

Provided by the author(s) and University of Galway in accordance with publisher policies. Please cite the

published version when available.

Downloaded 2024-04-26T04:30:54Z

Some rights reserved. For more information, please see the item record link above.

Title Integrating Open Source Software Repositories on the Web
through Linked Data

Author(s) Iqbal, A; Decker S

Publication
Date 2015

Publication
Information

Iqbal, A; Decker S (2015) Integrating Open Source Software
Repositories on the Web through Linked Data IEEE
International Conference on Information Reuse and Integration
(IRI) San Francisco, CA,

Item record http://hdl.handle.net/10379/5444

DOI http://dx.doi.org/10.1109/IRI.2015.27

https://aran.library.nuigalway.ie
http://creativecommons.org/licenses/by-nc-nd/3.0/ie/

Integrating Open Source Software Repositories
on the Web through Linked Data

Aftab Iqbal
Insight Centre for Data Analytics

National University of Ireland, Galway (NUIG)
IDA Business Park, Lower Dangan, Galway, Ireland

Email: aftab.iqbal@insight-centre.org

Stefan Decker
Insight Centre for Data Analytics

National University of Ireland, Galway (NUIG)
IDA Business Park, Lower Dangan, Galway, Ireland

Email: stefan.decker@insight-centre.org

Abstract—In this paper, we propose a novel approach to
the problem of integrating code forges based on metadata
(e.g., programming language, database, intended audience,
operating system), similar software projects and software
developers. We review the current problems in integrating
metadata of different code forges and argue that Semantic
Web technologies are suitable for representing and integrating
knowledge contained inside these code forges. Further, we
show the advantages of interlinking metadata of software
projects to other relevant data sources on the Web, which will
enable querying more information from the Web. Moreover, we
compute the overlapping between code forges based on similar
software developers and argue the benefit of interlinking sim-
ilar software developers and software projects across different
code forges through examples.

Keywords-Linked Data; Semantic Web; FLOSS; Data Inte-
gration;

I. INTRODUCTION

With the success and adoption of Free/Libre Open Source
Software (FLOSS) development, we have seen a tremen-
dous growth in the availability and usage of different code
forges [1]. Code forges provide different kinds of features
in order to keep existing software projects and attract more
software projects. These features include managing software
project code, a place for the users to download the software
project releases, discussion forums, bug trackers, mailing
lists etc. A software project team may choose to host the
software project on their own code repository or may choose
to host the software project on one of the many avail-
able online code forges (such as SourceForge1, Savannah2,
GitHub3 etc.). Each software project code repository along
with other tools leave a detailed trace about the activities
being carried out during the whole life span of the software
project [2]. As pointed out by Conklin in [3], it is still
surprisingly difficult to obtain and abstract information from
these software repositories in order to answer even simple
questions like:

1http://sourceforge.net/
2http://savannah.gnu.org/
3https://github.com/

• How many software developers are working on a soft-
ware project?

• How big the community is surrounding a software
project?

• How many contributors are contributing to a software
project?

• What is the development ratio per software developer?
• Is the software project flourishing?
These are some of the many questions that are hidden

deep inside the software repositories and usually have in
the minds of software developers before joining or start
contributing to a software project. Having answers to such
questions can give a clear picture to the newcomers or other
interested users/software developers of the software project.
Much software development research has been carried out on
gathering metrics and developing empirical studies based on
the data retrieved from these software project repositories.
However, researchers sometime finds it difficult to make
sense of all the data for a research study due to the sheer
size of code forges, the amount of data each software project
holds, the heterogeneity of the software projects being
studied and harvesting or crawling the code forges, which is
a daunting task. In order to provide the researchers an easy
access to the software project’s data, two research software
projects were initiated (with slightly different objective) by
the open source software research community, which are
FLOSSmole4 [4], [5] and FLOSSMetrics5 [6], also known
as “repository of repositories (RoR)”. These RoRs were
created to consolidate metadata (FLOSSmole) and analysis
of software projects (FLOSSMetrics) from a variety of code
forges into a centralized place for use by the researchers in
academia and industry.

In this paper, we take into consideration only project’s
metadata from the code forges that are made available to
download by the FLOSSmole community. Further, we only
study Googlecode, GitHub and SourceForge metadata from
the integration perspective in this paper, although our meth-

4http://flossmole.org/
5http://www.flossmetrics.org/

ods extend to other code forges as well. The contribution of
this paper is twofold: first we discuss the challenges faced
while integrating metadata of different code forges. Later,
we propose our approach to model code forges metadata
using a common model and to represent software project’s
metadata in a standard format. Further, we show the benefits
of interlinking software project’s metadata to other data
sources that are available on the Web as well as interlinking
similar software projects across different code forges, using
some example scenarios.

