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Abstract—The current National Airspace System (NAS) is
reaching capacity due to increased air traffic, and is based
on outdated pre-tactical planning. This study proposes a more
dynamic airspace configuration (DAC) approach that could
increase throughput and accommodate fluctuating traffic, ideal
for emergencies. The proposed approach constructs the airspace
as a constraints-embedded graph, compresses its dimensions, and
applies a spectral clustering-enabled adaptive algorithm to gener-
ate collaborative airport groups and evenly distribute workloads
among them. Under various traffic conditions, our experiments
demonstrate a 50% reduction in workload imbalances. This
research could ultimately form the basis for a recommendation
system for optimized airspace configuration. Code available at
https://github.com/KeFenge2022/GraphDAC.git.

I. INTRODUCTION

The National Airspace System (NAS) comprises a complex
interplay of airports and facilities, ensuring safe and smooth air
travel. Air traffic control (ATC), primarily handled by human
controllers, issues directives to pilots to avoid collisions and
other dangers [1]]. In ATC, controllers’ workload is crucial to
safety [2]] and is mitigated by manually dividing and merging
airspace into groups with dedicated personnel. This practice
is termed Airspace Configuration (AC).

Airspace is typically pre-configured according to historical
plans, with minor alterations by Air Traffic Control (ATC)
managers [1]-[3]. However, with growing use of advanced
technologies like Unmanned Aircraft Systems (UAS), this
reliance on human expertise may prove insufficient for the
increasing complexity of airspace dynamics [4]]. Furthermore,
conventional ATC struggles to react swiftly to emergencies,
causing traffic congestion and delays [5], [[6]. As a result,
Dynamic Airspace Configuration (DAC), a real-time, data-
driven approach, has gained attention. Unlike static historical
models, DAC adjusts to traffic demand while accommodating
constraints such as weather, fleet diversity, congestion, and
sector complexity [7], [8].

Several methods have been proposed for Dynamic Airspace
Configuration (DAC), but their real-world effectiveness is
debatable. For example, Dynamic Airspace Sectorization [9]]
overlooks controllers’ coordination workload and reconfigura-
tion cost, creating entirely new configurations for each day’s
segment. SectorFlow [10] groups flight trajectories to mini-
mize airspace complexity, assigning airspace to each cluster.
Its improved version refines initial partition using gradient
search and keeps flow intersections off sector boundaries [/11]].

CellGeoSect [[12], a cell clustering method, visualizes the
airspace as hexagonal cells, maximizes flow connectivity, and
balances flight counts between clusters. It then modifies the
design to avoid significant flow’s geometric constraints. How-
ever, these methods can decrease efficiency as controllers may
be unfamiliar with newly assigned airports and consequently
bring safety concerns.

This study introduces a practical, adaptive algorithm for
airspace configuration, which modifies existing configurations
with minimal changes, rather than designing entirely new
ones. This method entails a three-stage graph-based clustering
method. Firstly, we built simulated airspace from open-source
data. We then convert the airspace into a relation graph that
embeds the operational constraints. This is done by only
connecting the geographically adjacent airports and setting
their edge weights negatively related to their gross workloads.
Secondly, considering that airports within the relation graph
are sparsely connected, we then increase the computation
efficiency by mapping each airport in the relation graph into a
low-dimension space, in which Singular value decomposition
(SVD) [13]], [[14] and Autoencoder [[15] are compared. Finally,
we perform a spectral clustering-enabled adaptive algorithm on
the low-dimensional space to get the new configuration with
the traffic-center pattern surrounded by the non-busy airports.
The contributions of our work are as follows:

e« We propose a graph clustering-enabled algorithm for
DAC: we allow configuration change around adjacent
airports to minimize collaboration costs while balancing
the ATC controllers’ workload.

o We propose a three-stage graph clustering method: we
construct a graph from airspace with embedded spatial-
temporal constraints, then reduce the graph dimension
and perform an adaptive clustering to get the final sector
configuration, in which each busy sector is regarded as
the center and is surrounded by non-busy airports. Our
experiments show that our method can reduce sector
workload unbalanced level by over 50% in different
traffic conditions.

