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Abstract

Faceted browsing has become ubiquitous with modern digital libraries and online search engines, 

yet the process is still difficult to abstractly model in a manner that supports the development of 

interoperable and reusable interfaces. We propose category theory as a theoretical foundation for 

faceted browsing and demonstrate how the interactive process can be mathematically abstracted. 

Existing efforts in facet modeling are based upon set theory, formal concept analysis, and 

lightweight ontologies, but in many regards, they are implementations of faceted browsing rather 

than a specification of the basic, underlying structures and interactions. We will demonstrate that 

category theory allows us to specify faceted objects and study the relationships and interactions 

within a faceted browsing system. Implementations can then be constructed through a category-

theoretic lens using these models, allowing abstract comparison and communication that naturally 

support interoperability and reuse.

Index Terms

Data models; interactive systems; software reusability; information architecture

I. Introduction

Faceted browsing (also called faceted search or faceted navigation) is an exploratory search 

model, where facets assist in the navigation of search results [1]. Facets are simply attributes 

attached to the actual objects being explored. An example of a facet attached to a book could 

be its genre or publication date. In a typical faceted browsing system, a user is shown search 

results alongside a list of related, relevant facets, allowing interactive filtering and expansion 

of results [2]. A faceted taxonomy is the collection of facets provided by the interface and is 

often organized as sets, hierarchies, or graphs.

The design of the system’s underlying model directly impacts the user’s ability to filter, 

rank, and interact with the facets; in fact, some models contain no interactivity [3]. Wei et al. 

observed three major theoretical foundations behind current research of facet models: set 

theory, formal concept analysis, and lightweight ontologies [3]. Facet modeling focuses on 

the formal representation of faceted data and the interactive consequences that follow when 

using that model.

HHS Public Access
Author manuscript
Proc IEEE Int Conf Inf Reuse Integr. Author manuscript; available in PMC 2017 April 14.

Published in final edited form as:
Proc IEEE Int Conf Inf Reuse Integr. 2015 August ; 2015: 388–395. doi:10.1109/IRI.2015.65.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



The motivation for choosing category theory began when designing the next phase of 

DELVE [4], our framework for creating visualizations for browsing biomedical literature. 

Specifically, we encountered difficultly in modeling DELVE’s ability to create numerous 

visualizations, which are either controlled by facets or contain faceted structures. 

Additionally, one visualization may impact another (either by filtering or focusing). For 

example, how can you effectively represent a hierarchical tree of facets which is 

simultaneously browsable and capable of spawning faceted graphs containing interactive, 

linked nodes? A model of faceted browsing that is capable of representing faceted 

taxonomies generically would enable the quick creation of interoperable faceted components 

within an interface and enable their reuse in either other parts of the interface or in a 

different interface altogether. Although this abstraction is possible with set theory, the 

notation quickly becomes cluttered and error-prone. It is very difficult to incorporate 

existing work on faceted browsing due to the vast variety of models and implementations. A 

modeling methodology that is capable of operating at a high level of abstraction is necessary.

Some faceted systems, such as hierarchical faceted categories [1], [5], are implemented 

without a true theoretical foundation [3]; in this context, categories refer to how facets 

categorically index items and is not related to category theory. In general, category theory 

aims to represent objects and relations at their most intrinsic, abstract level and is 

appropriate for modeling problems in the sciences [6], including computer science [7]. The 

volume of existing work for faceted browsing systems lends itself to a higher degree of 

abstraction, where existing works can become interoperable and reusable in new research 

settings. We will demonstrate that category theory is an appropriate framework for 

developing such abstractions by establishing facets and faceted taxonomies as categories.

II. Background

Faceted browsing systems enable effective use of faceted taxonomies and facet 

classification, the process of assigning facets to the resources to be queried. The utility of 

faceted classification and faceted taxonomies is well-understood [1], [2], [8], even as a 

pivotal element to modern information retrieval [9]. Faceted taxonomies can aid in the 

construction of information models [10] or aid in the construction of a larger ontology [11]. 