II. MOTIVATION

FLOSSmole [5] crawls only meta information about soft-
ware projects (e.g., software project name, description, url,
no. of software developers, programming language, operat-
ing system, license) and software developers (e.g., software
developer name, software developer ID, software projects)
from different code forges and makes each code forge data
accessible to the community as flat delimited files, SQL
dumps or direct database access respectively. Although, the
data extracted from each code forge is complete, cleaned
and well described, integrating knowledge across different
code forges is still a big challenge. Each code forge has
its own database schema and represents data elements dif-
ferently. Code forges sometimes use different terminolo-
gies or keywords while describing various categories (e.g.,
software project topics, operating systems, programming
languages) for a particular software project. For example,
Googlecode defines the term Mac to associate “Macintosh”
as an operating system to the software project’s metadata
but SourceForge defines it as OS X. Although both refers to
the same operating system, different terms are used. Hence,
we require methods and techniques to define some kind
of classification/mapping, which explicitly states that the
two terms are semantically similar and belong to the same
operating system family. By doing so, one would be able to
run a query on different code forges in order to retrieve a
list of software projects that supports “Macintosh” operating
system.

Associating metadata to a software project is also being
handled differently in different code forges. For example,
SourceForge provides a granular hierarchical structure for
associating metadata to a software project by allowing
software developers to select attributes from various cate-
gory lists (e.g., operating systems, programming languages,
database environments). Comparing it to Googlecode and
GitHub, there is no proper hierarchical structure for associ-
ating metadata to a software project, which makes it harder
to integrate the code forges based on similar metadata. Fur-
thermore, the code forges do not share common semantics
for associating attributes to a software project at the database
schema level. For example, we cannot say that the database
table column named “description” in SourceForge holds the
same meaning as the database table column named “label”

in Googlecode. The reason is column “label” hold values
from various categories (e.g., programming languages, soft-
ware project topics, Databases).

Further challenges upfront in integrating code forges as
mentioned by [3] are: (1) code forges may have software
projects with similar names. Large open source software
projects may have sub-software projects hosted on different
code forges or software projects may be hosted on multiple
code forges exploiting different infrastructures. For example,
Apache Software Foundation provides its own infrastructure
to host Apache software projects but it also provide mirrors
to various Apache software projects on GitHub for those
software developers who prefer git versioning system6 over
svn versioning system7. (2) software developer identifi-
cation in different code forges. With the existence of
similar software projects on multiple code forges, software
developers are often found on multiple code forges. How-
ever, software developer identification might be a problem
because software developers may have used different IDs for
different code forges, different software developers may have
similar names/IDs across different code forges or software
developers may have used similar IDs across different code
forges.

Apart from the challenges upfront while integrating
knowledge about software developers and software projects
across different code forges, it may not be wrong to state
that code forges are somehow interconnected but rather
of an implicit nature (for example, software developers
contributing to different software projects across different
code forges). Hence, we need to make the interconnections
among code forges explicit and further allow connecting to
other relevant data on the Web.

Having such an explicit representation of the intercon-
nections between different code forges, we will be able to
support certain use case scenarios, some of which are listed
in the following:

• Retrieving complete history of a software project
distributed across code forges. Sometimes software
projects are migrated from one code forge to another
over the period of time. Linking similar software project
across code forges will enable full development history
of the software project across different code forges.

• Tracing software developer activities across differ-
ent code forges. Linking software developer’s profile
across different code forges will enable us to trace the
activities of a software developer across code forges. It
will further allows us to rank code forges based on the
number of software projects he/she is working on in a
particular code forge.

• Is the popularity level of a particular code forge
increasing or decreasing? Assuming that code forges

6http://git-scm.com/
7http://subversion.apache.org/

are connected to each other, it would be interesting to
investigate if software developers are migrating from
one code forge to the other. For example, if software de-
velopers are considering hosting new software projects
on Github rather than Googlecode or SourceForge. This
use case will further lay down foundations to study
open source software community dynamics across code
forges.

• Assuming that the software project’s metadata is
interlinked to other data sources on the Web, further
information about a particular entity can be provided.
For example, if Algol 688 is associated as a program-
ming language to a particular software project then the
user would be able to get further information about
Algol 68 from the Web (for example, from Wikipedia9).

In order to deal with the interoperability and integration
issues to realize different use case scenarios, we show
modeling of code forges metadata based on a standard
format in the following section.

III. MODELING CODE FORGE METADATA

Aforementioned, the usage of a common model and stan-
dard format to represent software project’s metadata from
multiple code forges would allow better integration. One
may think of questions like: what is the best way to express
the knowledge so that it can be integrated easily across
multiple code forges? Can the knowledge be further used
to link to other data sources that contains extra information
about a certain entity? Can it be done in an automated
fashion? How easy will it be to explore related knowledge
from different data sources?