« We investigated the efficacy of reducing the dimensions
of a graph using linear and non-linear methods: SVD
(Singular Value Decomposition) and Autoencoder. Our
findings demonstrate that SVD effectively reduces col-
laboration workload when transitioning to new config-
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urations. On the other hand, the autoencoder excels at
minimizing workload imbalances for new configurations.

The remainder of this paper is organized as follows: A
literature review of related work is presented in Section
We present the methodology in Section Evaluation and
discussion are presented in Section and conclusions in
Section [V

II. RELATED WORK

The leading solution for Dynamic Airspace Configuration
(DAC) currently involves tactical, dynamic adjustment of
airspace to minimize demand and capacity imbalances [3|.
This section will summarize commonly employed solutions.

First, dynamically creating entirely new controlled airspace.
Controlled airspace sector boundaries are newly created every
time without relying on pre-existing structures. This approach
is also referred to as dynamic sectorization. It is important to
note that air traffic controllers need the training to work on
a specific airspace set [3]. So that previous work mentioned
[10], [12] following this path is not desirable operationally
since ATC personnel cannot familiarize themselves with the
newly assigned airports [9].

The second approach is to stick to existing building blocks,
e.g., airspace modules, that can be dynamically combined to
form a controlled airspace sector [9]]. Currently, this approach
is more desirable operationally. A controlled airspace sector
is operated by a small team of controllers and comprised
of one or more airspace modules. In both the U.S. and
European airspace, controlled airspace can be combined with
others or split into smaller controlled regions to balance the
workload equally across available ATC resources and airports
[3]l. Several examples incorporating various constraints are as
follows:

In [1], a promising framework is proposed to realize DAC.
First, features for evaluating air traffic controllers’ workload
are extracted from the flight radar track, and sector operation
history. These feature vectors are fed into a neural network
to provide a workload indication for the ATC in terms of
high, normal, or low. Their algorithm generates different
new configurations by splitting airports into several smaller
airspace modules when the workload is high or merging with
other airports when the workload is low. Next, the tree search
methods explore all possible partitions while restricting them
to be operationally valid. This ensures the algorithm builds
an optimal airspace partition where the workload is balanced
across the airports and uses the restrictions to lower the
reconfiguration cost.

Sergeeva et al. [9] proposed to model dynamic airspace
configuration as a graph partitioning problem that can be
optimized with a genetic algorithm. They define two different
types of airspace modules. Those airspace modules that “are
permanently busy areas with a high traffic load” are designated
to be “Sector Building Blocks” (SBBs). Less busy and more
generic airspace modules are called “Sharable Airspace Mod-
ules” (SAMs). A controlled airspace sector should consist of
at least one SBB and multiple SAMs. Instead of incorporating

re-configuration into the cost function, this approach ensures
the stability of the configuration by making the busiest airspace
modules (SBBs) a fixed central component of each controlled
airspace sector. Only the generic SAMs change from one
configuration to the next. The approach works best when the
airspace is divided into small SAMs and SBBs.

Spectral clustering is applied in [[16] and [9] to balance
air traffic controllers’ workload. These works first transform
the airspace configuration problem into a graph partitioning
problem and address it with spectral clustering. The main idea
of spectral clustering is first to perform eigendecomposition on
the adjacency matrix to extract essential components, then use
the k-means clustering algorithm to divide the airspace. The
graph uses vertices and links to model airports, waypoints, and
air routes, then project real flight trajectories onto the graph as
edge weight. The key idea of spectral clustering is to reduce
the graph dimension to help the clustering algorithm focus on
the most critical feature. However, eigendecomposition is a
linear operation that may not have the flexibility to capture
the main component of complex air traffic patterns [[17].