We focus on modeling faceted browsing in a way that enables the design of reusable and 

interoperable faceted taxonomies within the interface.

In order to fully understand our motivation, we must discuss existing faceted browsing 

models. When discussing these efforts, it is important to keep in mind that these models 

were constructed for a single system with a single faceted taxonomy; although each system 

was clearly an innovative and successful initiative, reusability and interoperability with 

future systems was not a priority or consideration discussed.

Additionally, basic knowledge of category theory is necessary to understand our model.

A. Foundations of Facet Models

Of the three major foundations of facet modeling, set theory efforts tend to provide a model 

that explicitly includes interactive operations, such as filtering and ranking [3]. Formal 
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concept analysis focuses on defining facets and faceted structures for knowledge [12] and 

has deep-seated roots in lattice theory in order to provide an organizational structure to 

faceted browsing. Light-weight ontologies provide an easy way to apply natural-language 

labels to concepts organized in an ontology [13], but do not explicitly model interactive 

operations.

Any implementation of faceted browsing, whether its foundation be grounded in set theory 

or lattice theory, could be abstracted into a category-theoretic framework as objects and 

relations. Because natural connections between category and set theory exist [6], [14], our 

work is most comparable to existing efforts in set theory. The facet modeling efforts that 

explicitly use set theory as a foundation differ in their core definitions and how they model 

filtering and ranking of facet objects: Dynamic Taxonomies [15] is a classic way of 

dynamically representing taxonomies with is-a relationships; Category Hierarchies are 

defined as connected, rooted directed acyclic graphs [16]; Generalized Formal Models [17] 

use entity-relationship diagrams to represent faceted hierarchies; FaSet [18] implements 

facets and queries as sets within relational databases. Each of these implementations have 

their own base definition of what it means to be a facet. In FaSet, a facet F is a set of items 

and if the system has multiple facets, they are disjoint: Fa ∩ Fb = ∅ [18]. The model is then 

constructed axiomatically using the base definition of a facet.

Our work is also similar to efforts based on formal concept analysis [12] simply due to their 

shared abstract nature. We focus on modeling faceted structures once a representation for 

knowledge has been chosen, including lattices from formal concept analysis; we do not 

compete with formal concept analysis, but rather enable its reuse by providing a model 

capable of representing it consistently with other faceted structures. In other words, a lattice 

can peacefully coexist and interact with simpler structures such as sets and hierarchies. 

Many systems contain only one faceted taxonomy, but systems like DELVE can contain 

multiple visualizations; these visualizations either contain or are controlled by independent 

faceted taxonomies that may or may not share the same structure.

An example would be an interface that initially contains a visualization of a simple dynamic 

hierarchy depicting basic is-a relationships; for a given node, the interface could 

interactively allow one to visualize more complex relationships that are stored in a different 

knowledge structure, such as graphs or lattices.

Another example would be augmenting a faceted taxonomy with additional facets from an 

external faceted taxonomy. A more concrete example will help illustrate how such a 

situation can arrive naturally. At our local university hospital, our data warehouse provides a 

faceted interface which allows individuals to obtain aggregate counts of patients that match 

facets selected by the user; this allows quick feasibility checks of clinical research projects. 

Facets are arranged as a simple hierarchy and include items such as demographics (age, race, 

marital status) and vital signs (height, weight, bmi, blood pressure, heart rate, respiratory 

rate). These facets, illustrated in Fig. 1, are based on what the electronic medical records 

(EMRs) for our university hospital provides. In Fig. 1, lines represent relationships and 

ellipsis imply there are some relationships not shown for space considerations.
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The EMR also uses drug codes that link to an external proprietary system where drugs are 

organized as a two-level hierarchy. For example, as seen in Fig. 2, buprenorphine is-an 
analgesic and an analgesic is-a central nervous system agent. We include this external 

hierarchy as part of our faceted taxonomy by adding drug as a facet. This augmentation 

enables one to search for classes of drugs, rather than just the drug codes found directly in 

the patient’s EMR.

