
Distributed Differentially Private Mutual
Information Ranking and Its Applications

Ankit Srivastava, Samira Pouyanfar, Joshua Allen, Ken Johnston, Qida Ma
Azure COSINE Core Data

Microsoft
Redmond, United States

Emails: {ankitsri,sapouyan,joshuaa,kenj,t-qidma}@microsoft.com

c©2020 IEEE DOI: https://www.doi.org/10.1109/IRI49571.2020.00021

Abstract—Computation of Mutual Information (MI) helps
understand the amount of information shared between a pair of
random variables. Automated feature selection techniques based
on MI ranking are regularly used to extract information from
sensitive datasets exceeding petabytes in size, over millions of
features and classes. Series of one-vs-all MI computations can
be cascaded to produce n-fold MI results, rapidly pinpointing
informative relationships. This ability to quickly pinpoint the
most informative relationships from datasets of billions of users
creates privacy concerns. In this paper, we present Distributed
Differentially Private Mutual Information (DDP-MI), a privacy-
safe fast batch MI, across various scenarios such as feature
selection, segmentation, ranking, and query expansion. This
distributed implementation is protected with global model dif-
ferential privacy to provide strong assurances against a wide
range of privacy attacks. We also show that our DDP-MI can
substantially improve the efficiency of MI calculations compared
to standard implementations on a large-scale public dataset.

Keywords-mutual information; distributed computing; differ-
ential privacy;

I. INTRODUCTION

Nowadays, server-side logs of opted-in user interactions
and feedback are collected, stored, and analyzed by numerous
organizations. These logs are queried and used for a variety
of purposes, such as improving the organizations products
and services, making them more secure, and gaining business
intelligence via metrics and dashboards. Measures such as
Mutual Information (MI) [1] can estimate the amount of
information shared between features and dimensions stored
in these logs. Examples of such applications of MI ranking
include finding distinguishing websites (features) visited per
country (partitions), distinguishing feedback topics received
per device make or model, distinguishing products purchased
across regions, and distinguishing movies watched in a zip
code.

Mutual Information of two discrete random variables X and
Y is calculated as per Eq. (1).

I(X;Y) =
∑
y∈Y

∑
x∈X

p(X,Y)(x, y) log

(
p(X,Y)(x, y)

pX(x) pY (y)

)
(1)

where p(X,Y) is the joint probability mass function of X and
Y , and pX and pY are the marginal probability mass functions
of X and Y . MI is a common measure of association used

in machine learning applications, with one desirable property
being that it is scale invariant, reducing the need for feature
normalization.

There is a need to compute such measures on batch datasets
whose size can scale to petabytes. Such large datasets are
stored in distributed computing environments such as Hadoop
[2] and Spark [3]. Languages such as Scala [4], PySpark
[5] are suitable for querying large volumes of data stored
in distributed computing environments in a reasonable time.
However, computing the mutual information on exact ag-
gregates is vulnerable to re-identification attacks, especially
with the growing availability of auxiliary information about
individuals [6]. Therefore, there is a need to compute MI
such that it preserves individual privacy while having minimal
impact on the accuracy of the ranked features per class ordered
by their information gain.

Differential Privacy (DP) [7] is the gold standard in preserv-
ing end-user privacy. An algorithm A provides ε-differential
privacy if for all neighboring datasets D1 and D2 that differ
on a single element (i.e. the data of one person) and for all
measurable subsets Y of Y , the condition in Eq. (2) is met.

Pr[A(D1) ∈ Y] ≤ eε · Pr[A(D2) ∈ Y], (2)

This is a standard definition of differential privacy, indi-
cating that the output of the mutual information ranking for
datasets that differ by a single individual will be practically
indistinguishable, bounded by the privacy parameter epsilon.

This paper introduces the application of Distributed Differ-
entially Private Mutual Information (DDP-MI) ranking and its
use across a variety of case studies. The novel contribution of
this paper is to compute information gain using MapReduce
with billions of instances reported across millions of features
and classes in a distributed computing environment such that it
provides strong assurances against privacy attacks. In addition,
we demonstrate the use of cascaded MI ranking executions one
after the other. Our implementation can run on standard cloud
data processing infrastructure, and may efficiently be deployed
in environments with secure, trusted computing architectures
[8]. Our methodology can scale and, at the same time, protects
end-user privacy. We present privacy-compliant case studies
on how information gain criterion can be used for various
business intelligence scenarios.

ar
X

iv
:2

00
9.

