
Modular Verification of Termination and Execution Time Bounds
Using Separation Logic

Jafar Hamin
iMinds-DistriNet, Dept. C.S., KU Leuven

Celestijnenlaan 200A, 3001 Leuven, Belgium
jafar.hamin@cs.kuleuven.be

Bart Jacobs
iMinds-DistriNet, Dept. C.S., KU Leuven

Celestijnenlaan 200A, 3001 Leuven, Belgium
bart.jacobs@cs.kuleuven.be

Abstract

This paper presents a formal method to verify execu-
tion time bounds of programs at the source level, where
timing constraints along with other functional requirements
are specified in the routines’ contracts and are verified in a
modular manner. The approach works based on a count-
down time budget mechanism to guarantee the termina-
tion of the input program, and incorporates the concepts of
separation logic, making it integrable with verification ap-
proaches for pointer-manipulating programs and applica-
ble for concurrent programs where time resource needs to
be passed among different threads. We selected the MSP430
microcontroller as well as a simple non-optimizing com-
piler as a case study and defined a co-inductive concrete
semantics to model time consumption and potential non-
termination of commands based on this platform. Accord-
ingly, we developed the corresponding symbolic execution
and proved that it is sound, i.e., if a program does not fail
in the symbolic execution, then it respects the specified time
bounds in the concrete execution too. Our preliminary re-
sults show that the proposed approach can be used to verify
time bounds of programs involving separation logic based
specifications.

1 Introduction

Hard real-time requirements of the tasks in safety-critical
embedded systems have resulted in numerous research
investigating techniques to estimate timing specifications
of such systems in terms of worst-case execution time
(WCET). These studies mostly fall into two main cate-
gories; measurement based ones, that attempt to approxi-
mate WCET of a program by executing it under different in-
puts and states, and static analysis of execution time [5, 10]
in which this approximation is based on an abstract model
of the machine and is obtained as the result of three analy-

sis phases: 1) control flow analysis to identify flow of ex-
ecution [3, 9], 2) process behavior analysis that deals with
hardware components which influence the program timing,
and 3) estimate calculation that computes the global bound
based on the results of the previous phases.

The result of such analysis, however, needs to be for-
mally verified, particularly, when it comes to critical appli-
cations where a reliable guarantee is demanded. Several at-
tempts have been made to provide a (time) bound with such
guarantee [1, 4, 6]. Elvira et al. (2011), for example, gives
this guarantee by combining COSTA, a static analyzer for
inferring upper (time) bounds of routines and loops, with
KeY, a source code verification tool for Java programs, such
that the result of the former is verified by the latter. The
state-of-the-art verification tools, however, in addition to
routines’ contracts and loop invariants, mostly require extra
annotations, namely variant (or decrease) clauses, and extra
checks to verify validity of such propositions. Additionally,
there is no clear way to verify code involving multi thread-
ing where time budget needs to be passed among these mod-
ules.

In this paper we incorporate the concepts used in sep-
aration logic [12] such as heap, production, consumption
and exchange of heap chunks to verify time bounds of pro-
grams where timing constraints along with other properties
are specified in the contract of routines and loops. In ad-
dition to having a unified mechanism to verify both func-
tional and non-functional specifications, it makes our ap-
proach highly integrable with verification approaches for
pointer-manipulating programs allowing it to benefit from
other propositions that describe the shape of data structures
in the memory. More specifically, we present a specification
formalism as well as a verification algorithm such that given
a high-level program as the input, if the verification algo-
rithm reports that each module of the program satisfies its
contract, then the whole program satisfies the specified time
bound. We instantiate this formalism according to the mi-
crocontroller MSP430 [7] and our non-optimizing compiler
Prext (Predictable execution time) to define a co-inductive



concrete semantics modeling time consumption and po-
tential non-termination of commands and then prove the
soundness of our algorithm. The formal development pre-
sented in this paper is based on the formalization and sound-
ness proof of Featherweight VeriFast [14], where functional
properties of imperative programs are modularly verified
against user-provided annotations.

The remainder of the paper is organized as follows: Sec-
tion 2 provides an overall overview of the approach. Section
3 provides a definition of concrete execution of the high-
level source code. The corresponding symbolic execution
is then introduced in section 4. We provide a soundness
proof of our approach in section 5. In section 6 we report
on experiment and then in section 7 we draw conclusions.