B. Category Theory

Category theory has been demonstrated to be practical and useful for modeling problems in 

the sciences [6], including physics [19], cognitive science [20], and computational biology 

[21]. In database theory, categories can model databases [6], [22] and can elegantly support 

data migration between schemas [23]. Additionally, ologs use category theory for 

representing knowledge and modeling real-world situations with the goal of enabling 

reusable, transferable, and comparable research [24]. Category theory can also be used in 

conjunction with semiotics as a foundation for information visualization [25], where the 

process of visualization forms a category.

Because our model leverages known categories, a working knowledge of category theory is 

needed. The definition of a category varies according to the style and notation adopted by its 

authors for their intended audience [6], [7]. Informally, a category  is defined by stating a 

few facts about the proposed category (specifying its objects, morphisms, identities, and 

compositions) and demonstrating that they obey identity and associativity laws.

Definition 1—A category  consists of the following:

1. A collection of objects, Ob( ).

2. A collection of morphisms (also called arrows). For every pair x, y ∈ Ob( ), 

there exists a set Hom (x, y) that contains morphisms from x to y [6]; a 

morphism f ∈ Hom (x, y) is of the form f : x → y, where x is the domain and y 
is the codomain of f.

3. For every object x ∈ Ob( ), the identity morphism, idx ∈ Hom (x, x), exists.

4. For x, y, z ∈ Ob( ), the composition function is defined as follows: ∘ : Hom (y, 

z) × Hom (x, y) → Hom (x, z).

Given 1–4, the following laws hold:

1. identity: for every x, y ∈ Ob( ) and every morphism f : x → y, f ∘ idx = f and idy 

∘ f = f.

2. associativity: if w, x, y, z ∈ Ob( ) and f : w → x, g : x → y, h : y → z, then (h ∘ 
g) ∘ f = h ∘ (g ∘ f) ∈ Hom (w, z).

As an example, Set is the category whose objects are sets and whose morphisms are 

functions between sets [6], [7]. This implies that the set theoretic implementations of faceted 

browsing could also be directly abstracted and argued through category theory; we can 

comment on how our model could consume other models after we outline how our model 

works. The point of such structures is that they generalize sets by specifying families of 
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elements rather than single elements, a formalization which enables exploration of structural 

similarities [6].

An easy way to construct a new category is to modify an existing category and create a 

subcategory by taking a subset of its objects and morphisms. One can think of this as simply 

removing some of the objects from the original category, then removing any traces of the 

corresponding morphisms. The two categories behave similarly for those objects and 

morphisms found in both; in fact, injective monomorphisms exist between the sub-category 

and the larger category [7]. Identity and associativity laws are still obeyed by the remaining 

objects and their morphisms.

Definition 2—A category ℬ is a subcategory [7] of  if

1. Ob(ℬ) ⊆ Ob( )

2. for all x, y ∈ Ob(ℬ), Homℬ(x, y) ⊆ Hom (x, y)

3. the identity morphisms and compositions for ℬ are copied from .

In our model, we will relate the concept of a facet and facet taxonomy to existing, well-

known categories: Rel and Cat.

Definition 3—Rel is the category of sets as objects and relations as morphisms [7], where 

we define relation arrows f : X → Y ∈ HomRel(X, Y) to be a subset of X × Y.

In other words, any subset of X × Y is a relation from X to Y. Any binary relation is 

allowed, but most examples demonstrate the utility of “<“, “≤”, and “⊆”. This category uses 

the composition of relations instead of functional composition; if f ∈ HomRel(X, Y) and g ∈ 
HomRel(Y, Z), then (x, y) ∈ g ∘ f if and only if for some y ∈ Y, (x, y) ∈ f and (y, z) ∈ g. The 

identity morphisms, idX ∈ HomRel(X, X), are the so-called diagonal relationships ({(x, x)|x 
∈ X}). Set is actually subcategory of Rel [7].

