As shown in the table, for λ = 1.0, 1.5 trade
event seems to be precursor for trust event in communities. But
as the λ is increased to 2.0 and 2.5 the relationship reverse
and trust events shows precedence over trade events. From
this table it is hard to draw conclusion about the direction
of influence between unusual trust dynamics and unusual
trade dynamics within communities. Table XII describes the
relationship between sudden drop trade event and sudden drop
trust event in communities. Similar to the sudden jump case,
the sudden drop events in CNM defined communities has λ
dependent relationship between sudden drop trade and sudden
drop trust within communities.

Table XIII summarizes the statistics about the unusual
events in CPM defined communities. As shown in the table,
the sudden jump event in trade dynamics occurs in nearly
95 − 100% of communities depending on the values of λ.
Sudden jump in trust occurs in nearly 43 − 44% of commu-
nities. The sudden drops events in trust and trade dynamics
are very rare events. Table XIV describes the relationship
between sudden jump in trust dynamics and sudden jump in
trade dynamics of communities. In this table we can see that
the sudden jump in trade dynamics precedes the sudden jump
in trust dynamics across all the λ values. This table shows that
for communities which experiences sudden jump in trade and
sudden jump in trust, the sudden jump in trade is followed by a
sudden jump in trust. We find that the precursor relationship is
distinctly manifested in case of tightly knit CPM communities
in comparison to CNM communities.

VI. CONCLUSIONS

In this paper we have studied an interesting problem of
evolution in multi-relational social networks. Unlike conven-



TABLE XIV: Table showing the statistics about the direction
of influence in the CPM based trade communities which
experienced interesting event (sudden jump) in both trade and
trust dynamics.

Precursor λ=1.0 λ=1.5 λ=2.0 λ=2.5
Trade 690(54%) 616(48.4%) 562(44.9%) 490(42.8%)
Trust 318(25%) 392(30.8%) 442(35.3%) 416(36.4%)
Co-occurrence 266(21%) 265(20.8%) 249(19.8%) 238(20.8%)
Total 1274 1273 1253 1144
communities

tional approaches to study evolution in networks, we analyze
the evolution by fragmenting the larger network into macro
units known as communities. In a multi-relational setting, there
are several interesting phenomena about the trade and trust
dynamics which were studied in this work. Specifically, we
find that the trust based communities are strongly connected
than the trade based ones. Another essential difference between
the dynamics of trust based communities and trade based
communities is the higher co-evolution rate in trust based
communities. Averaging for the overall network, we find that
in general a community has only one type of links strongly
concentrated within itself while the other type of links are dis-
tributed outside the community. For tightly knit communities,
we find that in approximately 70% of communities experience
an unusual behavior in trade dynamics (sudden jump in trade
activity) also experience an unusual behavior in their trust
dynamics in the later period.
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