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Abstract—It is foreseeable the popularity of the mobile edge
computing enabled infrastructure for wireless networks in the
incoming fifth generation (5G) and future sixth generation (6G)
wireless networks. Especially after a ’hard’ disaster such as
earthquakes or a ’soft’ disaster such as COVID-19 pandemic,
the existing telecommunication infrastructure, including wired
and wireless networks, is often seriously compromised or with
infectious disease risks and should-not-close-contact, thus can-
not guarantee regular coverage and reliable communications
services. These temporarily-missing communications capabilities
are crucial to rescuers, health-carers, or affected or infected
citizens as the responders need to effectively coordinate and
communicate to minimize the loss of lives and property, where
the 5G/6G mobile edge network helps. On the other hand, the
federated machine learning (FML) methods have been newly
developed to address the privacy leakage problems of the
traditional machine learning held normally by one centralized
organization, associated with the high risks of a single point of
hacking. After detailing current state-of-the-art both in privacy-
preserving, federated learning, and mobile edge communications
networks for ’hard’ and ’soft’ disasters, we consider the main
challenges that need to be faced. We envision a privacy-preserving
federated learning enabled buses-and-drones based mobile edge
infrastructure (ppFL-AidLife) for disaster or pandemic emer-
gency communications. The ppFL-AidLife system aims at a
rapidly deployable resilient network capable of supporting flexi-
ble, privacy-preserving and low-latency communications to serve
large-scale disaster situations by utilizing the existing public
transport networks, associated with drones to maximally extend
their radio coverage to those hard-to-reach disasters or should-
not-close-contact pandemic zones.

Index Terms—Infectious disease surveillance, Federated Ma-
chine Learning, Privacy-Preserving(PP)

I. INTRODUCTION

A study of recent natural disasters [1] has revealed the

enormous scale, complexity, and destructive power of such

events and the fact that the negative economic impact and

costs of human lives are large. Moreover, disasters such as

the earthquakes, hurricane, flooding, and fire, for instance,

they can cause significant physical damage to the available

electronic equipment, which are essential units forming the

communications networks thus causing severe disruptions even

full loss of emergency communications. On the other hand,

the current COVID-19 pandemic raises a new challenge of

’soft’ damage [2] because this type of infectious disease

causes accessibility risks when closes to contact the person or

communities infected, while emergency communications are

critical for saving lives for physical- or soft- disaster recovery.

Some studies [3], [4] shows that unmanned aerial vehicle

(UAV) assisted 5G mobile edge networks are promising to

address the above challenges because of its flexibility, scal-

ability, especially low-latency communications and comput-

ing between the edge-cloudlets to the end-user devices. The

UAVs and mobile terminals are key units to gather timeliness

information for planning emergency responses, while privacy

control is emerging for information gathering and broadcasting

during the disasters [5]. How to control the privacy level is an

important issue when gathering information during disasters.

For example, where a rescue UAV is searching any survivor

who might have a mobile phone, it is very helpful if that

mobile phone is able to automatically distribute detailed infor-

mation on the location of the terminal and also related personal

information such as age, name, phone number, any chronic
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disease or drug use history for best responses. On the other

hand, their privacy should be protected in the usage phase,

i.e., the sensitive personal information should be kept secret

but UAVs/ responders can still obtain personalized information

customized to each person. In addition, due to the constraints

of battery and load capacity, the flying UAVs are in the open-

air prone to different failures such as accidental attacks by the

drone-hunters or being hacked by another spy-drone, or non-

accidental failures, and the data privacy [6], especially during

the emergency becoming paramount. Privacy-preserving has

become more and more sophisticated for machine learning

in recent years, as many privacy problems occurred during

practical applications such as disasters. In addition, more

problems have emerged with the privacy-preserving centralised

machine learning methods, which encouraged academia and

industry to look at the federated machine learning technology.