In order to tackle these issues, we propose to use Semantic
Web technologies to represent FLOSS data that exists in
different code forges. As such, we propose to use RDF [7]
(Resource Description Framework) as the core, target data
model. Further, the RDFS and OWL standards can be used
to well-define the vocabulary needed to describe the data
(i.e., classes and properties). Once modeled in RDF, the
data can be indexed and queried using the SPARQL query
standard and associated tools. Additionally, the more recent
SKOS10 standard can be used to model hierarchical concept
schemes. Finally, the integrated data can be published on the
Web using Linked Data priniciples11 allowing third parties
to discover and subsequently crawl the knowledge, and also
allowing to interlink with background information available
remotely on the Web. We refer the readers to [8] for details
on how these standards would be used and put our focus on
the use of SKOS as well as Linked Data to illustrate part of
the modeling process.

8http://www.algol68.org/
9http://en.wikipedia.org/wiki/ALGOL 68
10http://www.w3.org/2004/02/skos/
11http://www.w3.org/DesignIssues/LinkedData.html

We looked into SourceForge, Googlecode and GitHub’s
hierarchical structure in order to identify the process of
associating attributes to a software project and found that
SourceForge is following an organized hierarchical structure
of categorizing the software project’s attributes. Hence, we
decided to do the modeling based on the hierarchical orga-
nization of software project attributes in SourceForge rather
than Googlecode or GitHub. We examine the modeling and
interlinking of code forges to other data sources in the
following. An excerpt of an exemplary RDF representation
of an operating system classification using SKOS vocabulary
is shown in Listing 112.

1 @prefix base: <http://srvgal85.deri.ie/linkedfloss/schemes/os#> .
2 @prefix skos: <http://www.w3.org/2004/02/skos/core#> .
3
4 base:modern a skos:ConceptScheme;
5 skos:prefLabel "Modern (Vendor-Supported) Desktop Operating Systems"@en;
6 skos:hasTopConcept base:linux;
7 skos:hasTopConcept base:net-bsd;
8 skos:hasTopConcept base:os-x
9 .

10 base:linux a skos:Concept;
11 skos:inScheme base:modern;
12 skos:prefLabel "Linux"@en
13 .
14 ...

Listing 1. An exemplary SKOS concept scheme defining different
operating systems for SourceForge.

The SKOS vocabulary is used to aggregate concepts/ter-
minologies into a single concept scheme. For example, in
Listing 1 we have defined some operating systems under
one concept scheme. The benefit of using SKOS vocabulary
is that the concept schemes are easily extensible. Therefore,
if a code forge later adds a new operating system, which
is not listed in the existing concept scheme then it can
be added easily (see Listing 2, line #3 and lines #5–8).
Moreover, a code forge can define its own SKOS concept
scheme and link it to the core SKOS concept scheme using
skos:inScheme property. This approach allows to keep
all predefined operating systems from different code forges
under one scheme.

1 base:modern a skos:ConceptScheme;
2 ...
3 skos:hasTopConcept base:vista;
4 ...
5 base:vista a skos:Concept;
6 skos:inScheme base:modern;
7 skos:prefLabel "Windows Vista"@en
8 .
9 ...

Listing 2. Adding a new concept to the existing SKOS concept scheme.

Referring to the previous example (cf. Section II)
of using different terminologies for the same concept
across code forges, SKOS vocabulary offers to use
skos:exactMatch property in order to express that the
terms Mac and OS X are semantically similar.

12We encourage readers to have a look at the concept schemes, which
are available at: http://srvgal85.deri.ie/linkedfloss/schemes/

1 ...
2 base:vista a skos:Concept;
3 skos:inScheme base:modern;
4 skos:prefLabel "Windows Vista"@en;
5 owl:sameAs <http://dbpedia.org/resource/Windows_Vista>

6 .
7 ...

Listing 3. An interlinking example connecting an operating system to its
relevant entity in DBpedia.

We have shown modeling of code forges based on meta-
data, the next is to interlink the metadata to other data
sources on the Web. Referring back to Listing 2, we know
that “Windows Vista” is an operating system and it would be
beneficial if we interlink this concept to other relevant data
source on the Web (for example, to the Wikipedia entry13).
By interlinking the two data sources together, we will be
able to retrieve information about “Windows Vista” from
Wikipedia. In order to extract structured information from
Wikipedia, the research community has developed DBpe-
dia [9]. DBpedia allows to ask queries against Wikipedia,
and to link other datasets on the Web to the Wikipedia data.
We can interlink the concepts defined (e.g., base:vista
in this example) to the corresponding DBpedia entity us-
ing an owl:sameAs property indicating that these URIs
actually refer to the same entity (see Listing 3).