2 An Informal Overview

This section provides an informal overview of how the
presented work verifies the time bound in the contract of the
routines and loops specified by the programmer. Consider
routine foo(n) claiming to take at most 19×n+70 cycles to
execute where n is required to be non-negative. The sym-
bolic execution of this routine, as indicated in the following,
starts by initializing the state of the execution (step 1). The
state is composed of three components; store (s), heap (h)
and path condition (Φ). The store maps each variable of the
program to a term. A term can be a literal number, a symbol
that represents an arbitrary value, as well as addition, sub-
traction or multiplication of terms. The path condition is a
set of formulae representing equalities and inequalities be-
tween terms. Heap is a multi-set of chunks that maps each
potential element to a term representing the number of times
it occurs in the multi-set. We introduce chunk tb represent-
ing availability of one unit of time (cycle), and hence, h(tb)
indicates the number of cycles that can be spent to execute
the rest of the commands in the routine. In the initialized
state the heap is empty (0) and the store binds the input pa-
rameter(s) of the routine to fresh symbol(s) and every other
variable to zero (0[n:n]). After initializing the state, the
next step (2) is to produce the precondition of the routine
denoted by req a, where a is an assertion and can be a
boolean expression, availability of e amount of time budget
denoted by [e]tb, where e is a (mathematical) expression,
as well as a separating conjunction of assertions denoted by
∗. For producing a boolean expression, the expression first
gets evaluated to a formula by replacing all its free variables
by their corresponding terms in the store, and then either is
added to the path condition if it is consistent with the for-
mulae in the path condition or leads the symbolic execution
to successfully finish the verification of the routine if it con-
tradicts the path condition’s formulae. When producing e
amount of time budget (tb), e is first evaluated to term t, and
if the formula 06t does not contradict the path condition, t

is added to the time budget by increasing h(tb) by t. Oth-
erwise, the verification of the routine successfully finishes.
Production of a conjunction assertion involves producing all
assertions in the conjunction.

routine foo(n)
req [19×n+70]tb ∗ (0−1)<n ens 1=1

//1) intitialize the state
s:0[n:n], h:0,Φ:{}
//2) produce precondition
s:0[n:n], h:{[(19×n+70)·tb]},Φ:{−1<n}
//3) consume [5]tb for entering the routine
s:0[n:n], h:{[(19×n+65)·tb]},Φ:{−1<n}

{ i := 0 ;
//4) update the store and consume [5]tb for assignment
s:0[n:n, i:0], h:{[(19×n+60)·tb]},Φ:{−1<n}
//5) consume the invariant
s:0[n:n, i:0], h:{[51·tb]},Φ:{−1<n}
//6) havoc targets of the loop body
s:0[n:n, i:i], h:{[51·tb]},Φ:{−1<n}

while i<n inv i<n+1 ∗ 0−1<i ∗ [19×(n−i)+9]tb
//7-1) empty the heap
s:0[n:n, i:i], h:0,Φ:{−1<n}
//7-2) produce the invariant and the guard
s:0[n:n, i:i], h:{[(19×(n−i)+9)·tb]},
Φ:{−1<n, i<n+1,−1<i, i<n}
//7-3) consume [9]tb for checking the guard
s:0[n:n, i:i], h:{[(19×(n−i))·tb]},Φ:{unch}

do{ i := i+1
//7-4) consume [10]tb for assignment and jump
s:0[n:n, i:i+1], h:{[(19×(n−i)−10)·tb]},Φ:{unch}
//7-5) consume invariant
s:0[n:n, i:i+1], h:{[0·tb]},Φ:{unch}
//7-6) execution path ends

}; //8-1) continue from 6 and produce the invariant
s:0[n:n, i:i], h:{[(51+19×(n−i)+9)·tb]},
Φ:{−1<n, i<n+1,−1<i}
//8-2) produce ¬ guard and consume [9]tb
s:0[n:n, i:i], h:{[(51+19×0)·tb]},
Φ:{−1<n, i<n+1,−1<i,¬(i<n)}

bar(1)
//9) consume [7]tb to evaluate arg and call the routine
s:0[n:n, i:n+4], h:{[44·tb]},Φ:{unchanged}
//10) consume the precondition of the routine bar
s:0[n:n, i:n+4], h:{[24·tb]},Φ:{unchanged}
//11) produce the postcondition of the routine bar
s:0[n:n, i:n+4], h:{[24·tb]},Φ:{unchanged}

} //12) consume [7]tb for leaving the routine
s:0[n:n, i:n+4], h:{[17·tb]},Φ:{unchanged}
//13) consume the postcondition
s:0[n:n, i:n+4], h:{[17·tb]},Φ:{unchanged}

After producing the precondition, the next step (3) is to
consume some amount of time budget for the instructions



that should be executed at the beginning of the routine; ad-
justing the stack pointer, for example. When consuming e
amount of tb, e first gets evaluated to t, and if the path condi-
tion (more precisely, the conjunction of formulae in the path
condition) implies that 06t and t6h(tb) then this amount is
subtracted from the current budget. Otherwise verification
of the routine fails. Symbolic execution of an assignment
statement (4), in addition to consuming the required num-
ber of cycles, evaluates the right hand side expression to a
term and then updates the store by binding the left hand side
variable to this term.