Definition 4—Cat is the category of small categories. The objects of Cat are small 

categories and the morphisms are functors (mappings between categories).

There are several ways to define a small category, but the simplest is to say that a category 

is small if Ob( ) is a set where  ∉ Ob( ) [6]. We informally defined functors as mappings 

between categories, but additional conditions are needed.

Definition 5—A functor F from category 1 to 2 is denoted F : 1 → 2, where F : 
Ob( 1) → Ob( 2) and for every x, y ∈ Ob( 1), F : Hom 1 (x, y) → Hom 2 (F(x), F(y)). 

Additionally, the following must be preserved:

1. identity: for any object x ∈ Ob( 1), F(id 1) = idF( 1).

2. composition: for any x, y, z ∈ Ob( 1) with f : x → y and g : y → z, then F(g ∘ f) 
= F(g) ∘ F(f).

Functors also play an important role in constructing the underlying graph of a category, 

which will be a key element of creating reusable facets and faceted structures.
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C. Why category theory?

We mentioned that category theory has been used to model several other practical problems, 

but we should comment on why it is also appropriate to model faceted browsing. The core 

issue is that faceted taxonomies come in many shapes and forms; this heterogeneity, while a 

sign that new and novel systems are being developed, is counterproductive for reusing 

faceted information effectively. Category theory provides the language for reasoning with 

these diverse structures in a consistent and productive environment. Once a category is 

defined, it becomes a bed for computations, such as transformations and products. As an 

example, consider n-ary products of objects within a category [7], which act as a categorical 

version of n-ary Cartesian products.

Definition 6—The n-ary product of a list A1, A2, …, An containing n objects (not 

necessarily distinct) of a category is an object A with morphisms pi : A → Ai for i = 1, …, 

n. This is denoted as A1 × A2 × … × An or simply  [7].

We will demonstrate later that n-ary products model faceted universes and faceted queries. 

Beyond products, category theory is conceptually consistent with faceted browsing in that 

relations within a faceted taxonomy naturally mimic the constraints of categories. Consider a 

faceted taxonomy with is-a-relations and observe that the following analogies hold:

1. An object has an identity function: x is-a x.

2. Relations can be composed: (x is-a y) is-a z.

3. Commutative diagrams typically demonstrate how objects and morphisms in a 

category obey associativity:

The same works for is-a-relations: ((x is-a y) is-a z) is equivalent to (x is-a (y is-a 
z)).

Given this discussion, there are clear benefits in choosing category theory as a modeling 

foundation, but we must acknowledge that the learning curve can be an impediment of 

adoption by those less familiar with the theory. We argue that any unfamiliar theory can be 

difficult to learn and that the benefits outweigh the obstacles.

III. A Category-theoretic Model

A faceted system is comprised of many implicitly intertwined parts: facets, a taxonomy that 

organizes the facets, an ability to select or focus on certain facets, and an ability to present 
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the results of a selection or faceted query in an effective manner [3]. Each of these 

components and their extensions can be abstractly modeled with category theory.

A. Facet Types

We wish to be as general as possible in our abstractions so that any system with any faceted 

taxonomy can be modeled, regardless of the particular nuances of the facets and intra-facet 

relationships. The faceted taxonomy presented in an interface can contain several unrelated 

(or disjoint) sub-facets. For example, a book’s price typically has nothing to do with its 

genre, and the construction and maintenance of the corresponding taxonomic structures are 

completely independent. We can refer to a facet, such as price and genre, as a facet type. The 

interface typically presents facets underneath a heading that indicates its type.1 Within a 

facet type, facets are directly relatable and comparable. In other words, for our example, 

prices relate to prices and genres relate to genres; “$10–$20” can be a child of “ < $100”, but 

has no relationship with “horror”. Fig. 1 shows a facet type for patient demographics; Fig. 2 

shows a facet type for medications. Demographics and medications are clearly disjoint: no 

taxonomic relations exist between these two types.