It sounds a better solution to address the privacy issue, and also

aligns with the ICT technological trend of increasingly more

distributed system architectures and more powerful cutting-

edge devices. In order to protect data privacy, the machine

learning framework tends to combine with data transforma-

tion to improve the performance of privacy preservation [7].

The term “privacy leakage” is defined as the accidental or

unintentional transmission of private or sensitive data to an

unauthorized entity/individual. “Privacy leakage incidents” are

the cases of media reports containing sensitive information,

which are exposed by an (possibly unknown) attacker and

subsequently (illegally) acquired by the other attackers [8]. In

order to measure the level of privacy leakage, certain methods

have been provided by academia and industry, including data

leakage prevention [9], information leak detection and preven-

tion (ILDP) [10], content monitoring and filtering (CMF) [11],

information protection and control (IPC) [12].

In the above context, several questions arise: What is

the current state-of-the-art in the field of 5G UAV-assisted

mobile edge, and privacy-preserving FML research? What are

the main challenges that need to be faced when integrating

these two communications and computing technologies? Is

it possible to define a holistic system architecture explicitly

designed for -federated mobile-edge infrastructure with a

privacy-preservation manner for combating various ’hard’ or

’soft’ disasters? The goal of this paper is to shed light on these

issues and to define future research directions. Specifically,

we believe that a privacy-preserving federated mobile edge

infrastructure should be built around the following pillars: i)

possibility in recruiting public bus as deployable edge nodes

associated with UAVs to cover those hard-to-reach or should-

not-to-contact zones, ii) exploitation of new privacy-preserving

FML methods with efficiencies in term of computing speed,

and at scale, iii) leveraging the trade-off between privacy

protection and data utility for learning the disaster dynamic

and best responses to save lives.

The rest parts of the paper are organized as follows. Section

2 reviews the state-of-the-art. Section 3 reports the main chal-

lenges and also details our vision to address these challenges.

Finally, Section 4 concludes the work and layouts the potential

research directions.

II. STATE-OF-THE-ART

A. 5G UAV-assisted Mobile Edge Network for Disaster

Mobile edge computing (MEC) [4] is an emerging paradigm

that provides cloud services closer to mobile users via lever-

aging the available resources in the access networks. MEC

significantly reduces the network latency, providing location

awareness and mobility support by enabling computation and

storage capacity located at the edge network compared to the

conventional far-end cloud solutions. In addition, many end-

user devices with low processor and storage capacity are able

to offload their computation to the MEC in order to prolong

their battery life.

The terrestrial base stations (BSs) cannot fully satisfy the

agility and resilience requirements of cellular networks under

the stress caused by disasters, and a possible solution to

this problem, we believe is through unmanned aerial vehicles

(UAVs), mounted with BS units. The high-quality commu-

nications services are critical to saving human lives and

for recovery operations in case of disaster and emergency

communications. Although these situations are temporary or

unexpected, it is not feasible to invest a huge amount of money

on a static base station to provide revenue for such a short time

during a rare event. UAVs could be a cost-effective and flexible

solution as presented in [20]. The advantage of using UAVs

is that they can be deployed rapidly as a complement to the

remaining heterogeneous networks and also they constitute an

effective approach to provide service to reach those hard-to-

reach or should-not-to-contact areas affected by a disaster.

B. Privacy-Preserving Approach

The privacy-preserving data mining methods can be classi-

fied into five main classes [13] such as randomisation methods

(distributed); the k-anonymity and l-diversity methods (hid-

den); distributed privacy preservation (distributed); downgrad-

ing the effectiveness of data mining results (incomplete), and

differential privacy (incomplete). After processing the data

by using one of these methods, the sensitive attribute values

cannot be easily identified to track their provenance. Also,

given the user is uncertain (i.e., previously unknown), the data

may contain limited or no information about the original user,

which means that the user can hardly be marked.