Symbolic execution of a loop statement involves two
separate phases. The first phase only aims to verify the in-
variant, i.e., that it holds before and after each iteration of
the body. Then in the second phase, instead of executing
the loop, the invariant is exploited by consuming and pro-
ducing it to apply the effect of the execution of the loop on
the state. Note that for consuming a boolean expression, the
expression is first evaluated to a formula and if the result
can be proven from the path condition, the execution just
continues. Otherwise the verification of the routine fails.
To verify the invariant in the first phase, all of the variables
whose values may change during the execution of the body
(target variables) are first detected and then havocked by
updating their values in the store and binding them to fresh
symbols (6). The heap is emptied (7-1) and both invariant
and loop guard are produced (7-2). Then the time needed
for evaluating the loop guard is consumed and the rest of the
commands get executed until reaching the end of the body.
At this point, the invariant is consumed to make sure that it
holds at the end of each iteration (7-5). If it does not fail the
invariant has been verified and the execution of this phase
ends (7-6) and the second phase will start. Notice that in the
example the time budget at this step is zero, meaning that
the invariant has an exact estimation of the time required
for execution of the loop. In the second phase, the invariant
is consumed (5) and again all target variables of the loop
are havocked. It then produces the invariant, this time with
new fresh symbols bound to the target variables (8-1). As a
consequence, the rest of the execution does not rely on the
old values of the target variables. After consuming the time
needed for checking the guard, the negation of the guard is
produced and the second phase ends (8-2). The rest of the
execution continues from the state resulting from the execu-
tion of the second phase. Notice that at this step, Φ implies
that n and i are equal, hence, the current time budget does
not depend on n anymore.

Symbolic execution of a routine call first consumes time
needed for evaluating the arguments and preparing the reg-
isters to call the routine (9) and then instead of executing
the callee’s body, it simply consumes its precondition (10)
and then produces its postcondition (11). In this example
we assume that the routine bar(n) has a trivial postcondi-

tion and [20×n]tb ∗ 0<n as its precondition, that can be
consumed without any failure. As the last step, after con-
suming some amount of time for leaving the routine (12),
the postcondition in the contract is consumed (13). If this
consumption does not fail it means that the verification of
the routine has been successfully finished. Notice that af-
ter this consumption there is still 17 budget left in the heap
(leak in time), meaning that the contract has overestimated
its time requirement. We allow this overestimation, how-
ever, it is even possible to prevent that by checking that the
remaining time budget is zero at the end of the execution.

Having this background, in the subsequent sections we
provide a formal system for our approach starting by in-
troducing the notion of concrete execution that reflects the
behavior of programs when executing on the machine.

3 Concrete Execution

To have a formal definition of concrete execution of the
commands we start by defining a simple programming lan-
guage as follows where c is a command:

e1 ::= z | x where x ∈ Vars, z ∈ Z
e ::= e1 | e1 + e1 | e1 − e1
b ::= e = e | e < e
c ::= x := e | if b then c else c

| while b do c | r(e) | c; c

s ∈ CStores = Vars → Z
σ ∈ CStates = CStores

C ∈ CMutators = CStates → COutcomes
exec ∈ Commands → CMutators

Execution. The execution is defined as a function; given a
command it returns another function, namely a mutator, that
maps an initial execution state to an outcome. This way we
ease the definition of execution by composing and reusing
the mutators. It also helps with proving the soundness of the
symbolic execution, where instead of commands we deal
with mutators. In the concrete execution a state (σ) is a
store that maps each program variable to an integer value.

φ ::= 〈σ, a〉 singleton outcome
|

⊗
Φ indexed demonic choice

|
⊕

Φ indexed angelic choice
| ⇑z φ step outcome

Outcomes. The set of outcomes is defined co-inductively
[11] to support commands with an infinite number of steps.
An outcome is a singleton outcome, a demonic or angelic
choice among a set of outcomes, or a step outcome in-
dexed by an integer duration value. A singleton outcome
is a pair of a post-state and an answer that is an optional



value of a generic type. This enables mutators to pass a
value to the subsequent mutator when they are sequentially
composed. The notion of demonic choice among outcomes
aims to cover the execution of all possible traces of the pro-
gram, where an execution decision is based on information
that remains unrevealed until run time. A conditional state-
ment, for example, leads to a demonic choice between re-
sulting outcomes of execution of its branches, and it is de-
monic because all branches are verified to demonically find
an unintended timing behavior. Although the notion of an-
gelic choice is introduced in this section, it is applicable in
the symbolic execution where an angelic choice among an
empty set leads to a verification failure (⊥). Analogously,
a demonic choice over an empty set results in a verification
success (>). The index z in the step outcome represents
the timing behavior of the command. More specifically, it
indicates the number of machine cycles taken by the com-
mand to get executed on the machine. Note that execution
of a command may result in an outcome with multiple steps.
Execution of an assignment statement, for example, leads
to an outcome having two steps (that may have different
indexes), one for evaluating the right-hand side expression
and another for binding the result to the left-hand side vari-
able. We allow a negative index for the sake of the sound-
ness proof where we relate a symbolic execution state to its
corresponding concrete one.