Definition 7—A facet type (a facet i and its related sub-facets) of a faceted taxonomy is a 

sub-category of Rel, the category of sets as objects and relations as morphisms. Let’s call 

this sub-category Faceti and let Ob(Faceti) = Ob(Rel) and let the morphisms be the relations 

that correspond only to the ⊆-relations. The identity and composition definitions are simply 

copied from Rel.

In other words, Faceti is just a slimmer version of Rel, where we know exactly what binary 

relation is being used to order the facets. If a sub-category contains all objects of its parent, 

it is said to be wide [7]. In fact, Faceti is said to be a representative subcategory of Rel 
because it contains an isomorphic copy of every object of Rel [7]. The other relations that 

could possibly be represented by Rel, such as “<“ and “≤”, are meaningless for categorically 

organizing concepts into a taxonomy. The objects of Faceti are sets; they represent abstract 

collections of resources that have been classified to belong to that facet through faceted 

classification. We do not need to distinguish between individual resources within these sets 

because they all categorically behave the same: they either belong to facet or they do not. 

Between the objects of Faceti, morphisms exist that dictate their taxonomic relationship.

As a concrete example, if FacetMed is the medication facet-type in Fig. 2, then {“central 

nervous system agent”, “analgesic”, “buprenorphine”, …} ∈ Ob(FacetMed). The morphisms 

of FacetMed dictate the relationships between objects. Suppose that object x is the set for 

“analgesic” and object y is the set for “central nervous system agent”, then there exists a 

morphism f : x → y ∈ HomFacetMed (x, y), meaning “analgesic” is-a subset of “central 

nervous system agent”.

The ⊆-relation is powerful for specification: it allows for facets to be ordered by inclusion, 

which can model any structure where x is categorically related to y; this is a pivotal 

1The interface may wish to include the name of the type as a selectable facet too. This meta-facet is mostly an organizational tool that 
aids in drawing the faceted taxonomy.
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component to most faceted implementations. We intentionally use the words specification 

and implementation; our category-theoretic model specifies the fundamental objects and 

relationships that our implementation can utilize. For example, we can implement a tree that 

only has is-a-relationships since it is possible to order the facets by inclusion. We will show 

how this type of tree, which is heavily related to dynamic taxonomies [15], can be 

represented with category theory in section IV. In a more complicated example, one could 

construct a visualization with a graph, where the current facet is recursively drawn 

connected to a subset of its subsumptive facets.

B. Focused Selections

Given a facet, we need to describe how any selection within the facet can be modeled.

Definition 8—A subcategory Focusi ⊆ Faceti
2 can be constructed to represent a focused 

selection for Faceti.

We simply discard any undesirable objects (and their corresponding morphisms) to create a 

new category that represents a focused collection of facets. The identity and composition 

functions can be copied from Faceti. Selecting objects in facet type is the simplest form of 

interacting with a faceted browser. As a concrete example, if FacetMed is the medication 

facet-type in Fig. 2, then one possibility is {“central nervous system agent”, “analgesic”} ∈ 
Ob(FocusMed). There is no limit on the number of objects kept or discarded; it is possible to 

discard all objects or to keep all objects, although practical limitations might stem from the 

user’s ability to interact with the interface.

C. Faceted Taxonomies

Presentation of facets varies according to the interface’s design, but facets are commonly 

presented as flat lists (through widgets such as radio buttons, check-boxes, etc) and 

hierarchies. Hierarchies, if restricted to be non-overlapping, are often represented as a tree 

where each facet is limited to having one parent. A non-hierarchical (or flat) facet is a 

special case of a hierarchical facet: it is simply a hierarchical taxonomy with one level. For 

example, if authors of books were a primitive facet, it could be represented as a hierarchy 

with author as the root and individual names as children. More complicated faceted 

interfaces may present taxonomies via visualizations, including graphs and network 

diagrams.