In general, the previous works contains the following draw-
backs: (a) Omiting the consideration that only close airport
should collaborate. (b) Involving complicated hyperparameters
that are not self-adjusted. (c) The time complexity is high. This
is the primary motivation for our research.

III. METHODOLOGY
A. Problem Definition & Datasets

We try to find an optimal plan to allocate non-busy airports’
air traffic control resources to assist busy airports with possibly
more delays. Our goal is to balance the workload of different
airports during emergency evacuations or other busy scenarios.
We use a metric called the Regional Unbalanced Level (RUL)
to quantify the workload of handling regular or delayed flights.
We first calculated the average number of non-delayed and
delayed flights handled by airports within each cluster, where
m is the total number of flights in the cluster :
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We then calculated the variance of the F; and D; over all
clusters, noted as S. This value helps to quantify the workload
unbalance within the whole airspace in scope. n is the number
of clusters in the configuration, D and F are the mean workload
of delayed and on-time flights:
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Where high Sp or Sp indicate the workload of handling
delayed or regular flights are highly different across different
clusters. We assume that airports within the same cluster are
collaborating with each other to handle emerging workloads.
Therefore, smaller Sp or Sp are preferred.



B. Dataset

Flight Delays and Cancellations were published by The U.S.
Bureau of Transportation in 2015 [[18]]. This dataset includes
statistics tracking the on-time performance of domestic flights
operated by large air carriers. The original data has a total
of 30 attributes, however, not every attribute was recorded for
each flight, thus columns with more than 25% missing values
are removed. For the rest of the data, only the related attributes
are kept, including the scheduled date, airline, origin and
destination airport, departure time, and delay time. Canceled
or diverted flights are removed. To reduce computation load,
departure delay is transformed into the binary label, 0 is a
non-delay flight and 1 is a delayed flight. We focused on the
21 airports in Florida.

C. Hybrid Graph Modeling for Airspace

Modeling air traffic system in the form of a graph can
effectively preserve the spatial and temporal information in the
system [[19]. We used a novel data structure Hybrid Airport
Adjacency Graph (HAG) to model the airspace of incorporat-
ing geographical adjacency and workload-based mergeability.
The procedures are as follows:

Step 1: Generating Initial Airport Adjacency Graph (IAG):
We identify if two nodes are connectible based on the
geographic location. Mathematically, we define that if two
airports, V1 and V2 are connected if V2’s is the closest
neighbor geographical neighbor of V1 at the same azimuth.
Figure [I] is an example taken from central Florida. When
setting the azimuth to 120 degrees, node MCO has three
connected nodes which are SFB, TPA, and MLB. Whereas,
PIE, DAB are not connected to MCO because they are not the
closest node inside the 120 azimuths. The size of the azimuth
is a tuning parameter, where a smaller azimuth resulting a
more dynamic graph, but may result in connecting to a non-
realistic node that is too far away.
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Fig. 1. Illustration of Initial Airport Adjacency Graph (IAG). The example
airports are from central Florida.

Step 2: Creating Hybrid Airport Adjacency Graph (HAG):
We assigned edge weights for each connection of airports.
In HAG, airports that are less busy should have stronger
connections to each other, and the busy airports should be
far away from each other to avoid being clustered together. In
other words, the edge weight is negatively related to the total
workload quantified by the estimated delay flights and delay
ratio in the future two hours between the nodes. A modified

radial-based kernel is chosen to encode the workload into edge
weight, defined as below:
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where ¢ and j are two connected nodes, d is the number of
delayed flights in this time window, f is the total number of
flights in this time window. Thus, load;; is the percentage
of delayed flights of node 7 and j and normalized between
0 and 1. We only use the percentage of delayed flights as
an indicator of the ATC workload, a more comprehensive
workload can be explored in the future and substituted here.
d;; is the geographical distance between the two airports.
A is the geographical weight factor in balancing between
considering geographical distance and gross delay ratio, this
factor is automatically adjusted in our program. B € (0,1)
is the base, such a base is to satisfy the negative relation
between workload and the edge weight. The sift is set as 300
as it is numerically more stable. Mathematically, the larger
the edge weight between two nodes (airports), the more likely
they should be connected to collaborate and form a cluster.

