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Abstract 

This paper reviews the theory of navigation functions and the at- 
tendant use of natural control techniques with emphasis upon ap- 
plications to  mobile autonomous robots. Results to  date will be 
discussrtl i n  tlir rontrxt o f  a 1;irgcr prograrn of rcscarrh that sccks cf- 
fcc.t,ivr para.inrtri~ations of rrncrrtainty i n  rolmt. navigaf.ioii prol)lrms. 
Constrnctivc solutions to particrilar caws of mobile robot navigation 
problems with complete certainty are provided as well. 

1 Introduction 

This paper provides a tutorial sketch of recent mathematical results 
concerning the existence and construction of robot controllers for 
exact navigation in cluttered worlds. Honoring the stated theme of 
the present Workshop, particular emphasis is given the application 
of this theory to  autonomous mobile robots. 

1.1 Intended Scope of Application 

Althongh the body of this paper has been kept relatively free of 
mathematical formulas, the abstract technical nature of the discus- 
sion may nevertheless obscure the ultimate goals of our work. At 
thr risk of w r i n g  in tlir oppositr rstrrmr, it srcms worth iii,jrrting 
a brief account of our larger ambitions. Thus, consider the following 
scenario. 

Example 1.1.1 A Fantasy. 

YOU tell the robot to enter your office and go to the win- 
dow behind your desk without banging into the desk or chairs. 
The robot has never been in your office before, but it knows, 
for example, that an office is a topologically deformed solid 
ball, and, similarly, that a chair or a desk is a deformed pret- 
zel, and so on. Moreover, it possesses a parametrized family 
of coordinate transformations that successively deform model 
Euclidean balls, cylinders, and pretzels into ever more detailed 
particular instances. The robot develops a plan of navigation 
in the model space, then as it begins to carry out the plan in 
the real world. it starts to adapt its parametric representation 

plementation; and to  the robot’s perceptual apparatus. This paper 
sketches a m a t h e m a t i d  formalism we are developping that encom- 
passes the first two notions of effectiveness. Constructive Recipes for 
solving very particnlar navigation problems for which perfect knowl -  
-.tlgc of t l ir  para~nrtrrs is i~lrcady known a r c  givrii 21,s wcll. Prrswtly, 
wc do not entirely understand how to formalize the third notion, and 
little more will be said about it here in consequence. 

1.2 Representations of the Navigation Problem: a Man- 
ifold with Boundary 

There are several levels of geometric and kinematic complexity that 
might be considered in the analysis of autonomous vehicle naviga- 
tion. Here, we present a brief sketch of a hierarchy of problems. The 
intent is to  distinguish the task domain over which our results may 
be considered immediately practicable as opposed t ~erely theo- 
retically applicable. In all cases, the formal represa..dion of the 
navigation task is a compact manifold with boundary whose interior 
corresponds to  the freespace - the set of all robot placements that 
avoid intersections with the environment - and ,whose boundary 
components represent the obstacles. We have shown [12] that  the 
topological properties of these bounded spaces define the invariant 
featnres of any navigation prohlcm. That is to say two problrms 
are identical if their representations are homeomorphic. Hence i t  
is fitting to  provide some intuition concerning the homeomorphism 
equivalence class of the various examples below. 

The first example is uninteresting from any practical point of 
view and is included simply to  afford a trivial setting in which to 
develop intuition in the sequel. 

Example 1.2.1 Point Robot in a Line Segment. 

A The configuration space is some closed real interval, J = 
[a, PI. It is evidently compact because it is closed and bounded. 
Its boundary is the set d J  = {a,P}. It is embedded in a 
Euclidean vector space, IR, but is topologically distinct. Unlike 
the open interval, (a,@), no change of coordinates can be used 
to identify the closed interval [CY, f l ]  with a. . .  

of the real room an- chairs (as well as their relative location) 
in accordance with new sensory data. The plan is sufficiently 
conservative that no collisions occur along the way. The plan 

We now suppose a small robot is assigned to navigate in a relatively 
uncluttered room. The walls of the room and the obstacles may be 

is sufficiently industrious that exploration of the real environ- 
ment will continue until enough particular understanding of 
the eeometric details is available to comdete the task (if it is 

approximated by circular disks without too much loss of accuracy. 
The robot’s physical extent will be ignored. ., 

physically possible to do so). 