10
86

1v
1

 [
cs

.C
R

]
 2

2
Se

p
20

20

II. RELATED WORK

A. Scalable Mutual Information Computation

MI is a well-studied criterion for automated feature selection
[9] [10]. There has been an existing implementation of MI
Measure to rank inferred literature relationships using tradi-
tional SQL and Visual Basic technology stack [11]. Shams and
Barnes provided a method to speed up MI computation for
image datasets on GPUs by approximating probability mass
functions [12]. The MapReduce batch computation of MI gain
was demonstrated at cloud scale by Zdravevski et al. [13]
[14]. Li et al. [15] provided a high throughput computation
of Shannon MI in a multi-core setting.

B. Differential Privacy

DP [7] has been an active area of research for more than
a decade, gaining importance with increased data collec-
tion and privacy regulations such as GDPR [16] and CCPA
[17], HIPAA [18] and FERPA [19]. Differential Privacy has
emerged as the gold standard definition of privacy, and pro-
vides formal assurances against a wide range of reconstruction
and re-identification attacks, even when adversaries have aux-
iliary information.

U.S. Census Bureau announced, via its Scientific Advisory
Committee, that it would protect the publications of the
2018 End-to-End Census Test using differential privacy [20].
Tools such as the Open Differential Privacy platform [21]
aim to ease deployment of differential privacy for common
scenarios. There has been recent research that enables global
differential privacy on SQL analytic workloads [22] [23] [24].
Tools that are agnostic to compute targets and can scale to
petabyte scale distributed computing environments enable the
use of differentially private aggregates and censoring of rare
dimension for computation of mutual information ranking.

To the best of our knowledge, this is the first work on
distributed MI ranking in the setting of aggregated global
model DP.

III. METHODOLOGY

The methodology of computing distributed differentially
private MI ranking of features across partitions is illustrated
in this section. It starts with collecting observations about
entities such as users or devices across a set of features they
interact with, such as movies watched or products purchased.
The observations can be bucketed across partitions using user
grain attributes such as zip code, country, device model, or
time span of observation. The observation can be any discrete
numeric measure such as dwell time or visit count.

A. Input Data

Table I illustrates the schema to compute MI for a dataset
of user records across features and partitions. The data can
be stored in any environment that supports SQL-92 grammar
[25] [26] [27] to perform private aggregations on it.

Id Feature Partition Label Observation
User 1 Feature 1 Partition 1 200.0
User 2 Feature 1 Partition 2 100.0
User 3 Feature 2 Partition 3 50.0
User 3 Feature 3 Partition 3 270.0
...
User N Feature F Partition P 150.0

TABLE I: Input Data Schema for distributed MI

B. Differentially Private SQL for Marginal and Joint Proba-
bilities

To compute the mutual information, we need to compute
aggregates for the marginal probability of each feature and
category, as well as the joint probabilities. These are simply
sums, which are supported by SUM and GROUP BY in the
SQL language. Publicly-available implementations of differ-
entially private SQL have support for releasing these sums in
a privacy-preserving manner.

When applying differential privacy, noise is calibrated based
on the sensitivity and maximum number of records each user
can contribute. Publicly-available implementations of differ-
ential privacy will automatically clamp values to the specified
sensitivity range, sample values, and calibrate noise to the
given sensitivity and contribution limit.

When computing the marginal and joint probabilities, spe-
cial care must be taken to avoid leaking infrequent dimensions.
Because the features typically come from an unbounded
domain, rare features may become uniquely identified with
individuals. Some combinations of feature and category may
particularly uniquely identifying. Publicly available implemen-
tations of differential privacy operate by dropping infrequent
dimensions that might violate privacy. These dropped dimen-
sions are typically not relevant to mutual information ranking.

Because joint and marginal probabilities are computed at
different levels of aggregation, it is common for joint members
of a larger marginal to be dropped by differentially private
processing. This means that marginal probabilities computed
by summing over the joint probabilities will be inaccurate. One
easy way to fix this is to compute the marginals separately
from the joint probabilities, and pay a separate epsilon cost
for each query, being sure to spread the privacy budget appro-
priately across all queries. Another approach is to aggregate
all dropped dimensions to an “other” category.