Now that we have defined the metadata of code forges
using SKOS vocabulary and further provided an example
of interlinking metadata to other relevant data sources on
the Web, the next step is to use the meta information
while publishing RDF description of software projects that
are contained inside FLOSSmole database dumps. Due to
the large number of software projects contained inside
FLOSSmole database dumps, we have developed custom
written scripts to automatically publish each software project
as RDF statements based on the information provided by
FLOSSmole. We show RDF representation of 1 software
project taken from the SourceForge database dump, as an
example in Listing 4. We use different RDF vocabularies
to describe meta information of software projects as RDF
statements. doap (description of a project) vocabulary is
specifically designed to describe meta information of a soft-
ware project, therefore we use various properties from doap
vocabulary to describe information of a software project as
RDF statements. Moreover, we use foaf vocabulary to de-
scribe meta information of a software developer as shown in
Listing 4. As each code forge has its own database schema,
the underlying RDF description for software projects of each
code forge slightly differs from each other.

IV. INTERLINKING CODE FORGES: PRELIMINARY
FINDINGS

In this section, we will argue the benefit of interlinking
code forges to each other and to other potential data sources

13http://en.wikipedia.org/wiki/Windows Vista

1 @prefix doap: <http://usefulinc.com/ns/doap#> .
2 @prefix dc: <http://purl.org/dc/elements/1.1/> .
3 @prefix dcterms: <http://purl.org/dc/terms/> .
4 @prefix foaf: <http://xmlns.com/foaf/0.1/> .
5
6 <http://example.org/linkedfloss/sourceforge/project/filezilla> a doap:Project;
7 dc:title "FileZilla";
8 doap:created "2001-02-27T00:00:00.0";
9 doap:description "FileZilla is a cross-platform graphical FTP, FTPS and SFTP

client a lot of features, supporting Windows, Linux, Mac OS X and more.
FileZilla Server is a reliable FTP server for Windows.";

10 doap:developer <http://example.org/linkedfloss/sourceforge/author/bog>,
11 <http://example.org/linkedfloss/sourceforge/author/civ>,
12 <http://example.org/linkedfloss/sourceforge/author/ean>;
13 doap:homepage <http://sourceforge.net/software projects/filezilla>;
14 doap:license <http://www.gnu.org/licenses/gpl-1.0.html>;
15 foaf:homepage <http://filezilla.sourceforge.net>;
16 dcterms:subject <http://example.org/linkedfloss/schemes/audience#desktop>,
17 <http://example.org/linkedfloss/schemes/audience#developers>,
18 <http://example.org/linkedfloss/schemes/topic#social_networking>,
19 <http://example.org/linkedfloss/schemes/translation#french>,
20 <http://example.org/linkedfloss/schemes/translation#english> .
21
22 <http://example.org/linkedfloss/sourceforge/author/bog> a foaf:Person;
23 foaf:accountName "bog";
24 foaf:mbox_sha1sum "9080a9d64e29e35892c9517bd95e2e8e4f5b13f6";
25 foaf:name "Tim" .
26 ...

Listing 4. RDF description of a SourceForge software project based on
the data provided by FLOSSmole.

on the Web through examples. Before that, we show the
total number of software projects and software developers
that exist in the FLOSSmole database dumps of different
code forges in Table I.

Code Forge Software Projects Software Developers
SourceForge 204439 256516
Googlecode 167286 203691
GitHub 155326 119196

Table I
TOTAL NUMBER OF SOFTWARE PROJECTS AND SOFTWARE DEVELOPERS

FOUND IN EACH CODE FORGE BASED ON FLOSSMOLE DATABASE
DUMP.

Once the software projects and software developers of
each code forge under consideration are published as RDF
datasets using our custom written scripts, we loaded the RDF
datasets into our public SPARQL endpoint14. We discussed
previously about interlinking code forges metadata to their
relevant terms in DBpedia. Therefore, we show the total
number of owl:sameAs links that are established between
DBpedia and relevant code forges metadata terms that are
defined using SKOS vocabulary in Table II.

Code Forge owl:sameAs
SourceForge 542
Googlecode 382
GitHub 123

Table II
INTERLINKING CODE FORGE METADATA TERMS WITH DBpedia

DATASET.