〈σ〉;C = C(σ)
(
⊗

Φ);C =
⊗
{φ ∈ Φ. (φ;C)}

(
⊕

Φ);C =
⊕
{φ ∈ Φ. (φ;C)}

(⇑z φ);C = ⇑z (φ;C)
C;C ′ = λσ. C(σ);C ′

Sequential Composition. To sequentially compose the
mutators, we first define sequential composition of an out-
come to a mutator where state and answer of the former is
passed to the latter resulting in another outcome. Compos-
ing a demonic or angelic choice over a set of outcomes and
a mutator is a demonic or angelic choice among sequential
composition of each outcome to that mutator, respectively.
In the case of an outcome with a step, the inner outcome
composes to the mutator and then the step is appended to
the result. With the assistance of this definition, sequential
composition of mutators is defined as a mutator where given
a state, the outcome produced by passing this state to the
first mutator is sequentially composed to the second muta-
tor. This concept can also be generalized to cover outcomes
with answers, where in the composition of x ← φ;C(x)
the answer of outcome φ, that is bound to x, is the input
of C(x) that is a function from answers to mutators. We
also define a new kind of sequential composition, denoted
by C; , C ′, where after executing C and then C ′, its result is
the result of C.

Generalizing Demonic and Angelic Choice. A demonic
choice among a set of mutators C̃ is defined as a mutator,
that for a given input state, demonically chooses among the
outcomes obtained by passing this state to the mutators in
C̃. An angelic or demonic choice over a boolean expressio-
nis defined as follows:⊗

C̃ = λσ.
⊗
{C ∈ C̃. C(σ)}⊗

true. φ = φ⊕
true. φ = φ

⊗
false. φ = >⊕
false. φ = ⊥

Timing Behavior. The timing behavior of a piece of code
definitely depends on the way that it gets compiled and the
machine on which the corresponding binaries are executed.
In the last few years there has been an interest to bridge this
gap [2, 13]. Amadio et al. (2014), for example, introduce
a mechanism in which in addition to compiling the source
code, the compiler provides some extra information about
timing behavior of the compiled code. For this research,
however, it is assumed that this information is available and
we base our concrete execution on this information. As a
case study we use our non-optimizing compiler Prext that
follows specific patterns to compile high-level source code
into the machine code readable by the MSP430, a micro-
controller that has no cache or pipeline mechanism.

For the statements that need to evaluate an expression e
we introduce the function cycle(e) as follows that calculates
the number of cycles taken to evaluate that expression.

cycle(z)=2 cycle(x)=3
cycle(e1+e2)=cycle(e1−e2)=cycle(e1)+cycle(e2)
cycle(e1=e2)=cycle(e1<e2)=cycle(e1)+cycle(e2)

Moving an evaluated value, that is always stored in a reg-
ister, to a memory location takes 3 cycles. The execution
time of jumping, comparing expressions and the rest of the
instructions can be specified similarly. These timing speci-
fications affect the auxiliary mutators used in the definition
of the concrete execution.

exec(x := e) = v ← eval(e);x := v
exec(if b then c else c′) =

assume(b); jump; exec(c); jump ⊗
assume(¬b); jump; exec(c′); jump

exec(while b do c) =
(assume(b); jump; exec(c))∗; jump; assume0(¬b)

exec(r(e)) =
v ← eval(e); call;with(0[x := v], enter; exec(c); leave)
where routine r(x) = c

exec(c; c′) = exec(c); exec(c′)

Execution of Commands. As previously mentioned, the
execution is a function that given a command results in a
mutator. Execution of an assignment is a sequential compo-
sition of two mutators; the first one evaluates the expression



and passes the result to the second one that binds the vari-
able to the new value. Execution of the conditional state-
ment over boolean expression b, is a demonic choice be-
tween two mutators, one assumes b and executes the first
branch, another assumes negation of b and executes the sec-
ond branch. Depending on the value of b and according
to the definition of mutator assume, one of these mutators
leads to an unreachable outcome. Execution of a while loop
iterates the body until the assumption of the guard results
in an unreachable outcome. Then it jumps out of the loop
body and the negation of the guard is assumed. When call-
ing a routing, the value of the argument is first evaluated and
with a store that binds the routine’s parameter to the evalu-
ated value, the body starts to be executed. An extra step for
calling the routine is also added to the resulting outcome.
Execution of sequential commands is sequential composi-
tion of execution of each command.

assume0(b) = λ s.
⊗

JbKs = true. 〈s〉
assume(b) = λ s.

