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Abstract

The novel coronavirus (COVID-19) that started last De-
cember in Wuhan, Hubei Province, China has become a
serious healthcare threat with over five million confirmed
cases in 215 countries around the world as on May 20. The
World Health Organization recommends a rapid diagnosis
and immediate isolation of suspected cases. Thus, there is
an imminent need to develop an automatic real-time detec-
tion system as a quick alternative diagnosis option to con-
trol the virus spread. In this work, we propose a regression
model based on a flexible distribution called shifted-scaled
Dirichlet for real-time detection of coronavirus pneumonia
infected patient using chest X-ray radiographs. To derive
the parameters of our proposed model, we adopt the max-
imum likelihood method, where we update the parameters
based on the stochastic gradient descent. The experimental
results demonstrate that our approach is highly effective for
detecting COVID-19 cases and understand the infection on
a real-time basis with high accuracy up to 97%.

1. Introduction

Coronaviruses (CoV) are a large family of viruses that

cause diseases resulting from colds such as the Middle East

Respiratory Syndrome (MERS-CoV) and Severe Acute

Respiratory Syndrome (SARS-CoV). Coronavirus disease

(COVID-19) is a new species discovered in 2019 due to

contamination from animals to humans [22]. Signs of in-

fection include respiratory symptoms, fever, cough, and

dyspnea, wherein in more severe cases, the infection can

cause pneumonia, severe acute respiratory syndrome, sep-

tic shock, multi-organ failure, and death [26]. Since the dis-

ease has been discovered last December, the World Health

Organization (WHO) reported a total of approximately

5,164,133 confirmed cases, among which around 332,706

deaths and 2,059,735 were recovered as on May 2020. Fig-

ure 1 illustrates the rapid increase in the number of con-

firmed COVID-19 cases beginning 30 December 2019 and

through 20 May 2020 based on WHO Coronavirus disease

(COVID-2019) situation report No.121 on 20 May 2020 [1].

Several challenges are associated with COVID-19 in dif-

ferent disciplines, including health, society, and economy.

For instance, the health system has come to the point of col-

lapse, even in many developed countries due to the increas-

ing demand for intensive care units simultaneously [31].

In the current public health emergency, tackling such chal-

lenges using real data, tools, and research is extremely sig-

nificant. One of the significant matters to address is the

early diagnosis of the infection in order to ensure receiv-

ing the appropriate treatment. In addition, identifying the

patients or suspected cases quickly in order to isolate them

is crucial to avoid the risk of infecting a larger population

given the highly infectious nature of the virus [2].

In this work, we propose a novel regression model based

on the shifted-scaled Dirichlet distribution for detecting

COVID-19 cases from chest X-ray and CT images of pa-

tients which are positive or suspected of COVID-19 or other

viral and bacterial pneumonias. The choice of regression

techniques is justified by the fact that the regression-based

models are highly efficient and scalable and these proper-

ties are appropriate for the concerned task. Moreover, given

the novelty of the disease, there is very limited expertise in

labeling the data specific to this new virus where datasets

are just now being identified and annotated. Hence, there

are not enough examples to achieve clinically meaningful
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Figure 1. Number of confirmed COVID-19 cases, by date of report and WHO region [1].

learning at this early stage of data collection. It is our hy-

pothesis that developing a model that can be updated in-

crementally as new data become available will support life-

long learning (i.e. the model could be improved each time

new data are added).

The remainder of the present paper is organized as fol-

lows: Section 2 presents a review of the related literature.

Section 3 discusses our shifted-scaled Dirichlet-based re-

gression model with all the details about link functions as

well as the approaches for estimating and updating the pa-

rameters. In Section 4, we present our experimental results

on detecting COVID-19 cases both in offline and online

fashions. Finally, we conclude this paper in section 5.

2. Related Works

The Centers for Disease Control and Prevention (CDC)

and the WHO have issued interim guidelines to protect

the population and to attempt to prevent the further spread

of the novel corona virus from infected individuals. Af-

ter the increased number of deaths, it becomes impera-

tive that we develop novel models to attempt to control

the rapidly spreading of the COVID-19 virus by reducing

the time needed to identify positive or suspected cases and

their rapid isolation. Artificial intelligence and deep learn-

ing techniques have emerged as powerful tools to transform

medical care. For instance, several studies have promoted

disease detection through artificial intelligence models and

achieve superb results (e.g. [24, 34]). Such techniques can

be useful tools in assisting diagnoses and decision making

in treatment of COVID-19 [35].