The owl:sameAs links were created by manually check-
ing the terms in a code forge and their corresponding entry

14http://linkedcodeforges.srvgal85.deri.ie/sparql

in DBpedia. However, duplicate detection algorithms and
frameworks like Silk [10], Swoosh [11], Duke15 etc., could
also be taken into account for establishing the owl:sameAs
links but it is not in the current scope of this work. The
results (cf. Table II) shows that SourceForge has defined
a variety of terms to associate metadata to a software
project in contrast to Googlecode and GitHub. We have
done interlinking with DBpedia dataset only however other
potential LOD datasets16 can also be taken into account to
enrich the interlinking between code forges metadata and
LOD datasets. This is particularly beneficial in querying
relevant information about a particular entity from multiple
data sources. For example, a software project is written
in Java programming language and its meta information is
interlinked with DBpedia using owl:sameAs property, one
could query DBpedia to find more information about Java
programming language. For example:

• who is the designer/software developer?
• when was it created?
• what is the license type?
• what operating system does it support?
Another benefit of interlinking is the ease of querying

software projects across code forges that comes under a
specific category. For example, a simple query is to find
out the total number of software projects hosted on different
code forges that are implemented in a specific programming
language. We consider 5 programming languages and show
the number of software projects that are implemented using
these programming languages on different code forges, in
Table III. The results shown in Table III can be further
narrowed down by specifying other meta information in the
query (e.g., audience, database, operating system).

Programming
Language

Googlecode (soft-
ware projects)

GitHub (software
projects)

SourceForge (soft-
ware projects)

JavaScript 19,760 22,331 8,975
Ruby 2,163 28,655 1,563
Delphi 418 135 3,023
MatLab 393 181 441
Assembly 162 196 2,058

Table III
SOFTWARE PROJECTS DEVELOPED USING DIFFERENT PROGRAMMING

LANGUAGES ON CODE FORGES.

A. Interlinking Software Project to Other Relevant Data
Resources

In this subsection, we provide an example of interlinking
a software project hosted on a code forge to its existence
in other data sources on the Web. For example, Ohloh17

(now known as OpenHUB) is a free wiki for open source
software and people. Ohloh provides analytical information

15http://code.google.com/p/duke/
16http://lod-cloud.net/
17http://www.ohloh.net/

and services about open source software projects by crawling
data from a variety of code forges. An RDF wrapper18, a.k.a.,
RDFohloh [12], has developed by the Semantic Web research
community, which provides Linked Data version of Ohloh.
The RDF description of a software project generated by
RDFohloh can be interlinked to its relevant software project’s
RDF description generated from the code forge using an
owl:sameAs property. This interlinking will allow anyone
to retrieve statistical and other relevant information about a
software project or software developer from Ohloh as shown
in the example below.

Let’s take the example of FileZilla software project19

hosted on SourceForge and its statistical information is
also available at Ohloh20. Let’s assume that we have the
metadata of FileZilla software project available in RDF (cf.
Listing 4) and the RDF description of FileZilla software
project from Ohloh is made available using RDFOhloh21.
Assuming that both RDF datasets are interlinked based
on software developer IDs, one can query the statistical
information about FileZilla software project, geo location
of a software developer, total number of commits made
by a software developer, software developer’s kudo rank
and other software projects he/she is contributing to etc.,
from Ohloh. An excerpt of an exemplary SPARQL query
retrieving information about a FileZilla software developer
from Ohloh is show in Listing 5.

1 PREFIX doap: <http://usefulinc.com/ns/doap#>
2 PREFIX owl: <http://www.w3.org/2002/07/owl#>
3 PREFIX sioc: <http://rdfs.org/sioc/ns#>
4 PREFIX ohloh: <http://rdfohloh.wikier.org/ns#>
5 PREFIX foaf: <http://xmlns.com/foaf/0.1/>
6 PREFIX geo: <http://www.w3.org/2003/01/geo/wgs84_pos#>
7
8 select ?name ?kudorank ?lat ?long {
9 ?prj doap:name "FileZilla" .

10 ?prj doap:developer ?d .
11 ?d owl:sameAs <http://rdfohloh.wikier.org/user/19727#person> .
12 ?dev foaf:name ?name .
13 ?dev ohloh:kudo-rank ?kudorank .
14 ?f foaf:holdsAccount ?dev .
15 ?f foaf:based_near ?geolocation .
16 ?geolocation geo:lat ?lat .
17 ?geolocation geo:long ?long .
18 }

Listing 5. SPARQL query that retrieves profile information about a
SourceForge software developer from Ohloh.

The result returned by the query listed in Listing 5 is
shown in Table IV. By interlinking a software project hosted
on a code forge with Ohloh [13], we enable to track not only
the software developer’s development activity on that par-
ticular software project by mining information hidden deep
inside the software repositories but also can get statistical
information about software developer’s development activity.