⊗
JbKs = true. ⇑cycle(b)+1 〈s〉

eval(e) = λ s. ⇑cycle(e) 〈s, JeKs〉
store = λ s. 〈s, s〉

store := s′ = λ s. 〈s′〉
with(s′, C) = s← store; store := s′;C;, store := s

x := v = λ s. ⇑3 〈s[x := v]〉
jump = λ s. ⇑2 〈s〉
C∗ = noop⊗ C; jump;C∗

Auxiliary Mutators. The mutator assume0(b) evaluates
b in the current store s, denoted by JbKs, and if the result is
false it leads to an unreachable outcome. Otherwise it has
no effect on the execution. The mutator assume is similarly
defined but loads an extra step for evaluating and comparing
the expressions in b. The mutator eval(e) evaluates e and
returns it as the result. It also imposes the required time for
this evaluation. The assignment mutator updates the value
of the left-hand side variable in the store and loads three
cycles onto the outcome. The mutators jump, call, enter and
leave have no side effect and only load the number of cycles
needed for jumping, calling, entering and leaving a routine,
respectively. The mutator store returns the current store. A
store assignment mutator replaces the current store with the
new one. The mutator with, given a store s′ and a mutator
C ′, without affecting the initial store, temporarily executes
C ′ in the store s′. C∗ is a demonic choice among executions
of C; jump with any arbitrary number of iterations.

〈σ, a〉 {Q}t+0 ⇔ (σ, a) ∈ Q⊗
Φ {Q}t ⇔ ∀φ ∈ Φ. φ {Q}t⊕
Φ {Q}t ⇔ ∃φ ∈ Φ. φ {Q}t

⇑z φ {Q}t ⇔ φ {Q}t−z

Satisfaction. We inductively define the satisfaction rela-
tionship relating an outcome and an desirable postcondi-

tion; a set of state-answer pairs indexed by an integer value
that indicates the time bound. Since this relationship is in-
ductively defined infinite outcomes never satisfiy the post-
condition. A singleton outcome satisfies a condition if it
is a member of that condition under any non-negative time
bound. A demonic choice among a set of outcomes satisfies
a condition if each outcome in the set satisfies that condi-
tion. For an angelic choice, satisfaction of at least one of
the outcomes in the set would suffice. An outcome φ in-
dexed by z step(s) satisfies a postcondition with time bound
t, if φ satisfies that postcondition under time bound t−z.

Safety of Programs. A command c is considered to be
safe with respect to a time bound n, if no execution of that
command exceeds n number of cycles, when started from
an empty state consisting of a store that maps each variable
to zero. Notice that the failure outcome is the only outcome
that does not satisfy condition true. This is formally pre-
sented in the following, where a.f is an alternative to f(a).
safe programn c = 0 . exec(c) {true}n

4 Symbolic Execution

The concrete execution defines the timing behavior of
the statements. It, however, cannot serve as an algorithm
to verify safety of programs in terms of execution time;
for programs that take arbitrary inputs it cannot check all
infinite possibilities. To that end, we introduce the sym-
bolic execution where timing specifications of routines and
loops are separately verified and used when verifying the
code where a loop or a routine call appears. Along with
other functional properties of the program, these specifi-
cations can be placed in the loop invariants and routine’s
contracts. Any violation of these specifications during the
symbolic execution causes a verification failure. Accord-
ingly, we enrich the syntax of our original program to sup-
port loop invariants (inv) and routine contracts, including
preconditions (req) and postconditions (ens) that are of
type assertion. An assertion can be a boolean expression,
availability of ea amount of time budget denoted by [ea]tb,
a conditional statement over a boolean expression, as well
as conjunction of assertions.

ea ::= z | x | ea + ea | ea − ea | ea × ea
ba ::= ea = ea | ea < ea | ¬ba

a ∈ Assertions ::= ba|[ea]tb|a ∗ a|if ba then a else a
t, v̂ ∈ Terms ::= z | ς | t+ t | t− t | t× t
ŝ ∈ SStores = Vars → Terms

ϕ ∈ Formulae ::= t = t | t < t | ¬ϕ
Φ ∈ PConds = P(Formulae)

Chunks = {tb}
ĥ ∈ Heaps = Chunks → Terms

SStates = PConds × SStores ×Heaps



Outcome and satisfaction relation are the same as their
corresponding ones in the concrete semantics except that
the step outcome and time bound in the postcondition are
not applicable anymore. The store in the symbolic execu-
tion binds each program variable to a term that can be a lit-
eral number, a symbol (ς), representing an arbitrary value,
as well as addition, subtraction or multiplication of terms.
Accordingly, to constrain the interpretation of symbols in
the store, a new component namely path condition that is
powerset (P) of formulae is added to the state of the exe-
cution. A formula is either an equality or an inequality be-
tween terms, or the negation of another formula. Note that
the symbolic execution does not intend to provide a time
bound, but to verify a provided time bound specified in the
precondition of the routine. Hence, we add a third compo-
nent heap, a multi-set of chunks that mathematically maps
a chunk to a term indicating the number of its repetition in
the multi-set, to the state of symbolic execution. We also in-
troduce chunk tb representing one unit of time to maintain
the current time budget of the routine in the heap.

assume(ϕ) = λ(Φ, ŝ, ĥ).
⊗

Φ 6`S ¬ϕ. 〈(Φ∪{ϕ}, ŝ, ĥ)〉
assert(b) = λ(Φ, ŝ, ĥ).