As we enter the second quarter of the COVID-19 pan-

demic, few efforts to use of artificial intelligence based

techniques for identifying the cases have been proposed.

Among the attempts, the authors in [36] proposed to

use a machine learning algorithm to improve possible

COVID-19 case identification more quickly using a mobile

phone–based web survey. Moreover, an automated natu-

ral language processing system using deep learning tech-

niques has been proposed to extract clinically relevant in-

formation from massive electronic health records [25]. Fur-

thermore, in [31], and [7] different convolutional neural net-

work based models have been proposed for detecting coro-

navirus pneumonia infected patient using chest X-ray radio-

graphs.

In this work, we propose a regression model to detect

COVID-19 cases from chest x-ray and CT images. The

main idea is to use a transformation function to link the

linear or non-linear predictor to the mean response, to en-

sure that the mean is from an acceptable range. We pro-

pose to present the features as compositional data where

vectors of parts of some whole which carry relevant infor-

mation. That is, images are represented as proportions or

percentages, i.e. normalized Histogram of Oriented Gradi-

ents (HOG), which are subject to a constant sum, , i.e., = 1
or = 100. Their sample space is then represented by the
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simplex. Such data occur in many applied fields: from ge-

ology and biology to election forecast, from medicine and

psychology to economic studies. Because of the ineligibil-

ity of Gaussian distribution for real data, researchers tend

to find a better distribution to replace it for better modelling

[37, 17]. Here we try to find a better distribution for using

it in the regression model. Historically, there are two dif-

ferent approaches to regression models that are commonly

used in case of a compositional response variable with a

system of covariates: Simplicial regression and Dirichlet

regression [29]. The later one assumes that the response

variable follows a Dirichlet distribution whose parameters

are a log-linear function of a set of covariates [19, 21]. Al-

though Dirichlet is widely used for modeling compositional

data [10, 18, 9], researchers proposed to use some gener-

alizations of the Dirichlet to improve the model flexibility

and overcome the negative covariance and equal-confidence

constraints of the Dirichlet [33]. Other distribution-based

regression models for compositional data that have been

proposed in the literature with excellent results include the

generalized Dirichlet, Beta-Liouviel, and scaled Dirichlet

[5, 6, 29].

The shifted-scaled Dirichlet (SSD) is a further general-

ization of the scaled one obtained after applying the per-

turbation and powering operations to a Dirichlet random

composition [30]. By introducing another set of parame-

ters, we can acquire many useful probability models. The

shifted scaled Dirichlet, subsequently, keeps 2D + 1 de-

grees of freedom, which grants it the flexibility for diverse

real data applications [32, 20]. Recently, the shifted-scaled

Dirichlet has shown to be a competitive modeling approach

with higher flexibility and capability for categorizing com-

positional data [3, 4, 40].

3. The Proposed Approach

In this section, we present our shifted-scaled Dirichlet-

based approach for COVID-19 cases detection. Given

a set of chest X-ray and CT images {(Xi =
[xi1, xi2, . . . , xiD]T , yi)} with i = 1, 2, . . . , N , each yi can

be described by a corresponding random variable Yi, where

Yi ∼ SSD(α, ρ, τ). SSD(α, ρ, τ) is the shifted-scaled

Dirichlet distribution with the shape parameter α, the lo-

cation parameter ρ and real scalar that controls the density

spread τ . Y1, Y2, . . . , YN are i.i.d. random variables. In

practice, we try to observe the distribution fitting results for

the viral and bacterial pneumonias of each X-ray or CT im-

age, and then the model will be updated incrementally by

treating the new coming images as soon as it arrives in a

temporal sequence.