B. Software Developers Overlapping Across Code Forges

We now perform a preliminary study to identify the over-
lap across different code forges based on similar software

18http://rdfohloh.wikier.org/
19https://sourceforge.net/softwareprojects/filezilla/
20http://www.ohloh.net/p/filezilla
21http://rdfohloh.wikier.org/project/FileZilla.rdf

Name Kudorank Lat Long
Tim 10 39.234651 11.432376

Table IV
GEO LOCATION AND RANK OF A SOFTWARE DEVELOPER RETRIEVED

FROM OHLOH.

developers. For this preliminary study, we also considered
27 random Apache software projects and extracted 29,860
distinct <name,email> pairs of people (i.e., software de-
velopers, contributors, bug reporters, users etc.) from the
bug repository of Apache Software Foundation22. We strictly
matched their <name,email> (excluding the domain after
“@”) pairs against all software developer <name,email>
(excluding the domain after “@”) pairs available in the
database dump of SourceForge. The database dump of
Googlecode provided by FLOSSmole does not contain nam-
ing information about software developers, therefore we
considered matching only software developer IDs in the case
of Googlecode. The results of the study is shown in Table V.
The analysis may contain errors because there may be
different software developers with identical <name,email>
(excluding the domain after “@”) pair exists in differ-
ent code forges. Furthermore, we have less confidence on
our matching results against Googlecode because we only
matched software developer IDs. A more thorough validation
is required before interlinking software developer IDs across
code forges, which is not in the current scope of this work.
However, our preliminary study shows that there are over-
lappings across different code forges and these overlappings
can be made explicit by interlinking software developers
and software projects, hence enabling an interlinked FLOSS
ecosystem.

Forge A (software de-
velopers)

Forge B (software de-
velopers)

Developers
Found

Overlap
Ratio (%)

Apache (29,860) Sourceforge (256,516) 1,480 4.95
Apache (29,860) Googlecode (203,691) 1,041 3.48
Googlecode (203,691) Sourceforge (256,516) 16,351 8.02

Table V
OVERLAPPING BETWEEN CODE FORGES BASED ON SOFTWARE

DEVELOPERS.

For this particular study, we considered only those people
who are involved in communication on the bug tracking
system of 27 different Apache software projects. Most of
them may not be the actual software developers of those
Apache software projects. However, we wanted to show
that the software developers who exists on SourceForge or
Googlecode are somehow contributing (i.e., bugs reporting,
bugs commenting, source code patches, etc.) to the Apache
software projects or part of Apache software projects too
and their contributions can be made explicit by interlinking

22https://issues.apache.org/bugzilla/

them.

V. DISCUSSION

In the previous section, we discussed briefly the implicit
connection between code forges based on software develop-
ers existence in multiple code forges. Further, we showed the
advantage of interlinking software projects to other relevant
data sources (e.g., Ohloh) on the Web, hence allowing to
retrieve more information relevant to a software project or
software developer. In the following, we further support
the idea of interlinking software projects across different
code forges by presenting a use case. We emphasize that
we do not propose any heuristics or algorithm for efficient
software project matching but instead advocate the benefits
of interlinking code forges through an example.

UseCase: Interlinking similar software projects across
multiple code forges:

In order to identify the existence of similar software
projects across code forges, different heuristics could be
adopted as proposed by [14]. For example, software project’s
metadata (e.g., name, description, URL, license, operating
system, programming language) can be taken into account
to match software projects across code forges. However,
we take into account only the software project URL as
a matching attribute in order to identify similar software
projects across code forges. Our simple matching approach
is explained in the following:

Software projects hosted on Googlecode typically have
URL of the form: http://code.google.com/p/x, where x is
the name of the software project. We query all software
projects hosted on SourceForge that contains Googlecode
software project URLs. For all those software projects where
Googlecode software project URLs are found, we establish
an owl:sameAs link between the URIs of both software
projects. For an example, we consider Quadra software
project, which is a multiplayer action puzzle game and is
hosted on SourceForge23 and Googlecode24. Assuming that
the software projects of SourceForge and Googlecode are
available as RDF datasets, we link both software projects
using an owl:sameAs property as shown in Listing 6.

1 @prefix owl: <http://www.w3.org/2002/07/owl#> .
2
3 <http://example.org/linkedfloss/googlecode/project/quadra> owl:sameAs
4 <http://example.org/linkedfloss/sourceforge/project/quadra> .

Listing 6. An interlinking example connecting similar software project on
Googlecode and SourceForge.

Matching software projects hosted on SourceForge
against software projects in other code forges is achieved
in a slightly different way. SourceForge usually have
two different URLs for a single software project. One

23https://code.google.com/p/quadra/
24http://sourceforge.net/projects/quadra/

URL refers to the actual software project directory
where software repositories, software project’s metadata
and software developer’s information are available (e.g.,
http://sourceforge.net/projects/x), while the other URL refers
to the HTML website describing the software project (e.g.,
http://x.sourceforge.net/). The software development teams
may use any of the two URLs as a homepage for the software
projects that are hosted on other code forges. Therefore, we
match software projects based on both URLs. We apply
these approaches in a pairwise manner on Googlecode,
GitHub, SourceForge code forges. The results achieved
through matching software projects based on URL across
different code forges are shown in Table VI.