Definition 9—Let FacetTax be a category that represents a faceted taxonomy, whose 

objects are the disjoint union of Faceti categories. In other words, let , where n 
= |Ob(FacetTax)|. The morphisms of FacetTax are functors (mappings between categories) 

of the form HomFacetTax( , ) = {F :  → }.

This disjoint union is precisely how we can merge facets from Fig. 1 and Fig. 2 into a single 

faceted taxonomy, patients, as illustrated in Fig. 3. To save space, not all objects and 

2A ⊆ B is commonly used denote that A is a subcategory of B, despite neither A nor B being an actual set [6].
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relations are drawn. We will not formally prove that FacetTax is a true category because it is 

simply a sub-category of Cat, the category of categories.

D. Universe and Queries

The complexity of a faceted system naturally varies by the interface’s design, but typically 

includes the ability to select (or focus) and de-select (or negate) facets within a facet type. 

The collective effort across all facets is then used to filter the faceted knowledge being 

presented.

Definition 10—A facet universe, U, is the n-ary product [7] within the FacetTax category, 

defined as , where n = |Ob(FacetTax)|. The n coordinates of U are projection 

functors Pj : ∏Faceti → Facetj, where j = 1, …, n is the jth projection of the n-ary product.

Note that since Focusi ⊆ Faceti, there exists a restricted universe U⊆ ⊆ U where every facet 

is potentially reduced to a focused subset. The act of querying the universe is essentially 

constructing this restricted universe U⊆.

Definition 11—A faceted query, Q, is the modified n-ary product [7] within the FacetTax 

category, defined as , where n = |Ob(FacetTax)|. The n coordinates of Q are 

similarly defined as projection functors Pj : ∏Focusi → Focusj.

A high-level overview of the interactions between Faceti, Focusi, and queries with the 

FacetTax category is illustrated in Fig. 4. To summarize, a faceted taxonomy is a category 

which contains Facet categories as objects; each Facet category contains objects and 

taxonomic relationships between the objects. Intuitively, focused selections are contained 

within their larger, unfocused facet categories. The universe of possible facets provided by 

the interface is the product across all Facet objects; a faceted query is simply a focused 

product chosen by the user from the universe of facets.

IV. Reusable Faceted Taxonomies

In our model, categories are acting as generic faceted structures, but in practical interface 

development, more is sometimes needed to support the range of possible designs and 

interactions. The generic nature of the morphisms of FacetTax allow it to abstractly 

represent any faceted taxonomy structure since the morphisms are simply ⊆-relations.

We demonstrated that n-ary products were one useful computation enabled by our model, 

but we can also demonstrate how our base structure can transform to support different 

faceted structures, such as lists, hierarchies, trees, graphs, and lattices. This transformation 

can be an active and engaging element of the interface: a selected element from a basic list 

could render a graph of deeper relationships. Using Fig. 3 as an example, imagine that a 

preview of high level facet types are given in the form of a list (demographics, medications, 
…) and interactively selecting one of these higher level items results in the rendering of its 

remaining taxonomy. For example, clicking on demographics could draw the descendants of 

that object from the taxonomy in the interface.
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Intelligent previews are a possible solution to the problem of having too little screen space to 

fully display an interface’s facets, which is an open issue in faceted browsing research [3]. 

We can reuse the same facets, while manipulating their relations to fit other structures. These 

structures can be put into the same abstract framework to support interoperability between 

systems or between parts within a system. When designing a system where different 

structures interact with one another, the notation and representations become cumbersome. 

The burden of writing consistent abstractions with different structures is removed by using 

category theory.

A. Underlying Graphs

In order to show how graphs relate and interact with our model, we must formally define the 

category of graphs.