3.1. Shifted-scaled Dirichlet-Based Model

The probability density function of a random vector

of proportional data Xi = (xi1, . . . , xiD), follows a

shifted-scaled Dirichlet distribution with parameters α =
(α1, ..., αD) ∈ RD

+ , ρ = (ρ1, . . . , ρD) ∈ SD, τ ∈ R+, is

given by [30] :

SSD(X|θ) = Γ(α+)
D∏

d=1

Γ(αd)

1

τD−1

D∏
d=1

ρ
−(αd/τ)
d x

(αd/τ)−1
d

( D∑
d=1

(
xd

ρd

)(1/τ) )α+

(1)

where Γ is the Gamma function, and α+ =
∑D

d=1 αd. The

link between the infection yi and the features extracted from

the X-ray or CT image xi is based on relating the regression

parameters to covariates. The inverse of any cumulative

distribution function corresponding to a continuous distri-

bution is called the link function [8, 41]. The parameters

of Shifted-scaled Dirichlet distribution can be related to the

m-dimensional covariates to form a regression line as fol-

lows:

αd = g1(αdx1 + αdx2 + · · ·+ αdxN ), d = 1, . . . , D

ρd = g2(ρ1x1 + ρ2x2 + · · ·+ ρdxN ), d = 1, . . . , D

τ = g3(τx1 + τx2 + · · ·+ τxN ) (2)

The link function g(.) is selected as g(μi) = XT
i θ and i =

1, . . . , N , where μi is the mean of Xi, and θ is a vector of

the regression parameters. We have adopted the logit link

to ensure that the expected value of Yi is positive since we

encode each type of infection with a positive value, such

that:

logit(μi) = log
( μi

1− μi

)
(3)

Thus, we have the following link functions for the Shifted-

scaled Dirichlet distribution:

g1(μi) = XT
i αd

g2(μi) = XT
i ρd

g3(μi) = XT
i τ (4)

If we consider the final regression model to be a censored

linear regression, the predicted target value Ŷ is:

Ŷ = hηX = ηTX (5)

For our model, regression coefficient is η = τραd.and d =
1, . . . , D is the dimension of the response vector. Next, we

present how to derive the regression parameters based on a

set of X-ray or CT images.
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3.2. Deriving and Updating the Parameters

In this work, the simulation is based on two phases. In

the first phase, the model is build from a training set which

is considered as an offline phase, then each new x-ray or

CT-image coming will be presented to the model as soon as

they arrive and the model is updated accordingly in a real-

time basis.

The offline phase: Here we utilize maximum like-

lihood estimation to derive a suitable regression pa-

rameters based on a set of independent x-ray images

X = {X1, X2, . . . , XN}. Therefore, the complete log-

likelihood is as follows:

p(X|Θ) =

N∏
i=1

SSD(Xi|θ) (6)

Obtaining the parameter estimates θ that maximizes the

likelihood of the shifted-scaled Dirichlet-based regression

model is based on taking the derivative of the complete log-

likelihood function, and find θ that when the derivative is

equal to zero. Thus, to derive the suitable parameters, the

problem can be represented as follows:

Θ∗ = argmax
Θ

L(X ,Θ) (7)

The first derivative with respect to αd, ρd, and τ are cal-

culated respectively in Eqs.(8), (9), (10) considering ρd con-

straints (0 ≤ ρd ≤ 1 ;
∑D

d=1 ρd = 1).

∂L(X|Θ)

∂αd
=

N∑
i=1

g′1(μi)
(
Ψ(α+)−Ψ(αd)+

log(Xid)− log(ρd)

τ
− log(

D∑
d=1

(
xid

ρd
)

1
τ )
) (8)

while Ψ is the digamma function.

ρd =

∑N
i=1 g

′
2(μi)

α+xid

τρd

∑D
d=1

xid
ρd

− αd

τ

∑N
i=1 g

′
2(μi)

∑D
d=1

α+xid

τρd

∑D
d=1

xid
ρd

−∑D
d=1

αd

τ

(9)

τ =
N∑
i=1

g′3(μi)

∑D
d=1 αd

(
log(ρd)− log(xid)

)

D − 1

+

N∑
i=1

g′3(μi)
α+ log

∑D
d=1

xid

ρd

D − 1

(10)

The reader may realize that Eq.(8) for α parameter is a

non-linear function. Hence, there is no closed-form solution

for it. This issue leads to the necessity of an optimization

technique where we deploy the Newton Raphson method

that allows fast convergence [23]. The Newton-Raphson

method for α parameter is an iterative procedure expressed

as:

αnew = αold −H(α)−1G (11)

where H is the Hessian matrix that includes the second

derivatives vectors, and G is the gradient that holds the first

derivatives vectors. Note that, the Hessian matrix should

be transformed to its inverse before it can be calculated in

the Newton-Raphson maximization step. By calculating the

second and mixed derivatives with respect to αd, we obtain,

∂2L(X|Θ)

∂2α2
d

=

N∑
i=1

g′′1 (μi)
(
Ψ′(α+)−Ψ′(αd)

)
(12)

∂2L(X|Θ)

∂2αd1αd2

=

N∑
i=1

g′′1 (μi)Ψ
′(α+) (13)

where Ψ′ is the trigamma function.