Source Code
Forge

Target Code
Forge

Projects
Matched

Googlecode SourceForge 177
Googlecode GitHub 595
SourceForge GitHub 699
GitHub SourceForge 25

Table VI
MATCHING SIMILAR SOFTWARE PROJECTS ACROSS DIFFERENT CODE

FORGES BASED ON THEIR URLS.

The results in Table VI shows existence of good number
of Googlecode and SourceForge software projects that are
found on GitHub in contrast to GitHub software projects
that are found on SourceForge. This can be due to the
increase in the preference of software developers working
in a GitHub environment or an indication of the growing
popularity of GitHub over Googlecode and SourceForge.
The Googlecode database dump (provided by Flossmole)
does not have any information for software project URL,
which is the reason we do not provide any results of the
existence of SourceForge and GitHub software projects that
may exist on Googlecode. The number of matched software
projects based on the software project URL is relatively low
comparing to the number of software projects hosted on each
code forge (cf. Table I). However, one advantage of matching
software projects based on software project URL is that it
also matches those software projects where the software
project names are different across code forges. For exam-
ple, libxls25 and libxls cmake26 are same software projects
hosted on different code forges where libxls cmake contains
software project URL of libxls. We may achieve a high
number of matching candidates if we take into account other
matching attributes, which are mentioned by [14]. However,
our goal in this paper is to not increase the number of links
across code forges but to show the benefits of interlinking
and exploiting software project-related information across
different code forges.

Given that similar software projects are interlinked across

25http://sourceforge.net/softwareprojects/libxls/
26https://github.com/wiglot/libxls cmake

different code forges through owl:sameAs property, we
are able to extract a list of software developers who are
working on the same software project across different code
forges as shown in Listing 7.

1 PREFIX doap: <http://usefulinc.com/ns/doap#>
2 PREFIX owl: <http://www.w3.org/2002/07/owl#>
3
4 select ?developers {
5 ?prj a doap:Project .
6 ?prj doap:name "quadra" .
7 {?prj owl:sameAs ?prjAlt .} UNION {?prjAlt owl:sameAs ?prj .}
8 ?prjAlt doap:developer ?developers .
9 }

Listing 7. SPARQL query that retrieves a list of software developers
working on the same software project (i.e., quadra) across different code
forges.

The results of the SPARQL query listed in Listing 7 are
shown in Table VII. The results in Table VII shows that four
software developers are found on Googlecode developing the
“quadra” software project while other software developers
are found on SourceForge.

Software Developers
http://example.org/linkedfloss/googlecode/author/pphaneuf
http://example.org/linkedfloss/googlecode/author/rveilleux
http://example.org/linkedfloss/googlecode/author/slajoie
http://example.org/linkedfloss/googlecode/author/dgryski
http://example.org/linkedfloss/sourceforge/author/pphaneuf
http://example.org/linkedfloss/sourceforge/author/rveilleux
http://example.org/linkedfloss/sourceforge/author/stanb
http://example.org/linkedfloss/sourceforge/author/nypon
http://example.org/linkedfloss/sourceforge/author/pihvi
http://example.org/linkedfloss/sourceforge/author/slajoie
http://example.org/linkedfloss/sourceforge/author/plombe
http://example.org/linkedfloss/sourceforge/author/roncli

Table VII
LIST OF SOFTWARE DEVELOPERS WORKING ON THE SAME SOFTWARE

PROJECT ACROSS DIFFERENT CODE FORGES.

An interesting fact we see in Table VII is the existence
of similar software developers in multiple code forges due
to the existence of similar software project. We see that
some software developers (i.e., pphaneuf, rveilleux and
slajoie) in Table VII holds account IDs on both code forges
(i.e., Googlecode and SourceForge). Therefore, existence of
software developers in multiple code forges can be exploited
by interlinking their respective IDs.

VI. CONCLUSION AND FUTURE WORK

We have motivated and proposed a novel approach of
integrating code forges based on software project’s meta-
data, similar software projects and software developers. We
highlighted the issues in integrating metadata of different
code forges and argue that a common model definition is
required to enable integration across different code forges.
We proposed and supported with examples that Semantic
Web technologies (Linked Data in particular) allow inte-
grating knowledge not only across different code forges but
also to other relevant data sources available on the Web. We
considered only SourceForge, Googlecode and GitHub as an

example for modeling, however there are several other code
forges available on the Web. Therefore, one potential future
work direction is to extend the common model definition by
taking into account other code forges.

We have made some initial steps towards realizing this
whole integration vision, although much more work needs
to be done. We have demonstrated interlinking software
projects across different code forges but not much infor-
mation can be queried due to the limited data available
for each code forge, which is provided by the FLOSSmole
community. FLOSSmole provides only meta information
about software projects, therefore we are not able to query
the artifacts (i.e., bug, source control commit logs, emails
etc.) underlying software repositories in order to discover
valuable information. However, if in the future FLOSSmole
publish artifacts level information of every software project
for different code forges then it can be easily converted to
RDF datasets and further integration can be achieved [15].