1) k-anonymity Algorithm(1997): To protect the data pri-

vacy, Samaratiy and Sweeney proposed the partial informa-

tion hiding method named k-anonymity algorithm [14]. This

algorithm aims to hide the data tuple in the database in order

to protect privacy. When the data is released to somebody,

the known data cannot be connected with the specific person

unless linking private information altogether, hence, even the

most sensitive attributes in the database can be protected via

this method.

However, many weaknesses and limitations of this algorithm

have been found by previous researchers. The most noticeable

problem with the algorithm is also its strength – the Do-

main Generalisation Hierarchy (DGH) functions [15]. DGH
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functions are created by implementing customised hierarchies

depending on the data. For example, the hierarchies have

been created to generalise users‘ information address in the

database, when a user wants to remove some specific residen-

tial information from the database, he/she needs to remove the

city information, then province, and so on.

2) L-diversity Algorithm (2006): L-diversity is an extension

of the k-anonymity algorithm. The improvement has been

made is to calculate a utility matrix, which shows how much

data can be protected. For example, when the user’s data shows

some date at 18:00:53 on February 3rd, 1993, the utility matrix

will protect this data as XXX, 3rd, 19xx, xx:00:53, whose

the utility rate is very high in the matrix. Whilst, the date

protection under the k-anonymity algorithm would be just as

Feb,3rd,xx93,18:00:xx with a very low utility rate, even equal

to zero. Therefore, the utility matrix is adopted to cluster

private and sensitive data. Then, the algorithm can classify

and merge the above data in different categories by using a

similar greedy algorithm with data loss punishment [16].

3) The (a,d)diversity Algorithm (2007): In Wang’s paper

[17], it madks sj as the user’s records defining as s has

sensitive attributes, the quantity of s is j, and bk is the

background knowledge. In addition, RiskRanking(si) ∈ bk
is risk coefficient according to the Bayes formula. It has:

RiskRanking(si|bk) = Risk(sj)P (bk|si)
Σ(j = 1)fRisk(sj)P (bk|si) (1)

P (bk|s) is the sum of the probable background risk and bk|s
is existing as the sensitive attribute values at the same time.

If a certain sensitive attribute value is much higher than

others in some conditions, the attacker will easily obtain this

sensitive attribute value via bk unit with the already-known

conditions. If the higher sensitive attribute values are more

than one, the probability of leaking sensitive attribute value

would be reduced, thus an algorithm called (a,d)diversity can

be applied [17]. Before introducing, the preparatory definitions

of this algorithm are required.

Definition 1 ((a,d)diversity). If a sensitive feature contains
at least one alien value and their quantity is d, each value
contains at least one similar value and their quantity is s.
It has called the equivalence group according to the (a,d)
diversity property. If each equivalence in the data source T
is matching the property of (a,d) diversity, it has called T to
input the table and this form is (a,d) diversity.

4) The t-closeness Algorithm (2007): Li [18] tried to offset

the defect of l-diversity in his research. He assumed that ob-

server A has some individuals’ sensitive attribute A0. Then, in

a hypothetical step, observer A gave a completely generalised

data table where all attributes are in a quasi-identifier. The

observer A acquired information Q, and the sensitive attribute

value in the whole data set was defined as A1. The observer,

according to the quasi-identifier values, was able to find the

individual’s record in an equivalence class and calculate the

distribution P of sensitive attribute values. The observers can

deduce A2 from previously acquired data.

Definition 2 (t-closeness). An equivalence class has t-
closeness if the distance between the distribution of a sensitive
attribute in this class and the distribution in the whole table is
no more than a threshold t. A table is able to have t-closeness
if all equivalence classes have t-closeness.

5) The ε-Differential Algorithm (2006): The k-anonymity

and l-diversity algorithms are based on the assumption that

none of the sensitive information attributes has been leaked

to an attacker. While the ε-differential assumes the worst

situation that the attacker has access to all of the sensitive

attribute values except one record. When the data resources D1

and D2 exist, only one record in these two data resources is

different [19]. Whatever the attacker searches, the result would

be “same” due to the same index, so the attacker cannot deduce

any sensitive attribute value from the probability of sensitive

attributes belonging to the data resource.