The online phase: After building the model and esti-

mated its parameter based on the available set of images,

we need to update the model by treating each newly com-

ing x-ray or CT-image as soon as it becomes available. Let

us assume that at time t+1 a new image XN+1 is presented

to the model and the estimated parameters, thus, should be

updated incrementally considering the new data. For updat-

ing the parameters, following the practice in [42], we utilize

gradient ascent [39] where the parameters are derived itera-

tively. For each iteration, we first derive one parameter and

fixing the other two. The iteration can be represented as

follows:

α
(t+1)
d = α

(t)
d + δN

∂L(X|Θ)

∂αd
(14)

ρ
(t+1)
d = ρ

(t)
d + δN

∂L(X|Θ)

∂ρd
(15)

τ (t+1) = τ (t) + δN
∂L(X|Θ)

∂τ
(16)

where δN is a sequence of positive number that decreases

to zero chosen to be δN = 1/(N + 1) [39, 11].

3.3. Initial Parameter Settings

To boost the computation for deriving the parameters

in our shifted-scaled Dirichlet-based regression model, we

try to make initial parameters close to the value of conver-

gence, and then the number of iterations can be reduced to

achieve a faster converges. For obtaining the initial values

of the shape parameter α(0), we apply the method of mo-

ment [27]. To initialize the location parameter vector ρ(0),
we propose to use a constant proportion vector where the

dimensions summation for the parameter vector equals to

one, i.e. ρd = 1/D for d = 1, . . . , D. Finally, to initialize

the scale parameter vector τ (0), we used a vector of ones.
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4. Performance Evaluation

In this section, we measure the decency of our model

performance by testing it on novel Covid-19 datasets and

compare it with ordinary linear regression, logistic regres-

sion, and Dirichlet regression models. We apply the follow-

ing criteria for this evaluation:

• Mean square error (MSE): This measure is the de-

viation of predicted value from true value of Y and

defined as follows [14]:

MSE =
1

N

N∑
n=1

| Ŷ − Y |2 (17)

where N is the number of samples, and Ŷ is the pre-

dicted value. In this criterion, larger-value deviations

will be imprisoned as all errors are squared; therefore

the smaller values indicate better performance.

• Akaike information criterion (AIC): The AIC [13]

is a sample prediction error estimator and therefore the

relative accuracy of statistical models for a given data

set. Given a collection of models for the data, AIC es-

timates the quality of each model. Thus, AIC provides

a means for model selection. A lower AIC score is

better [12]:

AIC = −2Ln + 2N (18)

where N is the number of data points, and Ln is the

log-likelihood of the complete data.

• Bayesian information criterion (BIC): The low

BIC[12] value means low test error. When we try to

train our model it has very high chance that it has some

underfitted over overfitted models [38] and these meth-

ods will induce some noise and bias to counter that and

due to such methods we can able to reduce test error

[12], where N is the number of data points and D is

the dimension of the data:

BIC = −2Ln +N log(D) (19)

• Accuracy: Accuracy is the last criterion which is the

average of difference between expected variables and

real dependent variables. Here the dependent variable

is the type of infection that the patient has. As com-

pared to three other metrics, greater values of accuracy

are better:

Accuracy =
(
1− μ

( | Ŷ − Y |
μ | Y |

)
× 100 (20)

Figure 2. Representative normal chest X-ray
images.

Figure 3. Representative chest X-ray images
of COVID-19 patients.

4.1. Dataset Description

In this work, we have used a public database of pneu-

monia cases with chest X-ray or CT images, specifically

COVID-19 cases, as well as the Middle East respira-

tory syndrome (MERS), severe acute respiratory syndrome

(SARS), and acute respiratory distress syndrome (ARDS).