D. Adaptive Clustering for Pre-Allocation

We developed an adaptive clustering algorithm for par-
titioning the fine-tuning of the collaboration airports, with
Spectral Clustering [20] as a key component. Mathematically,
spectral clustering first performs Eigen Decomposition of the
adjacency matrix of the Hybrid Airport Adjacent Graph to
project data from a higher dimension to a lower dimension to
remove redundancy and noise, then, clustering is done on the
low-dimension representation of data [20]. Our procedures are
as follows:

Step 1: Construct Hybrid Airport Adjacency Graph with
A =0, in this way, the initial clustering will not consider the
geographical location of airports.

Step 2: Compress the HAG’s adjacency matrix, we explore
the following methods:

e SVD: we calculate the degree matrix of the graph; The
degree matrix is a diagonal matrix where the value at
entry (7,1) is the degree of the node 7. Then calculate the
eigenvalues and eigenvectors of the degree matrix; then
we sort them based on the eigenvalues.

o Autoencoder: we use the encoder to compress each air-
port in the graph (each row) into lower dimensions. This
autoencoder contains two Dense layers for its encoder
and decoder respectively.

Step 3: We perform the k-means clustering algorithm with
an initial k£ value equal to half of the airports on the low-
dimension graph to get the initial clustering result.

Step 4: Scan each cluster in the initial clustering result, if
any cluster contains more than three airports or with a diame-
ter greater than 100 nautical miles (the typical transmission
range that aircraft can communicate directly). We increase
the number of clusters by 1 and simultaneously, increase the
geographical weight A by 0.1, but A can not exceed 0.5.



Step 5: We repeat the clustering procedure as described in
Step (1) until all clusters satisfy the criteria defined in Step 4.

Steps 4 and 5 make the clustering process adaptive and this
algorithm can gradually evolve to use geographical constraints
to create clusters with reasonable spatial size. Therefore, we
do not require select dedicate £ and A\ values for different
scenarios.

After spectral clustering on HAG, the airports that are
geographically close and with relatively low workloads are
combined as a new cluster. Simultaneously, the busy airports
with more delayed flights will be picked up and isolated.

E. Fine-Tuning for Dynamic Workload Balancing

In this stage, we aim to merge different airports’ governing
regions to rebalance the workload of the area when there is
an abrupt increase in travel demand or flight delays. For this
purpose, we have the following assumptions:

Assumption I: All flight plans are known at least two hours
in advance from flight plans or predictions.

Assumption II: The abrupt increase in travel demand under
emergency situations could cause significant delays in flights.
In our experiment, if an airport’s delayed flights within the
predicted time window are greater than 2 delayed flights per
hour (with a regional airport) or with a delay percentage
within this time window being 30% (medium or large airports),
we then mark this airport as a busy airport and needs external
assistance.

Assumption III: The nearby airport that used to assist
a busy airport should: (a) have fewer delayed flights if the
category of the airports is identical, or a lower percentage of
delay if the category of the airport is different.

Based on assumptions II and III, we develop the fine-tuning
algorithm for each busy airport as follows:

o Step 1: we created a ranked list of busy airports based
on (a) a user-defined priority level with a default value
of zero, (b) the number of delayed flights, (c) delay ratio,
and (d) number of scheduled flights within the predicted
time window. Here, the user-defined priority level can be
filled when there’s an emergent situation.

e Step 2: we scanned all airports within 100 nautical
miles of the busy airports in step one and determine if
a specific airport can be merged to assist an adjacent
busy airport based on these criteria: (a) distance, (b)
less number of predicted delayed flights, (c) lower delay
ratio. Specifically, we created a ranked list of non-busy
candidates and picked the closest one.