Definition 3 (ε-differential privacy). The function θ provide
privacy for ε-differential if for all data sets [x1], [x2], the
users‘ single data will be modified and filled out of range
as L ⊂ Range(θ) [20],

PR(θ(x1) ∈ L) ≤ eθ × PR(θ(x2) ∈ L) (2)

After this process, the data set will go through a sanitiation

approach [21] , also called a noise addition: Let f(X) be as

user’s response for a data search process, Y (X) as a noise

addition process, and θ(X) = f(X) + Y (X) , θ(X) as the

result. In this process, some noises will be added to data with

Laplace distribution, the zero mean will generate Y(X), and

the scale of the parameter would be distributed in [0, Δ(f)
θ ].

Here θ represents the parameter of differential privacy, and

Δ(f) means the f corresponding to the L-diversity.

We assume that noise [lap(b) = e]−
ω
b follows a symmetrical

exponential distribution and the standard deviation is
√
2b,

where b = Δf
θ , then the probability density function is:

p(x) =
θ

2Δ(f)
e−

ωθ
Δ(f)

)
(3)

In probability density function, Δ(f) is varied. If θ is

small, in order to balance differential private data, more

Laplace noises need to be added. While if Δ(f) is small,

the algorithm performs better because of less added noise.

When θ decreases, lap(Δ(f)
θ ) curve flattens, meanwhile the

expected noise magnitude turns larger. When θ is fixed, the

high-sensitivity function f tends to be a more flatter curve,

and the magnitude of noise will also be changed considerably.

Compared with previous ones, this method is more effective

in protecting privacy with the existence of distributed ma-

chine learning or deep learning system, because ε-differential

privacy(DP) method neither breaks data itself nor changes

the structure of a data set. The only thing that needs to

do is measuring the Laplace noise with the same or similar

probability distribution of an input data set.
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C. Federated Deep Learning

Federated deep learning [22] is one of the machine learn-

ing methods, which trains the algorithms without converting

multiple decentralised torrent tools or local data models to the

data models on the centralised server. This approach is a com-

plement to traditional centralised machine learning practices

where all data samples are uploaded to a server. The work [23]

has shown that federated deep learning models or federated

learning (FL) models have great potentials in learning effective

representations and demonstrating cutting-edge performance in

computer vision and natural language processing applications.

In deep learning models, the symptoms are being learned in

a way that is neither supervised nor proven. Although deep

learning models are more attractive than the shallow models

which cannot automatically learn features (e.g., the effective

feature representations are being learned from textual content),

this work has been constrained by the size of collaborative

learning and the similarity model which inherit the feature

from original data. So deep learning methods can be integrated

with collaborative learning.

Some researchers had applied differential privacy (DP) to

evaluate mechanisms for transporting, indexing, and searching

for data. In recent days, more work has been done aiming to

link differential privacy to statistical objectives [24]. Some re-

searchers have developed algorithms for private robust estima-

tors, point and histogram estimation, and principal components

analysis, etc. [25]. Moreover, FL methods have been illustrated

by previous researchers to use differential privacy to connect

with machine learning, as the connection between statistical

privacy and data statistical features has been applied in recent

works, and the statistics serve the basis of machine learning.

D. Privacy-Preserving Federated Deep Learning

1) Distributed Selective Stochastic Gradient Descent:
Stochastic gradient descent (SGD) is a way to simplify the

objective function with the correct elements of understanding

(e.g., division) [26]. This is considered to be a measure of

using gradient descent optimisation because it replaces the

true gradient (calculated from all the data sets) in its estimation

(calculated from the optional data set). While the basic concept

of archaeology can be traced back to the Robbins-Monroe

algorithm in the 1950s, strong nationalist culture has become

an important mechanism for machine learning [27].