The dataset has been obtained from the open-source GitHub

repository shared by Dr. Joseph Cohen [15]. All images in

this dataset were resized to 64x64 pixel size. In Figure (2)

and Figure (3), representative chest X-ray images of normal

and COVID-19 patients are given, respectively. With this

dataset we want to predict the type of infection, allowing

a physician to plan ahead the appropriate treatment and/or

advice the immediate isolation of the suspicious COVID-19

cases to control its spread.

We use Histogram of Oriented Gradients (HOG) [16] as

a feature descriptor technique. HOG decomposes an im-

age into windows, each window into small squared 8 × 8
cells, where in each cell, a HOG that contains two values

(magnitude and direction) is computed at each pixel, and

represented using a 9-bin histogram. It can be stored as an

array of nine numbers where the histogram ranges from 0
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Table 1. Models performance comparison for COVID-19 detection in the considered dataset (D = 36).

Model Performance metrics Accuracy

MSE AIC BIC

Linear Regression 1.830 -51777894.165 -51776731.77 87.09%

Logistic Regression 1.343 -93888945.425 -98537360.245 90.06%

Dirichlet Regression 2.37 -97772.07 -97647.84 81.14%

Shifted-scaled Dirichlet Regression 1.55e+40 -76549959.1921 -76549834.95 95.40%

Table 2. Models performance comparison for COVID-19 detection in the considered dataset (D = 324).

Model Performance metrics Accuracy

MSE AIC BIC

Linear Regression 1.196e+5 -10250398.02 -10276845.41 89.00%

Logistic Regression 1.187e+7 -61704206.78 -61039604.19 91.30%

Dirichlet Regression 2.77 -1329578.08 -1328459.95 87.14%

Shifted-scaled Dirichlet Regression 1.24e+17 -100151479.62 -100152597.762 96.20%

to 180, so there are 20 per bin. The result is then normal-

ized by using a block-wise pattern, so they are not affected

by any variations (e.g., lighting), and finally, a descriptor

for that cell is returned [28]. The number of dimensions for

the HOG descriptors depends on the selected cell size. In

our experiments, we have chosen 2 different cell sizes such

that we represent the images with 36 and 324-dimensional

vectors.

4.2. Evaluation of Offline Training and Real-time
Prediction Efficiency

The prediction results for the considered dataset using

the four tested regression models: Linear regression, lo-

gistic regression, Dirichlet regression and shifted-scaled

Dirichlet regression which are given in Table 1 and Table 2

reported using different performance metrics namely MSE,

AIC, BIC and accuracy. According to the results, one may

notice that the Dirichlet regression model has the lowest ac-

curacy for both datasets comparing to the other tested mod-

els. On the other hand, the proposed shifted-scaled Dirichlet

based regression has achieved the best performance accord-

ing to the prediction accuracy.

To evaluate the proposed online training, we randomly

selected 60% observations to initialize, where we updated

the regression parameters using the Maximum Likelihood

Estimate (MLE) algorithm, and later we used the proposed

online algorithm, where we insert a new data each time un-

til the end. Table 3 illustrates robustness of our proposed

model where the accuracy of prediction is reported each

time we reach 20% of remaining data. Figure 4 presents the

accuracy (%) of the model each time a new feature vector

is inserted during the algorithms running, where we update

the model according to the proposed online algorithm and

re-evaluate the accuracy of the whole model. We can see

from the Figure that as more images are inserted, the mod-

els performance has been improved. This result confirms

that the proposed approach supports life-long learning (i.e.,
the model improves each time new data are added). It is

worth mentioning that the proposed model is efficient also

in terms of time, where the time required for each update

is 0.15 and 1.79 seconds for the dataset with 36 and 324

features, respectively.

5. Conclusion

In this paper, we focus on detecting the COVID-19 cases

from chest x-ray and CT images. A shifted-scaled Dirichlet-

based censored linear regression model is proposed, where

the response variables are compositional and are associated

with the shape, scale, and location parameters of the cor-

responding shifted-scaled Dirichlet distribution. To derive

the parameters in the proposed model, we use the maximum

likelihood estimation approach, and the parameters are then

updated using the gradient ascent during the real-time pre-

diction. In the experiments, the results show superior per-

formance with a prediction accuracy of up to 97% accuracy

and an update time as low as 0.15 seconds. This indicates

that our proposed regression model is more effective and

robust than comparable state-of-the-art approaches.
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Table 3. Performance of the proposed online model for COVID-19 detection in the considered dataset.