« Step 3: if any two airports are selected as a collaborative
pair, we created a new cluster containing only the two
airports, to prevent airspace conflict, we also ensure that
there’s no other busy airport within the combined airspace
before establishing the collaboration relationship.

In general, the algorithm allows reallocating more resources
from less busy regions in the airspace.

IV. EVALUATION & DISCUSSION

This section examines the efficiency of the graph clustering-
based dynamic airspace configuration method under different
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Fig. 2. Airspace configuration generated at different times on 12/24 (a) 7:00-
9:00, (b) 12:00-14:00.

scenarios. Additionally, we compare the computational effi-
ciency of Autoencoder and SVD for graph compression.

A. DAC with different scenarios

1) Different times on the same day: We tested the DAC
algorithm on December 24th, 2015, a day with heavy flight
traffic due to the holiday season. Three distinct 2-hour time
windows are selected: 7:00-9:00 for low traffic, 12:00-14:00
for high traffic, and 19:00-21:00 for medium traffic. The
experiment results show that the algorithm changes the config-
uration based on the different traffic conditions successfully,
and the workload unbalanced level of the new configuration
in terms of handling regular and delayed flights has been
significantly reduced at all different traffic conditions, as seen
in Table [

As in Figure [2| for low traffic conditions between 7:00-
9:00, the airspace configuration algorithm combines adjacent
sectors to balance the workload, such as MCO with SFB,
FXE with FLL, and PNS with VPS; In the meantime, several
airports are isolated independently because there is no non-
busy airport within a reasonable range and without airspace
overlap with busy airports, such as MIA and EYW. When the



TABLE I
REDUCTION ON UNBALANCE LEVEL AFTER RECONFIGURATION AT
DIFFERENT TIMES ON THE SAME DAY

Handling regular Handling delayed

flights flights
7:00-9:00 (Low traffic) 42.85% 10.8%
12:00-14:00 (High traffic) 56.9% 61.04%
19:00-21:00 (Medium traffic) 42.86% 60.1%

traffic load is high during 12:00-14:00, the algorithm changes
the configuration to balance the workload among sectors to
adapt to the increasing traffic load.
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Fig. 3. Summary of airspace reconfiguration actions within Dec 24th 2015
(a) Merged airspace. (b) Airspaces that need further separation.
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We also noticed some common patterns. First, the airspace
merging actions in the three time periods are summarized in
Figure [3(a). The three most frequent merges are FLL-FXE,
MCO-SFB, and TPA-PIE. These airports are selected to merge
into collaborative pairs because a) executive airports are not
usually as busy as large international airports even if they
are closely located, so they can always assist busy airports.
Secondly, Figure [3|b) shows that MIA and its nearby airports
are extremely busy all day round, which makes it impossible
to find a collaborative airport that is less busy.

2) Same time for different days: We also evaluate the
algorithm on different dates, three high-traffic volume dates are
selected, which are 7/3, 11/25 (one day before Thanksgiving),
and 12/31 (one day before the new year) in 2015. we also
compare the airspace configuration results on the busy hours
(12:00 PM to 14:00 PM) on these low-traffic days: 2/17, 6/9,
and 9/8, 2015. Our algorithm significantly decreases unbalance
level of the ATC’s workload in both busy and non-busy
scenarios as shown in table [IIl
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Fig. 4. Summary of airspace reconfiguration actions observed on 12:00 PM
to 14:00 PM on different days of 2015: (a) airspaces that are merged. (b)
airspaces that need further separation.
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TABLE I
REDUCTION ON UNBALANCE LEVEL AFTER RECONFIGURATION
AT THE SAME TIMES ON DIFFERENT DAYS

High traffic dates Handling regular Handling delayed

flights flights
7/3 56.77% 56.37%
11725 59.1% 62.5%
12/31 56.9% 59.9%

Low traffic dates Handling regular Handling delayed

flights flights
2117 64.1% 66.7%
11725 60% 67.1%
12/31 53% 44.5%

There are also some common merging strategies employed
for both high and low traffic conditions. As shown in figure
[] the actions taken most frequently are the merging between
FLL-FXE, MCO-SFB, PGD-RSW and PIE-TPA, showing that
large international airports are always busy all year round and
need assistance from other regional or executive airports. GNV
is surrounded by medium and busy airports and is dynamically
assigned as a flexible collaborator. Our algorithm also indicates
that some busy airports in southern Florida are surrounded by
airports that are busy simultaneously. Consequently, they can
not find collaborative peers and further divisions are needed
in their internal airspace.