Recent works demonstrated that the Distribution Selected

SGD is vulnerable to the inference attack [28], e.g., reconstruc-

tion attack and membership attack by malicious servers/clients,

because the shared model is updated according to those private

data, and the attacks‘ patterns are encoded into the model

parameters. Therefore, if a corresponding decoder could be

constructed, the private data or statistics would be recovered

inversely.

2) Privacy-Preserving Federated Deep Learning: Feder-

ated machine learning algorithms have exciting features and

wide-range potentials. However, as the data frequently con-

tains sensitive personal or organisational information, there

are real privacy concerns associated with the development of

this technology. Motivated by this observation, Konečný and

McMahan initiated the differentially private federated deep

learning [29], which aims to construct learning algorithms that

provide strong privacy protections for the training data.

In order to improve privacy-preserving in federated machine

learning frame, Reza and Vitaly [30] improved current SGD

methods, named as Distributed Selective Stochastic Gradient

Descent (DSSGD). It has proposed that the collaborative

learning DSSGD, where the data providers, i.e., clients, train

locally on a shared model, then the server is to collect

those local models/updates to estimate/update a global model

instead of directly assessing the private data from the clients.

Further, the global model is sent back to clients, iterating

the local training process. In the same token, FL proposed

a variant of decentralised learning with higher efficiency. The

key improvement lies in the way of updating the global model,

specifically, DSSGD performs the aggregated update while

the federated learning conducts the averaged update. Hence,

DSSGD is more suitable for the commonly non-IID and

unbalanced data distribution among clients in the real world.

Geyer and Klein [31] introduced a new idea to generate

noise and added it into DSSGD. They require the users to

terminate contributing data set during training and analyse the

distributed model. In addition, they proposed an algorithm

for differential privacy-preserving federated optimisation at

the user terminal. Their method improved the privacy level

via changing the original master generation into decentralised

noise generation. However, their research ignores the conver-

gence performance of SGD, which is, when they update the

noise sample, the change could impact on all terminals. In

detail, if the data size is very small on a certain platform, the

convergence performance should be very slow, which makes

that the output data can hardly be used.

In March of 2020, Huang and Su [32] have found a solution

that if pruning a given layer of the neural network is equivalent

to adding a certain amount of deferentially private noise to

its hidden-layer activation. The hidden layer can be added in

Convolutional Neural Networks (CNN) and Recurrent Neural

Networks (RNN), which theoretically can draw a connection

between neural network pruning and differential privacy. In

their work [32], the noise has been analysed via the concen-

tration results among the central tools such as the Chernoff

bound and Hoeffding’s inequality. In addition, following from

classical random Gaussian, they connected ‘1-sensitivity with

neural network layers noise in folded Gaussian zone. At last,

they measured and tested the privacy leakage under attack,

and obtained an acceptable result. Despite no obvious problem

from their work, they can further improve attack and defense

work with more Generative adversarial network tests to refine

the result.

III. OUR VISION ON PPFL-AIDLIFE SYSTEM

According to the above technological advancements and

the challenges identified for disaster communications, our

vision is to develop a buses-and-drones based mobile edge

infrastructure that is movable to effectively and efficiently
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Fig. 1: Vision of the privacy-preserving federated learning embedded buses-and-drones mobile edge infrastructure (ppFL-AidLife) for disaster
and emergency communications. (BS= Base Station LC = Large Cell, RRH = Remote Radio Head, UAV = Unmanned Aerial Vehicle, NODE
= Reconfigurable network element that can be functioned as micro edge/cloud data-center, Baseband Unit (BBU), SDN switch)

support a wide range of communications and computations

e.g., ML/FML services, also with a privacy-preservation man-

ner. Fig. 1 shows the proposed ppFL-AidLife architecture

for a large- scale ’hard’ disaster or ’soft’ pandemic scenario.