In order to demonstrate the real benefits of integrating
code forges (based on software projects and software devel-
opers information) to each other, we are required to extract
detailed information relevant to a software project that are
hidden deep inside software repositories of code forges.
This would allow interested users to find answers to various
questions:

• how much percentage of development is carried out on
a software project across different code forges?

• what is the contribution of a software developer in
different software projects across code forges?

• how big the community is around a particular software
project across different code forges?

ACKNOWLEDGMENT

This publication has emanated from research conducted
with the financial support of Science Foundation Ireland
(SFI) under Grant Number SFI/12/RC/2289.

REFERENCES

[1] M. Squire and D. Williams, “Describing the software
forge ecosystem,” in Proceedings of the 2012 45th
Hawaii International Conference on System Sciences, ser.
HICSS ’12. Washington, DC, USA: IEEE Computer
Society, 2012, pp. 3416–3425. [Online]. Available: http:
//dx.doi.org/10.1109/HICSS.2012.197

[2] J. Gonzalez-Barahona, D. Izquierdo-Cortazar, and M. Squire,
“Repositories with public data about software development,”
Int. J. Open Source Software and Processes, vol. 2, no. 2, pp.
1–13, 2010.

[3] M. Conklin, “Beyond low-hanging fruit: Seeking the next
generation in floss data mining.” in proceeedings of OSS,
2006, pp. 47–56.

[4] J. Howison and M. S. Conklin, “Ossmole: A collaborative
repository for floss research data and analyses,” in 1st Inter-
national Conference on Open Source Software, Genova, Italy,
2005.

[5] J. Howison, M. Conklin, and K. Crowston, “Flossmole: A
collaborative repository for floss research data and analyses,”
International Journal of Information Technology and Web
Engineering, vol. 1, no. 3, pp. 17–26, 2006.

[6] I. Herraiz, D. Izquierdo-Cortazar, and F. Rivas-Hernández,
“Flossmetrics: Free/libre/open source software metrics,” in
CSMR, 2009, pp. 281–284.

[7] G. Klyne, J. J. Carroll, and B. McBride, “Resource Descrip-
tion Framework (RDF): Concepts and Abstract Syntax),” http:
//www.w3.org/TR/rdf-concepts/, RDF Core Working Group,
W3C Recommendation 10 February, 2004.

[8] T. Heath and C. Bizer, “Linked data: Evolving the web into
a global data space (1st edition),” Synthesis Lectures on the
Semantic Web: Theory and Technology, vol. 1, no. 1, pp. 1–
136, 2011.

[9] S. Auer, C. Bizer, G. Kobilarov, J. Lehmann, R. Cyganiak,
and Z. Ives, “Dbpedia: a nucleus for a web of open
data,” in Proceedings of the 6th international The semantic
web and 2nd Asian conference on Asian semantic web
conference, ser. ISWC’07/ASWC’07. Berlin, Heidelberg:
Springer-Verlag, 2007, pp. 722–735. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1785162.1785216

[10] J. Volz, C. Bizer, M. Gaedke, and G. Kobilarov, “Silk a link
discovery framework for the web of data,” in 2nd Workshop
about Linked Data on the Web (LDOW2009), Madrid, Spain,
2009.

[11] O. Benjelloun, H. Garcia-Molina, D. Menestrina, Q. Su,
S. E. Whang, and J. Widom, “Swoosh: a generic
approach to entity resolution,” The VLDB Journal, vol. 18,
no. 1, pp. 255–276, Jan. 2009. [Online]. Available:
http://dx.doi.org/10.1007/s00778-008-0098-x

[12] S. Fernández, “Rdfohloh, a rdf wrapper of ohloh,” in 1st
workshop on Social Data on the Web (SDoW2008), co-located
with ISWC2008, Karlsruhe, Germany, 2008.

[13] A. Iqbal and M. Hausenblas, “Integrating developer-related
information across open source repositories,” in IEEE 13th
International Conference on Information Reuse and Integra-
tion (IRI), 2012.

[14] M. Conklin, “Project entity matching across floss reposi-
tories,” in 3rd International Conference on Open Source
Systems, Springer. Limerick, IE: Springer, 2007, pp. 45–
57.

[15] A. Iqbal, O. Ureche, M. Hausenblas, and G. Tummarello,
“LD2SD: Linked Data Driven Software Development,” in
Proceedings of the 21st International Conference on Soft-
ware Engineering and Knowledge Engineering (SEKE 2009),
Boston, USA, 2009.