Publicly-available implementations of differentially private
SQL support censoring of rare dimensions by thresholding
noisy counts [28]. For settings where each user can be asso-
ciated with a large number of different features or categories,
Differentially Private Set Union can be used in a preprocessing
step [29].

In a map-reduce setting, the computation of all joint proba-
bilities is a single pass of cost O(n log n). Because of the
dimension censoring issue mentioned earlier, the marginals
may be computed separately at similar cost. Clamping, adding
noise, and dropping dimensions are constant cost, while reser-
voir sampling may be easily implemented in a preprocessing
step of O(n log n). Some underlying engines may enforce

the contribution and sensitivity properties through database in-
tegrity constraints, in which case these checks can be skipped.

C. MI Ranking

Once the DP aggregates are available per feature and
partition, we pass them through the distributed implementation
of MI ranking mentioned in Algorithm 1. Binary MI and
Single MI algorithms are called within Algorithm 1 as helper
utility methods that perform the actual computation of mutual
information gain for every feature, partition combination.

Algorithm 1 MI Ranking algorithm

1: procedure MI RANKING(Feature, Partition, Observation)
2: obvnormalized ← obvprivate GROUP BY per Feature,

Partition
3: pxy ← obvnormalized > 0
4: px ← obvprivate GROUP BY per Feature
5: py ← obvprivate GROUP BY per Partition
6: mi ← CalcMI(px, py, pxy) GROUP BY per Feature,

Partition
7: ordered mi← Order by mi in descending order
8: ∆← (px − pxy)
9: x← pxy/py

10: y ← ∆/(1− py)
11: direction← x > y ? “Presence” : “Absence”
12: return ordered mi, direction per Feature, Partition

We first take the differentially private sum of observa-
tions for each feature and partition combination. This sum is
normalized into a joint probability by dividing the summed
observations for each feature and partition combination by
the total observations across all features and partitions. Only
observations greater than zero are considered for computation
of joint probabilities pxy . Similarly, we get differentially pri-
vate marginal probabilities px and py . Grouping by partitions
takes care of one-vs-all setting of MI computation. Using
computation of direction, we can find the presence or absence
of a feature that was highly distinguishing of a partition. For
example, the presence of commercial apps and the absence of
consumer apps being used on a device can indicate the device
belongs to the commercial segment.

Algorithm 2 Binary MI Algorithm

1: procedure CALCMI(px, py, pxy)
2: p¬x ← 1.0− px
3: p¬y ← 1.0− py
4: px¬y ← px − pxy
5: py¬x ← py − pxy
6: p¬xy ← 1.0− px − py + pxy
7: return

CalcSingleMI(px, py, pxy) +
CalcSingleMI(px, p¬y, px¬y) +
CalcSingleMI(p¬x, py, py¬x) +
CalcSingleMI(p¬x, p¬y, p¬xy)

For cases where a feature is in one class but not the others,
some arms of the Singe MI computation return zero. If the
joint count is non-zero, but low, and the marginal count is
very large, the probability computation can approach zero,
outside the ability of standard floating point implementations
to represent. For this case, we choose a threshold tolerance
parameter tol (e.g. 10E-16) which probabilities do not fall
below. Note that infrequent joint probabilities with privacy
exposure have been filtered out prior to this step, so remaining
probabilities that fall below tol will have reduced accuracy, but
no additional privacy cost.

Algorithm 3 Single MI Algorithm

1: procedure CALCSINGLEMI(px, py, pxy, tol)
2: if pxy < tol then return 0.0
3: φ← px ∗ py
4: if φ < tol then
5: φ← tol

6: return pxy ∗ log(pxy/φ)

IV. APPLICATIONS OF MI RANKING

In this section, several important real-world applications of
DDP-MI are presented.

A. Segmentation Without Labels

One of the early applications we applied MI is to find which
Win32 applications are used predominantly by teachers and
students but not by the rest of the population. We wanted
to make sure such Win32 applications are available in the
Microsoft Store. Since there is no easy way to get labels for
teacher and student devices in Windows 10 K-12 US install
base, we applied MI to find distinguishing applications for
each segment.