Definition 12—Grph is the category with graphs as objects [6]. A graph G is a sequence 

where G := (V, A, src, tgt) [6] with the following:

1. a set V of vertices of G

2. a set A of edges of G

3. a source function src : A → V that maps arrows to their source vertex

4. a target function tgt : A → V that maps arrows to their target vertex

The graph underlying a category  is defined as a sequence U( ) = (Ob( ), Hom , dom, 

cod) [6] where dom, cod : Hom  → Ob( ) are domain and codomain functions. Note that 

U( ) ∈ Ob(Grph) and there exists a functor between categories ℱ :  →  that can create 

a graph morphism U(ℱ) : U( ) → U( ). This works at two levels for our model: for 

FacetTax and for each Facet category. Given that there exists a functor U : Cat → Grph, 

FacetTax can produce graphs of Faceti categories for i = (1, …, |Ob(FacetTax)|). Because 

every category has an underlying graph, each individual Facet can also be represented as a 

graph, where the objects are vertices and the morphisms are arrows. Although the taxonomy 

in Fig. 3 is likely best visualized as a simple hierarchy, other taxonomies might be more 

naturally suited to be represented as a graph. One possible use case is where graph 

algorithms might play a key role in the interface’s design.

The key benefit to modeling our faceted taxonomy this way is that we can reuse the facets 

and reframe their morphisms to fit our needs; if we need to arrange the facets as graphs, we 

can do so. The sets of resources that the objects of Facet represent remain unchanged; 

resources are still classified with their facets. This embedded, faceted information can be 

reused through an alternate lens made possible by our model. In this case, the lens is a graph 

that was algebraically constructed, but other structures are also supported.

B. Sets

Rel is closely related to Set; both categories have sets as objects. In fact, it can be 

demonstrated that Set is a subcategory of Rel [7] and we will utilize this notion to show that 

FacetTax is compatible with Set. We can construct a functor C : F → S that maps Facet to 

Set by taking every set to itself and every relation to be a function from F to T. Similar to 
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how we can construct graphs, we are also free to leverage Set categories and can construct 

basic sets. This is helpful when a basic list needs to be constructed from our taxonomy, such 

as in the case of the previews discussed in the first part of Sec. IV.

C. Other Structures

Additionally, Rel is capable of representing lattices when ordering by inclusions [7] and a 

similar result can be obtained with our Facet categories. Again, a functor is how we can 

compute such a mapping between categorical representations. Category theory is providing 

two types of computation: within a category with concepts, such as products, and across 

categories with concepts, such as functors.

D. Existing Facet Models

We discussed several existing modeling efforts in our background section and we can 

discuss how such models would change and manifest under our category-theoretic model.

Dynamic taxonomies [15] use set theory as a theoretical foundation to help model facets. 

The model constructs taxonomies with is-a relationships by dynamically calculating the 

deep extension of a node:

The shallow extension of C contains the direct descendants of C. Both shallow extension and 

descendant-of relationships are expressible as binary relations and, in particular, are 

expressible with the binary relations of FacetTax’s Facet categories. The shallow extension 

of an object y ∈ Ob(Faceti) is the domain of the relations of HomFaceti (x, y), e.g. all x 
Faceti that are subsets of y. Nesting gives us the deep extension: the deep extension of an 

object y ∈ Ob(Faceti) is the domain of the relations from HomFaceti(z, HomFaceti (x, y)) for 

any x, y, z ∈ Ob(Faceti).

Category hierarchies are another example of facet models with set theory as a foundation 

[16]. In this model, category hierarchies are defined as connected and rooted directed acyclic 

graphs; the word category is unrelated to category theory in this context. Facets are defined 

as subgraphs of the category hierarchy. These subgraphs are exactly like the underlying 

graphs of categories discussed earlier. Once our facets are in a graph, the other features of 

their model follow.

Our goal in discussing how our model relates to existing work is to demonstrate how 

dynamic our category theory foundation can be and that it is able to drive interoperability 

and reuse. We can reuse existing models and merge them together by putting them in a 

common language. In this case, theory has direct consequences for specification and can 

help drive implementation.

E. Implementation

Even elegant abstractions can be rendered useless if they are not easily implementable. 

Category theory is strongly related to functional programming; one can even show that a 
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functional programming language forms a category of types and operations [7]. 