Proportion of the data Accuracy Accuracy

in the stream (D = 36) (D = 324)

1/5 95.87% 95.90%

2/5 94.78% 96.30%

3/5 96.50% 96.10%

4/5 96.30% 96.20%

5/5 97.10 % 96.67%

Figure 4. Accuracy of the proposed model each time new images are inserted.
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and P. Perner, editors, Pattern Recognition and Data Min-
ing, Third International Conference on Advances in Pattern
Recognition, ICAPR 2005, Bath, UK, August 22-25, 2005,
Proceedings, Part I, volume 3686 of Lecture Notes in Com-
puter Science, pages 172–182. Springer, 2005.

[10] N. Bouguila and D. Ziou. Using unsupervised learning of

a finite dirichlet mixture model to improve pattern recog-

nition applications. Pattern Recognit. Lett., 26(12):1916–

1925, 2005.
[11] N. Bouguila and D. Ziou. Online clustering via finite mix-

tures of dirichlet and minimum message length. Engineering
Applications of Artificial Intelligence, 19(4):371–379, 2006.

110



[12] K. P. Burnham and D. R. Anderson. Multimodel inference:

understanding aic and bic in model selection. Sociological
methods & research, 33(2):261–304, 2004.

[13] K. P. Burnham, D. R. Anderson, and K. P. Huyvaert. Aic

model selection and multimodel inference in behavioral

ecology: some background, observations, and comparisons.

Behavioral ecology and sociobiology, 65(1):23–35, 2011.
[14] T. Chai and R. R. Draxler. Root mean square error (rmse)

or mean absolute error (mae)?–arguments against avoiding

rmse in the literature. Geoscientific model development,
7(3):1247–1250, 2014.

[15] J. P. Cohen, P. Morrison, and L. Dao. Covid-19 image data

collection. arXiv preprint arXiv:2003.11597, 2020.
[16] N. Dalal and B. Triggs. Histograms of oriented gradients for

human detection. In 2005 IEEE computer society conference
on computer vision and pattern recognition (CVPR’05), vol-

ume 1, pages 886–893. IEEE, 2005.
[17] T. Elguebaly and N. Bouguila. Bayesian learning of gen-

eralized gaussian mixture models on biomedical images. In

F. Schwenker and N. E. Gayar, editors, Artificial Neural Net-
works in Pattern Recognition, 4th IAPR TC3 Workshop, AN-
NPR 2010, Cairo, Egypt, April 11-13, 2010. Proceedings,

volume 5998 of Lecture Notes in Computer Science, pages

207–218. Springer, 2010.
[18] W. Fan, N. Bouguila, and D. Ziou. Variational learning

for finite dirichlet mixture models and applications. IEEE
Trans. Neural Networks Learn. Syst., 23(5):762–774, 2012.

[19] R. Gueorguieva, R. Rosenheck, and D. Zelterman. Dirich-

let component regression and its applications to psychi-

atric data. Computational statistics & data analysis,

52(12):5344–5355, 2008.
[20] R. K. Hankin et al. A generalization of the dirichlet distri-

bution. Journal of Statistical Software, 33(11):1–18, 2010.
[21] R. H. Hijazi and R. W. Jernigan. Modelling compositional

data using dirichlet regression models. Journal of Applied
Probability & Statistics, 4(1):77–91, 2009.

[22] C. Huang, Y. Wang, X. Li, L. Ren, J. Zhao, Y. Hu, L. Zhang,

G. Fan, J. Xu, X. Gu, et al. Clinical features of patients

infected with 2019 novel coronavirus in wuhan, china. The
lancet, 395(10223):497–506, 2020.