From domain knowledge, we knew Smart Ink is a popular
Win32 application used for digitizing the markerboard and is
heavily used by teacher devices, not student devices. Using
that as a seed application, we identified a cohort of US K-12
devices that had opted in for Full diagnostic data and Tailored
experiences. We then categorized devices using “Smart Ink”
in one category and the rest of K-12 US devices population
in the second category. Using binary MI ranking, we identify
other such applications that are distinguishing of teacher vs.
student/admin devices as listed in Table II. This process
helped us to expand the cohort from just initial seed app
we began with to then identify hundreds of applications that
have high information gain in distinguishing teachers and
students devices. This lets us build a segment of teacher
and student devices. We also gained insight about student
devices browser apps being locked down by applications like
“lockdownbrowser.exe” for purposes of student testing. Instead
of MI ranking, if we only use top apps, the browser apps
appear on the top. However, they do not have high information
gain between teacher and student/admin devices.

Teacher apps Student / Admin apps
notebook.exe lockdownbrowser.exe
smartintdocumentviewer.exe nk station.exe
imagemate.exe inventor.exe
gqweb.exe photoshop.exe
floatingtools.exe student.exe
smartboardtools.exe onesource.exe
grpwise.exe sldworks.exe

TABLE II: Top Teacher vs Student Apps

US India China
msn.com/market=US irctc.co.in baidu.com
aol.com google.co.in cn.bing.com
xfinity.com msn.com/en-in hao.qq.com
att.com jionetportal.co.in bilibili.com
roblox.com hdfcbank.com taobao.com

TABLE III: Top 5 Websites per Country

B. Multi-class classification at scale

For browsers, website compatibility is a big focus area. We
used sampled anonymized webpage visit logs per country from
devices opted into collecting diagnostic data. There are a lot
of top websites that get visited by users across countries. To
understand country-specific compatibility needs, we applied
MI ranking to understand websites predominantly visited by
users of a specific country but not by others. MI ranking in
a single run is able to identify top distinguishing websites for
each of the 195 countries. We pick three arbitrary countries
from the per-country results and showcase top distinguishing
websites for them in Table III.

C. Query expansion

One of the key functions of marketing is to buy keywords
on search engines. Often this is done with some basic analysis
of query volumes and click-through rates on competitors adds
that creates a bidding war over a small set of fairly generalized
keywords. MI allows us to identify even more distinguishing
keywords, and usually, those keywords will have a lower
bid threshold Cost per Click (CPC). In particular, we try to
understand IoT enthusiasts who query on Bing search engine.
For this purpose, we started with a seed query of “azure
iot” and applied MI ranking to find queries distinguishing of
visitors who search for “azure iot” in a time span of 28 days.
From just a seed query with thousands of visitors, in just hours
of processing and a few days of analysis we are able to derive
a breadth of related search queries that are distinguishing of
IoT enthusiasts (as shown in Table IV) and from there build
a target audience that is suitable for ads around our service
offering.

D. Symmetric mutual information

Mutual Information gain between two random variables is
symmetric i.e. I(X;Y) = I(Y ;X). So, we can reverse MI
results from distinguishing features per partition to distinguish-
ing partitions per feature. This property of MI is interesting
where we want to find specific segments where a given feature,
let’s say an application is used as a distinguishing application.

Query Category Sample Queries

Related Azure
Services

azure event hub, azure blob storage, windows
10 iot core, azure cognitive search, azure
monitoring, azure pricing calculator

Datasheets and
IoT Boards

l293d (Texas Instruments), intel nuc, 74hc595
(Texas Instruments)

Azure IoT
Feature Searches

iotedge, iot hub, azure sphere, azure edge
raspberry pi iot core, iot analytics platform

Developer
Searches

docfx (Publishing API), npm azure-iothub,
azure iothub sdks, azure iot dev kit, azure iot
c sdk docs

IoT Technology
Standards
Protocols

nb-iot (Narrowband IoT), lte-cat-m1 (Low
Power wide-area air interface that lets connect
IoT and M2M devices), mqtt (lightweight
messaging protocol for small sensors)