Furthermore, the use of objects (and morphisms between objects) as our model’s foundation 

means implementation could be in any programming language that supports an object-

oriented paradigm. For example, Scala [26] is a multi-paradigm language which supports 

both functional and object-oriented paradigms. In fact, the category of finite sets, often 

called Fin [6], [7], is easily implementable in Scala [27]; there are Scala libraries available 

that provide infrastructure for building categories [28], [29].

We contend that modeling has direct consequences for implementation: an inconsistent 

model yields an inconsistent system. If we cannot abstractly represent faceted browsing in 

an effective manner, there is little hope to extend and improve such a system and 

furthermore, the system cannot be adopted or easily modified by others. Theory must inform 

practice; we can use our abstractions to build stronger interfaces that support interoperability 

and reuse.

F. Computational Complexity

We have focused on structural complexity between categories and morphisms, but 

computational complexity should also be addressed. This only makes sense in the context of 

using abstract categories to write algorithms, which is one way our models can be applied 

and reapplied. An example is computing the transitive closure of Fin, which can be solved 

as the repeated accumulation of pairs of paths and can be demonstrated as having a 

complexity of O(N3 log N) where N is the number of nodes [30]. Computational category 

theory [30] connects functional programming with category theory to bridge the gap 

between theory and implementation. A byproduct of computational category theory is that 

computational complexity can be studied.

V. Future Work

We are applying our model to the next stage of our interface and framework, DELVE [4], in 

order to represent faceted structures that help create or control other faceted structures. Our 

model, together with category theory, can help inform how to build a proper application 

programming interface (API) for faceted browsing. In this vein, one can mathematically 

prove that something is possible before implementation. The role of computational category 

theory in developing this API is an interesting unknown.

We have demonstrated that it is possible to represent facets, faceted taxonomies, and faceted 

queries with category theory. Once the faceted query is performed, the interface must let the 

user successfully interact and engage with the faceted information being presented. We wish 

to continue our model to include this exploratory search phase of faceted browsing.

For example, if the interface was designed to fulfill Shneiderman’s information seeking 

mantra [31], how can tasks such as overview, filter, zoom, and details-on-demand be 

modeled? How can additional tasks from Shneiderman’s task taxonomy [31], such as seeing 

relations, history, and extraction, be modeled?
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Furthermore, if each of these tasks or interactions can be abstracted, does this model suggest 

anything about being able to measure the usability of the system? Usability is most 

commonly measured qualitatively, but we would like to explore the possibility of 

quantitatively measuring usability.

VI. Conclusions

We have established facets and faceted taxonomies as categories and have demonstrated how 

the computational elements of category theory, such as products and functors, extend the 

usefulness of our model.

The utility of faceted browsing systems is well-established in the digital libraries research 

community [8], [32], but current efforts could benefit from a more abstract framework that 

encourages reuse and interoperability. In this context, reuse and interoperability are at two 

levels: between systems and within a system. Our model works at both levels by leveraging 

category theory as a common language for representation and computation. Without this 

common language, it is difficult to abstractly model a system that utilizes multiple faceted 

structures (hierarchies, trees, graphs, lattices), even if there are shared notations and 

definitions between them.

We have demonstrated that category theory can be used to model faceted browsing and that 

it offers a consistent view of facets as objects and morphisms between objects. With our 

general framework for communicating mathematically about facets at a high level of 

abstraction, we can begin to construct interoperable interfaces and reuse existing efforts 

intelligently.
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Fig. 1. 
A small sample of facets available for patient medical records. For example, selecting 

female would query for all patients that are female.
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Fig. 2. 
A small sample of facets available for drug administration records. For example, selecting 

analgesic would query for all records containing analgesics.
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Fig. 3. 
A faceted taxonomy, called patients, containing facet types of demographics and 

medications.
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Fig. 4. 
A high-level overview of FacetTax, Faceti, Focusi, and queries with focused subcategories.
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