⊕
Φ `S JbKŝ. 〈(Φ, ŝ, ĥ)〉

assume0(b) = ŝ← sstore; assume(JbKŝ)
tbud = λ(Φ, ŝ, ĥ). 〈(Φ, ŝ, ĥ), ĥ(tb)〉
eval0(e) = λ(Φ, ŝ, ĥ). 〈(Φ, ŝ, ĥ), JeKs〉

This new representation of the store requires new aux-
iliary mutators for the symbolic execution. The old ver-
sion of mutator assume, for example, is not applicable any-
more; the evaluation of a boolean expression yields a for-
mula rather than a boolean value. To that end, we employ an
SMT solver to check whether the formula is consistent with
the path condition or not. If yes the formula is added to the
current path condition. Otherwise, the execution results in
an unreachable outcome. Note that the notation Φ `S ϕ de-
notes the SMT solver succeeds in proving that the set of for-
mulae Φ implies the formula ϕ. Asserting a formula contin-
ues the execution if the path condition implies that formula.
Otherwise the execution fails. The mutator tbud returns the
current time budget. We introduce two other important mu-
tators to produce and consume assertions as follows:

produce(b) = assume0(b)
produce([e]tb) = v̂ ← eval0(e); assume0(¬v̂<0);

λ(Φ, ŝ, ĥ).〈(Φ, ŝ, ĥ[tb:=ĥ(tb)+v̂])〉
produce(if b then a else a′) =

assume0(b); produce(a)⊗ assume0(¬b); produce(a′)
produce(a ∗ a′) = produce(a); produce(a′)
consume(b) = assert(b)
consume([e]tb) = v̂ ← eval0(e); assert(¬v̂<0); t← tbud;

assert(¬t<v̂);λ(Φ, ŝ, ĥ).〈(Φ, ŝ, ĥ[tb:=ĥ(tb)−v̂])〉
consume(if b then a else a′) =

assume0(b); consume(a)⊗ assume0(¬b); consume(a′)
consume(a ∗ a′) = consume(a); consume(a′)

The mutator jump is defined as consume([2]tb), causing
it to consume two cycles when get symbolically executed.
This technique can be applied for other mutators mentioned
in Sec. 3 too. The symbolic version of other mutators are
the same as the ones provided in Sec. 3 except that the state
is symbolic. We also define a new mutator havoc(x) to bind
fresh symbols to the set of variables x. fresh yields a fresh
symbol that is not yet used. It also records this symbol in
the path condition for the subsequent requests. The mutator
empty resets the heap and block blocks the execution.

assume(b) = consume([cycle(b)+1]tb); assume0(b)
havoc(x) = v̂ ← fresh;x := v̂

empty = λ(Φ, ŝ, ĥ). 〈(Φ, ŝ,0)〉
block = λ(Φ, ŝ, ĥ). >

Replacing concrete mutators by symbolic ones, sym-
bolic execution of assignment, conditional statement, and
sequential composition is the same as the concrete execu-
tion. In contrast to the concrete execution, in symbolic ex-
ecution of a routine call, instead of executing the body of
a routine it suffices to consume its precondition and then
produce its postcondition. As to the execution of the loops,
it is treated in two phases; verifying the loop invariant and
then using it instead of iterating the body. Verification is
done by havocking the target variables (those whose values
may change during the execution) of the loop body, emp-
tying the heap, producing the loop invariant, assuming the
guard, executing the body and then consuming the invari-
ant. If consumption of the invariant does not fail, it means
that the invariant has specified a correct upper-bound for
the execution time of the loop statement and the execution
gets immediately blocked. In the next phase, execution con-
sumes the invariant, havocs the target variables of the loop,
produces the invariant, and then assumes the negation of the
guard. We havoc target variables of the loop in both phases.

sexec(r(e)) = v̂ ← eval(e); call;
with(0[x := v̂], consume(a); produce(a′))
where routine r(x) req a ens a′

scexec(while b inv a do c) =
consume(a); havoc(targets(c));
(empty; produce(a); jump; assume(b);
scexec(c); jump; consume(a); block
⊗ jump; produce(a); assume(¬b))

Safety of Programs. A program is safely executed in a
maximum number of n cycles if 1) the execution of the main
command starting from a state whose time budget is n does
not fail and 2) all of the routines in the program are valid:

sym-safe programn c =
(∅,0,0[tb := n]) . sexec(c) {true} ∧ (∀r. valid(r))



A routine is considered to be valid if execution of its
body satisfies its contract as follows:

valid(r) = (∅,0,0) . v̂ ← fresh;with(0[x := v̂],
produce(a); enter; sexec(c); leave);
with(0[x := v̂], consume(a′)) {true}
where routine r(x) req a ens a′ = c