TABLE IV: Top Queries of Azure IoT Enthusiasts

Label Name Applications
K-12 microsoft.minecrafteducationedition
Partner Professional Services teams.exe
Media & Telcom teams.exe
Technology teams.exe

TABLE V: Top Partitions (Industry) Per Feature

We can see in Table V that many entities are only dis-
tinguishing of a single segment (built for that segment) like
Minecraft for Education is used as a distinguishing app in the
K-12 segment. Some entities are distinguishing more than one
segment. The feature or application might be used across all
segments, but some leverage it significantly more than others.
For example, given the collaborative nature of industries like
Partner Professional Services, Media, Telecommunications,
and Technology, applications such as Microsoft Teams are
distinguishing within those segments. MI ranking works best
when at least one of the sides of comparison is not too
high-dimensional. For example, it is fine to have billions of
web sites compared with thousands of segments, however,
comparing billions of entities on one side with billions of
partitions on the other side will not perform well.

E. N-Fold mutual information ranking

In certain applications, looking at one entity type is not
enough. For example, to build a propensity model on which
organizations are likely to purchase a service, there is a need to
tap into various customer touchpoints like public news articles,
marketing documentation visits, service subscriptions. Thus,
we propose a methodology to apply 2-fold MI on data.

Figure 1 demonstrates this approach leveraged in identifying
companies working in IoT space. The first set of MI runs
find keywords in publicly available sources of data like news
articles and job postings distinguishing of IoT. They expand
from a small seed list of IoT keywords and skills. The second
step is to link these identified IoT entities to organizations
and run MI to identify organizations distinguishing of IoT
entities. These steps can be alternated repeatedly to expand
the number of associated entities discovered. Each step incurs
an additional privacy cost, so epsilon must be composed across
multiple folds.

Fig. 1: Distinguishing IoT Companies via 2-fold MI

Industry Top MI ranked IoT
Distinguishing Organizations

Manufacturing Intel (IoT platform),
Flextronics (IoT platform SmartNexus)

Professional
Services

Cadillac Fairview (Commercial Real Estate
Leasing IoT in Smart Buildings),
Altran (Industrial IoT)

Higher
Education

Arizona State University (invests in IoT
with Intel Smart Stadium, Smart Campus),
Yonsei University (IoT specialization on Coursera)

Retailers Starbucks (Hyper connected coffee shops),
Assurant Group (Connected Living Division)

TABLE VI: Distinguishing IoT Companies Using 2-Fold MI
Across Various Organizations

V. EXPERIMENTAL ANALYSIS

A. Differential Privacy Analysis

To understand the effect of applying differential privacy
on mutual information ranking, we use a large-scale dataset
including 5,880,165 features and 22 partition labels across
382,762,990 randomly generated private user identifiers. Fea-
tures and partitions correspond to a simple scenario where
the maximum contribution of a private user identifier is set
to one feature value and one partition label. The dataset
is aggregated to get a user count grouped by features and
partition labels. The aggregated dataset is passed through
OpenDP WhiteNoise-System to get differentially private user
count for a range of epsilon values (privacy loss parameter)
from [0.1, 0.5, 1.0, 2.0, 4.0, 8.0]. The lower the epsilon value,
the higher the guarantee of privacy but lower the accuracy. The
six DP aggregated datasets corresponding to different epsilon
values are passed through the DDP-MI algorithm. We filter to
the top 10K feature and partition label combinations with the
highest MI gain and compare their MI ranks with the ones
they had without the use of differential privacy.

To compare the rankings, we use {10, 25, 50, 75, 90}
percentiles of absolute difference in ranks as the evaluation
metric. 50th percentile corresponds to median absolute error
as per Eq. (3) where y corresponds to original MI rankings
without the use of DP and ŷ corresponds to the rankings from
DDP-MI algorithm.

MedAE(y, ŷ) = median(| y1 − ŷ1 |, ..., | yn − ŷn |) (3)

Figure 2 presents the results of this comparison. As can be
seen from the figure, small values of epsilon lead to relatively
high absolute errors in MI ranks. Therefore, setting epsilon (ε)

to 1.0 or 2.0 is a reasonable choice for low privacy loss and
low absolute error.