[23] J. Huang. Maximum likelihood estimation of dirichlet dis-

tribution parameters. CMU Technique Report, 2005.
[24] P. Koochemeshkian, N. Zamzami, and N. Bouguila. Flexible

distribution-based regression models for count data: Appli-

cation to medical diagnosis. Cybernetics and Systems, pages

1–25, 2020.
[25] H. Liang, B. Y. Tsui, H. Ni, C. C. Valentim, S. L. Baxter,

G. Liu, W. Cai, D. S. Kermany, X. Sun, J. Chen, et al. Eval-

uation and accurate diagnoses of pediatric diseases using ar-

tificial intelligence. Nature medicine, 25(3):433–438, 2019.
[26] E. Mahase. Coronavirus: covid-19 has killed more peo-

ple than sars and mers combined, despite lower case fatality

rate, 2020.
[27] T. Minka. Estimating a dirichlet distribution, 2000.
[28] K. Mizuno, Y. Terachi, K. Takagi, S. Izumi, H. Kawaguchi,

and M. Yoshimoto. Architectural study of hog feature ex-

traction processor for real-time object detection. In 2012
IEEE Workshop on Signal Processing Systems, pages 197–

202. IEEE, 2012.

[29] G. Monti, G. Mateu-Figueras, V. Pawlowsky-Glahn, and

J. Egozcue. A regression model for compositional data

based on the shifted-dirichlet distribution. In International
Workshop on Compositional Data Analysis, pages 127–143.

Springer, 2015.
[30] G. Monti, G. Mateu i Figueras, V. Pawlowsky-Glahn, J. J.

Egozcue, et al. The shifted-scaled dirichlet distribution in

the simplex. 2011.
[31] A. Narin, C. Kaya, and Z. Pamuk. Automatic detec-

tion of coronavirus disease (covid-19) using x-ray images

and deep convolutional neural networks. arXiv preprint
arXiv:2003.10849, 2020.

[32] K. W. Ng, G.-L. Tian, and M.-L. Tang. Dirichlet and re-
lated distributions: Theory, methods and applications, vol-

ume 888. John Wiley & Sons, 2011.
[33] B. S. Oboh and N. Bouguila. Unsupervised learning of fi-

nite mixtures using scaled dirichlet distribution and its ap-

plication to software modules categorization. In IEEE Inter-
national Conference on Industrial Technology, ICIT 2017,
Toronto, ON, Canada, March 22-25, 2017, pages 1085–

1090. IEEE, 2017.
[34] R. Rajalakshmi, R. Subashini, R. M. Anjana, and V. Mohan.

Automated diabetic retinopathy detection in smartphone-

based fundus photography using artificial intelligence. Eye,

32(6):1138–1144, 2018.
[35] A. S. S. Rao and M. P. Diamond. Deep learning of markov

model-based machines for determination of better treatment

option decisions for infertile women. Reproductive Sci-
ences, 27(2):763–770, 2020.

[36] A. S. S. Rao and J. A. Vazquez. Identification of covid-19

can be quicker through artificial intelligence framework us-

ing a mobile phone–based survey when cities and towns are

under quarantine. Infection Control & Hospital Epidemiol-
ogy, pages 1–5, 2020.

[37] A. Sefidpour and N. Bouguila. Spatial color image segmen-

tation based on finite non-gaussian mixture models. Expert
Syst. Appl., 39(10):8993–9001, 2012.

[38] S. I. Vrieze. Model selection and psychological theory: a

discussion of the differences between the akaike information

criterion (aic) and the bayesian information criterion (bic).

Psychological methods, 17(2):228, 2012.
[39] J.-F. Yao. On recursive estimation in incomplete data mod-

els. Statistics: A Journal of Theoretical and Applied Statis-
tics, 34(1):27–51, 2000.

[40] N. Zamzami, M. Amayri, N. Bouguila, and S. Ploix. On-

line clustering for estimating occupancy in an office setting.

In 2019 IEEE 28th International Symposium on Industrial
Electronics (ISIE), pages 2195–2200. IEEE, 2019.

[41] Y. Zhang, H. Zhou, J. Zhou, and W. Sun. Regression models

for multivariate count data. Journal of Computational and
Graphical Statistics, 26(1):1–13, 2017.

[42] W.-Y. Zhu, W.-Y. Shih, Y.-H. Lee, W.-C. Peng, and J.-L.

Huang. A gamma-based regression for winning price esti-

mation in real-time bidding advertising. In 2017 IEEE Inter-
national Conference on Big Data (Big Data), pages 1610–

1619. IEEE, 2017.

111