Specifically, for the disaster/infected region, the coverage and

connectivity could be provided by using remote radio head

(RRH) mounted on top of the UAVs and buses i.e., RRH-

UAV and RRH-Bus according to the various coverage scales

and reliable communications requirements. Each RRH-UAV

establishes connections with the other RRH-UAVs flying in

the same zone. Moreover, the RRH-UAV could establish a

radio connection with the baseband unit (BBU) mounted in

nodes hosted by the buses for edge computing, storage, and

data processing. The challenge here is to develop efficient

solutions to reduce the amount of information exchanged

between the RRH-UAV and the buses-Node, and also the data

privacy-preservation. Notice that the UAV can be recharged

by the power resources e.g., petrol-fed power generator or

batteries located in the buses (which have sufficient physical

space and can also carry heavy loads). If needed, the UAVs

can continuously fly in the atmosphere in order to provide

basic coverage, contact, and emergency services including

information gathering and broadcasting, otherwise, they can

fly back to the buses for recharging and/or waiting for next

missions.

As the second alternative to provide wireless access connec-

tivity in disasters or pandemics, the exploitation of BS Large

Cells (LCs) is needed which can enable coverage radius in

the order of 50 km. Such cells can be spread in those areas

where the users’ requirements are low in terms of bandwidth

and delay. LCs could be powered by Solar Panels (SPs) and/or

petrol-fed power generators carried by buses since the power

grid is assumed to be not present or to be unreliable or non-

accessible in the case of a large- scale disaster or pandemic.

In an optimistic case, there might be still some terrestrial BSs

working or accessible, then the buses-and-drones federated

edge infrastructure can be further connected to the global

infrastructure through these still-working and accessible BSs.

Otherwise, it can at least provide regional communications

and computation services just for local activities. Furthermore,

we foresee the technical exploration of low-cost, low-power,

and portable network components (i.e., the reconfigurable

nodes introduced in Fig. 1, which are shown in Fig. 1 as

the Nodes). Such portable devices can virtualize the different

functionalities, which include the radio, computation, data

mining, and machine learning, communications and caching,

etc. Each functionality can be enabled or disabled according to

where the node is located in infrastructure. Finally, the ppFL-

AidLife infrastructure needs to be controlled by a centralized

orchestrator i.e., the head of the federated edge system, which

can holistically manage and optimize the networking, comput-

ing, data mining, and machine learning, communications and

caching resources. For example, when high data rate video

streaming and processing are needed in the rescue scene, the

computing and caching resources could be allocated into the

Nodes close to the users. At the same time, the coordination

of UAVs, Buses, and BS LCs, as well as the coordination to

decrease/increase their coverage could be done according to

the users’ density and the way their needs change over time

learned and predicted through historical data. Additionally, the

orchestrator needs to optimize the resource allocations by also

considering the variation of power available from the UAVs,

Nodes, and Buses.
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IV. CONCLUSION AND FUTURE WORKS

We have focused on discussions in providing privacy-

preserving emergence communications and computing (e.g.,

ML) services during the ’hard’ (such as earthquakes) disasters

and ’soft’ (such as COVID-19) pandemics. After a deep dive

into a current state-of-the-art, we have considered the main

challenges that need to be faced for full exploitation of 5G

UAVs-assisted mobile edge communications, networking, and

privacy-preserving FML areas. In order to achieve this goal,

we have discussed a number of architectural features, includ-

ing the adoption of a buses-and-drones flexible infrastructure

forming solution through the instant reusability of public bus

systems. Moreover, more efficient privacy protection FL with

a trade-off between privacy protection level and data utility

for learning, thus a reference ppFL-AidLife architecture. For

future, we may have a number of research activities, espe-

cially plan to validate and numerically analyse the proposed

architecture in terms of its performance on privacy protection,

learning accuracy, communications and computing latency and

its scalability to accommodate massive users and/or more

complex multimedia data demands, at scale.
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