Fig. 2: Comparing top 10K MI Ranks with and without DP

Figure 3 further shows stability of MI ranks among top
features with highest mutual information gain and the tail
ranks. We can see most of the absolute error is contributed
by the tail features which have low information gain. Use of
differential privacy hardly has any impact on the top ranking
features. The lower ranked features can potentially be pruned
out.

Fig. 3: Stability of MI Ranks with and without DP

B. Runtime Performance Analysis

In addition to the private applications, the DDP-MI is
applied on a public dataset and its runtime performance is
compared with two different MI implementations on Python
and R. This experiment show the efficiency of the DDP-MI
on large-scale datasets compared to some other available work
in this area. For this purpose, an academic citation network
dataset [30], collected by Arnetminer 1, was utilized for this
study. This data are collected from different resources such

1https://aminer.org/citation

Dataset
Size

Running Time
Performance (minutes)

Improvement
ratio

Binary MI DDP-MI
3M 10.7 1.7 6.3
6M 13 1.8 7.2
30M 16 2.3 7.0
60M 16.4 2.4 6.8

TABLE VII: Running Time Performance Comparison Between
Our Binary and DDP-MI

as DBLP, ACM, and Microsoft Academic Graph (MAG). It
includes major computer science journals, conference pro-
ceedings and arXiv pre-prints. We used Citation-network V10
from this dataset that contains 3,079,007 papers (nodes) and
25,166,994 citation relationships (edges). The information of
this dataset is stored in a JSON file, and each line contains the
following fields: paper id, title, authors, venue, year, number
of citations, references, and abstract. In particular, we used
paper id as Id, extracted words from abstract as Features, and
frequency of these keywords as Observation. We also used the
year of publication as Partition (category label). Using MI, we
can find the most distinguishing keywords for each year.

We evaluated the runtime performance of our proposed
DDP-MI with the following benchmarks: 1) Python’s “mu-
tual info classif” function 2 from sklearn package, and 2) R’s
“mutinformation” function 3 from infotheo library.

In the first experiment, we compared the performance of
our Binary MI with DDP-MI on different sets of Academic
Citation data (from about 3 million samples to 60 million
samples). For binary MI, we run the MI algorithm for each
partition (year) separately using one-against-all technique,
while DDP-MI can automatically handle multi-partitions data.
The performance results are shown in Table VII. From this
table, it is obvious that DDP-MI can greatly enhance the
running performance compared to binary MI (about 600%-
700%).

We compare the binary MI performance with the ones in
Python and R. Figure 4 demonstrates the running time compar-
ison between these three implementations. In this experiment,
we start from sample size of 100K to 2M because both Python
and R had memory crash for data greater than 2M. Since all
implementations are based on binary MI, we only use one
partition (years > 2015) in this experiment. It can be seen
from this figure, Python’s and R’s implementations can handle
smaller data more efficiently than our MI implementation.
However, as data samples increase, their running performance
degrades remarkably.

We also compared our DDP-MI with both Python and R
implementations. In this experiment, we used all the years
as the partitions (classes). For Python and R implementation,
we add a loop to run MI on all years using one-against-all
technique. Figure 5 shows the improvement ratio of Python

2https://scikit-learn.org/stable/modules/generated/sklearn.feature selection.
mutual info classif.html

3https://www.rdocumentation.org/packages/infotheo/versions/1.2.0/topics/
mutinformation

Fig. 4: Running Time Performance of Python, R and our
Binary MI

and R compared to our DDP-MI. From this figure, it can be
concluded that the proposed DDP-MI technique performs very
well on very large-scale datasets with many partitions.

To further demonstrate the effectiveness of the DDP-MI
on this data, we extracted top features (words) generated by
MI for each year. Table VIII lists some of these features for
different year ranges.

Fig. 5: Running Time Performance Improvement of DDP-MI
vs Python and R

VI. CONCLUSIONS

We demonstrated a scalable implementation of Mutual
Information Ranking that can be used in common distributed
computing environments using differentially private SQL. We
then applied the implementation in a diverse range of prob-
lems and demonstrated sample results. We extended Mutual
Information ranking to more than binary partitions and beyond
single step. To mitigate potential for abuse, this technique
should be used only in environments with strong security,
policy, and audit controls, in compliance with regulations.
Common defenses include “eyes-off” processing infrastruc-
ture, always-encrypted data, and automated expungement. On
top of these privacy defenses, differential privacy provides
defense-in-depth, assuring that released ranking information
cannot be used to harm individual privacy.