5 Soundness Proof

In this section we provide a soundness proof of our ap-
proach, i.e. (when the timing behavior is defined correctly)
if a program is safe in the symbolic execution then it is also
safe in the corresponding concrete execution. This property
can be formulated and proved as follows:

Theorem 1 (Soundness).
sym-safe programn c⇒ safe programn c

Proof. We first introduce an intermediate execution,
namely semi-concrete execution in which the state of the
execution consists of two components; a store that is sim-
ilar to the store in concrete execution and a semi-concrete
heap that is similar to the heap in symbolic execution ex-
cept that it is a function from chunks to natural numbers
(and not terms). The mutators assume and assert are de-
fined similar to those of concrete execution and the rest of
the mutators resemble their corresponding ones in symbolic
execution except for havoc. Instead of fresh symbols, this
mutator binds its input variables to some integer numbers
that are demonically chosen, meaning that the rest of the
execution should not fail for any value for these variables.
Using new mutators the semi-concrete execution (scexec)
and safety of programs (sc-safe program) is also defined
just like the symbolic version ones. We define validity of the
routines as follows where the input parameter of the routine
is bound to an integer value that is demonically chosen:

sc-valid(r) = (0,0) .
⊗
v. with(0[x := v],

produce(a); enter; scexec(c); leave);
with(0[x := v], consume(a′)) {true}

where routine r(x) req a ens a′ = c

With the aid of this intermediate execution, the sound-
ness of symbolic execution can be proved by incorpo-
rating the auxiliary theorems sym-safe programn c ⇒
sc-safe programn c, that can be proved similar to cor-
responding one in [14], and sc-safe programn c ⇒
safe programn c that follows directly from the soundness
of semi-concrete execution of commands formulated in
Lemma 2.

Lemma 2 (Soundness of Semi-concrete execution of com-
mands).
(∀r. sc-valid(r))⇒ ∀n, c, h, s. h6n⇒

(s, h) . scexec(c);κV (s, h) . κ; exec(c)
where, φV φ′ ⇔ ∀Q. φ {Q} ⇒ φ′ {Q}
and κ = λ(s, h). ⇑−h(tb) 〈s〉

Proof. By induction on n. The base case is trivial since the
left hand side of the coverage would not hold. Assuming
∀c, h, s. h6n⇒ (s, h). scexec(c);κV (s, h).κ; exec(c),
the goal is ∀c, h, s. h6n+1 ⇒ (s, h) . scexec(c);κ V
(s, h) . κ; exec(c). By nested induction on c and apply-
ing the induction hypothesis and the auxiliary semi-concrete
lemmas proved in [14] the goal can be established.

6 Experimental Results

In this section we report on applying our approach on
some programs listed in Table(s) 1 and 2. All the test
benches, the source code of our compiler for the MSP430
and the verification algorithm, implementing the symbolic
execution using an SMT solver, developed for this platform
can be found at https://people.cs.kuleuven.
be/˜jafar.hamin/prext. Information in Table 1 in-
cludes the specified time budget in the contract of the rou-
tine (Tbudget), the number of machine cycles taken when
the routine was executed on MSP430 for three different in-
puts n=10, n=100, and n=1000 (T10, T100, T1000), the re-
sult and the execution time of the verification algorithm in
ms when running on Ubuntu 15.04 with processor Intel at
3.6GHz and 15GB of RAM (Rv, and Tv). These prelimi-
nary results indicate that the algorithm does not verify the
contracts underestimating the time bound of the routine (see
square2 and square4).

Bench Tbudget T10 T100 T1000 Rv Tv

square1 28n+34 314 2834 28034 X 304
square2 28n+33 314 2834 28034 × 364
square3 30n+32 314 2834 28034 X 284
square4 27n+999 314 2834 28034 × 56
loopsum 28n+34 314 2834 28034 X 264
loopodds 14n+34 174 1434 14034 X 312
recsum 41n−17 373 3883 38983 X 128

recisodd 19n+25 203 1832 18023 X 124
fibonaci 40n−36 364 3964 39964 X 228

Table 1. Verification versus execution results

We also manually annotated some VeriFast-annotated
programs with ghost commands that consume time budget
chunks and verified a number of multi-threading and pointer
manipulation programs, some listed in Table 2. In addition
to the time budget, the contracts of these routines include
user-defined predicates [8] to provide the shape of the in-
puts in the memory. As an example, consider the predicate
Tree(struct tree ∗t, int depth, int nodes) specifying the



properties of tree t including the memory permissions, the
depth and the number of nodes of that tree. With the aid of
this predicate, the contracts of routines binTreeSearch and
parseTree can be specified as the following:

bool binTreeSearch(struct tree ∗t, int x)
req Tree(t, ?d, ?n) ∗ 06d ∗ [64×d+27]tb
ens Tree(t, d, n)

int parseTree(struct tree ∗t)
req Tree(t, ?d, ?n) ∗ 06n ∗ [81×n+24]tb
ens Tree(t, d, n)