B. Comparison of pre-clustering graph data compression
methods

SVD and Autoencoder (AE) are employed to reduce the
dimension of the HAG’s adjacency matrix. In general, both
techniques yield low-dimension graphs that preserve a sig-
nificant amount of essential information, but each has its
own advantages. Specifically, SVD excels in preserving the
embedded constraints within the graph, whereas the AE is
particularly adept at achieving balanced clustering. In Figure
[6] the clustering results of the SVD-compressed graph adhere
to the adjacency constraint that we only want to merge
geographically close airports. Comparably, an AE allows the
algorithm to deviate slightly. For instance, when using the
AE depicted in (a) for compression, certain clusters, such as
clusters 0 and 7 contain airports that are not directly connected.

To compare the impact of the dimension of the latent space
to the strictness of AE, multiple AEs were trained with varying
latent dimensions (2, 5, 10 and 15). We found that there is a
certain pattern when AEs do not follow the restrictions. As in
figure[5] AEs always mistakenly combine ECP, TLH and DAB
together or VRB, PBI, MIA, and EYW together, but this kind
of error can easily be fixed by a post-processing algorithm.

Additionally, AEs are much faster than SVD after training,
making them more suitable for use in real time. As in table
LI} as the dimension of the graph continues to increase, SVD
is much slower than AEs. This is because the computation
of trained AEs can easily get accelerated by hardware. Also,

AEs can leverage past training experiences, unlike SVD which
starts computation from scratch each time.

This is because the computation of trained AEs can easily
get accelerated by hardware. Also, SVD has to start compu-
tation from scratch every time while AEs can leverage past
experiences from training.

TABLE III
COMPARISON OF TIME REQUIRED IN REAL-TIME APPLICATION BETWEEN
SVD AND AUTOENCODER

HAG’s dimension SVD prediction Autoencoder Autoencoder
(10—° second) prediction (10~ Training time
second) (second)
77 439 1.16 27.78
10*10 44.8 1.70 27.04
15*15 44.5 4.06 69.47
18*18 48.1 3.30 64.67
21%21 373.8 3.54 65.98

V. CONCLUSION

We’ve introduced an innovative method for dynamic
airspace reconfiguration, using a graph model to balance air
traffic controllers’ workload. This model incorporates geo-
graphical adjacency and ATC workloads, utilizing a spectral
clustering-enabled adaptive algorithm to generate new con-
figurations based on predicted delay and flight plans. The
algorithm groups high-workload airports as centers surrounded
by lesser-engaged airports, redistributing ATC resources for
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Fig. 6. Comparison of pre-clustering compression method on the final result
of DAC (a) Nonlinear: Autoencoder and (b) Linear: SVD.

workload equilibrium. The model outperforms static airspace
configurations, reducing workload imbalance by over 55%
under high traffic volume, as confirmed through evaluations
during various time windows and traffic conditions. Our real-
data simulations indicated that Miami and Sarasota airspace
requires further partitioning to improve performance, as our
DAC algorithm struggled to locate less busy airports within
60 miles for collaboration. Furthermore, Key West airport’s
remote location hindered collaboration with busy airports to
share emergent workloads.

Our future direction includes improving airspace ATC work-
load assessment by considering metrics beyond delayed and
total flights. Additionally, we plan to explore neural networks’
potential in generating comprehensive airspace configuration
plans.
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