Year Top MI ranked Keywords

1970-1980
Backtracking, arithmetic, Fourier, graph, assembly,
relational db, PASCAL, AI FORTRAN, parser,
matrix, grammar

1980-1990 Database, trees, algorithms, VLSI, PROLOG,
CMOS, silicon, LISP, ATM

1990-2000 Tensor, handwritting, AI, RL, graphG, parallell,
Moore, eigenvector, TCI, GA

2000-2005 Windows, genetic, wavelength, optical Internet,
filesystem, XML, eGoverment

2005-2010 Fuzzy, ontology, Web, music, speech, languages,
RFID,multiagent, XML

2010-2015
Languages, speech, images, social media, SaaS,
Robotic, MaPReduce, Kinetic, cloud, agile, sparse,
recommendation

>2015 Tracking, encoder, quantum, LSS, navigation, cloud,
object, graph, convergence, optimal, regularization

TABLE VIII: Distinguishing Keywords using DDP-MI Across
Various Years

While the techniques described here are efficient for big
data, further improvements in efficiency can be gained through
application of probabilistic algorithms. These algorithms gain
efficiency at some cost in accuracy. How these optimizations
complement privacy analysis is an interesting area for future
research.

ACKNOWLEDGMENT

The authors would like to thank Core Data Engineering
team in Microsoft Azure COSINE. We work with a lot of
partner teams within Microsoft and their collaboration have
helped us immensely in developing and applying this method-
ology on a wide range of business problems. Specifically, we
would like to thank Maxime Prat, Marc Mezquita, and Prakhar
Panwaria.

REFERENCES

[1] T. M. Cover and J. A. Thomas, Elements of information theory. John
Wiley & Sons, 2012.

[2] E. Friedman, P. Pawlowski, and J. Cieslewicz, “Sql/mapreduce: A
practical approach to self-describing, polymorphic, and parallelizable
user-defined functions,” Proceedings of the VLDB Endowment, vol. 2,
no. 2, pp. 1402–1413, 2009.

[3] Z. Tejada, Mastering azure analytics: architecting in the cloud with
azure data lake, HDInsight, and Spark. O’Reilly Media, Inc., 2017.

[4] M. Odersky, P. Altherr, V. Cremet, B. Emir, S. Maneth, S. Micheloud,
N. Mihaylov, M. Schinz, E. Stenman, and M. Zenger, “An overview of
the scala programming language,” Tech. Rep., 2004.

[5] “Apache spark,” Retrieved in Feb 2020. [Online]. Available: https:
//spark.apache.org/

[6] H. Liu, B. Ma, L. Qin, J. Pang, C. Zhang, and Q. Huang, “Set-
label modeling and deep metric learning on person re-identification,”
Neurocomputing, vol. 151, pp. 1283–1292, 2015.

[7] C. Dwork, F. McSherry, K. Nissim, and A. Smith, “Calibrating noise
to sensitivity in private data analysis,” in Theory of Cryptography
Conference. Springer, 2006, pp. 265–284.

[8] J. Allen, B. Ding, J. Kulkarni, H. Nori, O. Ohrimenko, and S. Yekhanin,
“An algorithmic framework for differentially private data analysis on
trusted processors,” in Advances in Neural Information Processing
Systems 32. Curran Associates, Inc., 2019, pp. 13 657–13 668.

[9] H. Peng, F. Long, and C. Ding, “Feature selection based on mu-
tual information criteria of max-dependency, max-relevance, and min-
redundancy,” IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol. 27, no. 8, pp. 1226–1238, 2005.

[10] J. R. Vergara and P. A. Estévez, “A review of feature selection methods
based on mutual information,” Neural Computing and Applications,
vol. 24, no. 1, pp. 175–186, 2014.

[11] J. D. Wren, “Extending the mutual information measure to rank inferred
literature relationships,” BMC Bioinformatics, vol. 5, no. 1, p. 145, 2004.