Bench Tbudget Rv Tv

seqSearch 36n+34 X 644
bubbleSort 48n2+33n+26 X 664
addMatrix 28mn+33n+35 X 664

binTreeSearch 64d+27 X 672
parseTree 81n+24 X 684

reverseStack 34n+37 X 660
multiThreadParseTree 600n+800 X 768

All above together - X 828

Table 2. Time bound verification in VeriFast

Discussion. Although for most cases the verification algo-
rithm provides the result in a reasonable time, for the rou-
tines with cubic complexity the SMT solver is not able to
do its job in an appropriate time. From the usability point
of view, verification of large programs involves more anno-
tations and is more time consuming. Due to modularity of
the approach, however, the complexity of annotating such
programs remains constant, since each routine is annotated
and verified separately. Verification of programs including
library calls is still possible provided that timing specifica-
tion of the routines in the imported libraries is determinable
and accessible through a separate header file. Discovering
such critical information can be a challenging issue, though.
Extending the approach to cover the state of the art optimiz-
ing compilers involves defining an accurate concrete execu-
tion schema for the high-level programs that is still an open
problem.

7 Conclusion

This paper presented a time bound verification approach
based on separation logic, where timing behavior along with
other non-functional properties of programs are specified
in the contracts of the routines and loops. We provided
a soundness proof of the approach for the microcontroller
MSP430 and our non-optimizing compiler, and tested it on
a number of multi-threading and pointer manipulation pro-
grams.

8 Acknowledgements

This research was funded by the Flemish Research Fund
(grant G.0058.13).

References

[1] E. Albert, R. Bubel, S. Genaim, R. Hähnle, G. Puebla,
and G. Román-Dı́ez. Verified resource guarantees us-
ing costa and key. In Proceedings of the 20th ACM
SIGPLAN workshop on Partial evaluation and program
manipulation, pages 73–76. ACM, 2011.

[2] R. M. Amadio, N. Ayache, F. Bobot, J. P. Boender,
B. Campbell, I. Garnier, A. Madet, J. McKinna, D. P.
Mulligan, M. Piccolo, et al. Certified complexity
(cerco). In Foundational and Practical Aspects of Re-
source Analysis, pages 1–18. Springer, 2013.

[3] C. Ballabriga, H. Cassé, C. Rochange, and P. Sainrat.
Otawa: An open toolbox for adaptive wcet analysis. In
Software Technologies for Embedded and Ubiquitous
Systems, pages 35–46. Springer, 2010.

[4] A. Biere, J. Knoop, L. Kovács, and J. Zwirchmayr. The
auspicious couple: Symbolic execution and wcet anal-
ysis. In OASIcs-OpenAccess Series in Informatics, vol-
ume 30. Schloss Dagstuhl-Leibniz-Zentrum fuer Infor-
matik, 2013.

[5] M. De Michiel, A. Bonenfant, H. Cassé, and P. Sain-
rat. Static loop bound analysis of c programs based on
flow analysis and abstract interpretation. In Embedded
and Real-Time Computing Systems and Applications,
2008. RTCSA’08. 14th IEEE International Conference
on, pages 161–166. IEEE, 2008.

[6] J. Hoffmann and Z. Shao. Type-based amortized re-
source analysis with integers and arrays. Journal of
Functional Programming, 25:e17, 2015.

[7] T. Instruments. Msp430x5xx/msp430x6xx
family usersguide. URL: http://www. ti.
com/lit/ug/slau208j/slau208j. pdf, 2012.

[8] B. Jacobs, J. Smans, and F. Piessens. The verifast pro-
gram verifier: A tutorial, 2014.

[9] Y.-K. Kim, W. Shin, and C.-H. Chang. Design of static
execution time analyzer using partial path. In Systems
and Informatics (ICSAI), 2012 International Confer-
ence on, pages 2480–2483. IEEE, 2012.

[10] J. Knoop, L. Kovács, and J. Zwirchmayr. Symbolic
loop bound computation for wcet analysis. In Perspec-
tives of Systems Informatics, pages 227–242. Springer,
2011.



[11] K. Nakata and T. Uustalu. A hoare logic for the coin-
ductive trace-based big-step semantics of while. pages
488–506, 2010.

[12] J. C. Reynolds. Separation logic: A logic for shared
mutable data structures. In Logic in Computer Science,
2002. Proceedings. 17th Annual IEEE Symposium on,
pages 55–74. IEEE, 2002.

[13] P. Tranquilli. Indexed labels for loop iteration depen-
dent costs. arXiv preprint arXiv:1306.2692, 2013.

[14] F. Vogels, B. Jacobs, , and F. Piessens. Feather-
weight verifast. Logical Methods in Computer Science,
11(3):1–57, 2015.