[12] R. Shams and N. Barnes, “Speeding up mutual information computation
using nvidia cuda hardware,” in IEEE 9th Biennial Conference of the
Australian Pattern Recognition Society on Digital Image Computing
Techniques and Applications, 2007, pp. 555–560.

[13] E. Zdravevski, P. Lameski, A. Kulakov, B. Jakimovski, S. Filiposka, and
D. Trajanov, “Feature ranking based on information gain for large classi-
fication problems with mapreduce,” in IEEE Trustcom/BigDataSE/ISPA,
2015, pp. 186–191.

[14] E. Zdravevski, P. Lameski, A. Kulakov, S. Filiposka, D. Trajanov, and
B. Jakimovskik, “Parallel computation of information gain using hadoop
and mapreduce,” in Federated Conference on Computer Science and
Information Systems. IEEE, 2015, pp. 181–192.

[15] P. Z. X. Li, Z. Zhang, S. Karaman, and V. Sze, “High-throughput
computation of shannon mutual information on chip,” in Robotics:
Science and Systems, 2019.

[16] P. Voigt and A. Von dem Bussche, “The eu general data protection regu-
lation (gdpr),” A Practical Guide, 1st Ed., Cham: Springer International
Publishing, 2017.

[17] L. de la Torre, “A guide to the california consumer privacy act of
2018,” Social Science Research Network, 2018. [Online]. Available:
http://dx.doi.org/10.2139/ssrn.3275571

[18] H. C. Assistance, “Summary of the hipaa privacy rule,” Office for Civil
Rights, 2003.

[19] C. Curtis, “Family educational rights and privacy act of 1974,” Congres-
sional Record-Senate, vol. 120, pp. 19 607–19 614, 1974.

[20] J. M. Abowd, “The us census bureau adopts differential privacy,” in
Proceedings of the 24th ACM SIGKDD International Conference on
Knowledge Discovery & Data Mining, 2018, pp. 2867–2867.

[21] G. King, “Harvard’s institute for quantitative social science and mi-
crosoft announce a major collaboration to develop an open data differen-
tial privacy platform,” 2019. [Online]. Available: https://www.iq.harvard.
edu/news/harvards-iqss-announces-major-collaboration-microsoft

[22] I. Kotsogiannis, Y. Tao, A. Machanavajjhala, G. Miklau, and M. Hay,
“Architecting a differentially private sql engine.” in Conference on
Innovative Data Systems Research, 2019.

[23] I. Kotsogiannis, Y. Tao, X. He, M. Fanaeepour, A. Machanavajjhala,
M. Hay, and G. Miklau, “Privatesql: a differentially private sql query
engine,” Proc. VLDB Endowment, vol. 12, no. 11, pp. 1371–1384, 2019.

[24] R. J. Wilson, C. Y. Zhang, W. Lam, D. Desfontaines, D. Simmons-
Marengo, and B. Gipson, “Differentially private sql with bounded user
contribution,” arXiv preprint arXiv:1909.01917, 2019.

[25] J. Allen, S. Bird, and K. Walker, “Whitenoise: A platform for differential
privacy,” 2020. [Online]. Available: https://www.microsoft.com/en-us/
research/publication/whitenoise-a-platform-for-differential-privacy/

[26] T. O. Team, The OpenDP White Paper, 2020. [Online]. Avail-
able: https://projects.iq.harvard.edu/files/opendp/files/opendp white
paper 11may2020.pdf

[27] OpenDP, Open Differential Privacy WhiteNoise System, 2020. [Online].
Available: https://github.com/opendifferentialprivacy/whitenoise-system

[28] A. Korolova, K. Kenthapadi, N. Mishra, and A. Ntoulas, “Releasing
search queries and clicks privately,” in Proceedings of the 18th interna-
tional conference on World wide web, 2009, pp. 171–180.

[29] S. Gopi, P. Gulhane, J. Kulkarni, J. H. Shen, M. Shokouhi,
and S. Yekhanin, “Differentially private set union,” arXiv preprint
arXiv:2002.09745, 2020.

[30] J. Tang, J. Zhang, L. Yao, J. Li, L. Zhang, and Z. Su, “Arnetminer:
extraction and mining of academic social networks,” in Proceedings
of the 14th ACM SIGKDD international conference on Knowledge
discovery and data mining, 2008, pp. 990–998.