This example must presently stand as fantasy because it presumes 
a parametrized representation of the world which is simultaneously 
effective with respect to  the navigation problem; to  the control im- 

‘This work was supported in part by the National Science Foundation 
under grant DMC-8505160, and, in part by a Presidential Young Investi- 
gator Award held by the first author. 

Example 1.2.2 Point Ro60t in a Sphere World. 

The configuration space, 3, is a compact connected subset 
of Et* whose boundary is the disjoint union of circles - an 
outer circle represents the walls of the room and each circle in- 
side represents a distinct obstacle. Again, this space is topolog- 
ically distinct from IR’. Consider, instead, a two-dimensional 
sphere in Et3. Cut out a circle around the north pole and iden- 
tify this boundary with the outer wall of the room. Cut out 
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a circle in the remaining portion of the sphere for each inte- 
rior obstacle. The resulting punctured sphere is topologically 
identical to J. 

If the room is more tightly cluttered but still entirely connected then 
the exact location of each obstacle becomes much more important 
and the geometric details of each boundary must be explicitly mod- 
eled. This situation might be modeled as follows. 

Example 1.2.3 Point Robot in a Blob World. 

The configuration space, J, is a compact connected subset 
of IF? whose boundary is the disjoint union of deformed circles. 
For example, each obstacle might be represented as the zero 
level set of a proper (that is, every compact set in its range 
has a compact pre-image in its domain) scalar valued function 
on R’. This example is topologically indistinguishable from 
the previous one. 

If, instead, the room is sufficiently cluttered that  the physical size 
of the robot precludes free passage through apparently free regions 
then the configuration space differs from the workspace and must be 
computed by “growing the obstacles” and shrinking the robot t o  a 
point, for example, as in Lozano-Pdrcz and Wesley [13]. A plausible 
model in this case adds the possibility of scparate components of the 
confignration space. 

Example 1.2.4 Spherical Robot in a Blob World. 

The configuration space may be disconnected. However 
each connected component is topologically identical to some 
punctured sphere world as defined in Example 1.2.2 . 

Finally, if the room is so cluttered that  the robot can only move 
through narrow passages by adjusting its orientation then the config- 
uration space differs in dimension from the workspace, and we arrive 
at what is arguably the first problem domain sufficiently complex to 
require the  full power (and computational burden) of Schwartz and 
Sharir’s [21]. solution to the generalized “piano mover’s problem”. 

Example 1.2.5 Blob Robot in a Blob World. 

The configuration space i s  a solid torus with smaller solid 
tori removed from the interior, [4]. It is topologically distinct 
from any of the prwious examples. 

To preview the contents of this paper we offer a constructive 
solution to  almost all problems up to  the level of Example 1.2.3 as- 
suming perfect information concerning the workspace obstacles tak- 
ing the form of a scalar valued function (whose zero level represents 
the boundary) for each obstacle. Our constructions would be imme- 
diately applicable to the problem represented by Example 1.2.4 if 
some further processing resulted in an implicit representation of each 
of the configuration space boundary components. It is important to  
note, however, that  the only way to  determine whether or not the 
robot is presently in the same connected component of the config- 
uration space as the desired point of destination is to  actually run 
the algorithm: the robot arrives a t  the destination with probability 
one if a path exists. Our theoretical results guarantee the existence 
of solutions to all navigation problems including the generalized pi- 
ano mover’s problem via the techniques presented here. However 
we have not presently attempted any constructive solution to  the 
prohlrm domain of Euainplr 1.2 5 

1.3 The Link to Control Theory: Dissipative Mechan- 
ical Systems 

This section provides a brief discussion of the robot control systems 
assumed by our theory. Given a configuration space, 3, the phase 
space, P models all possible velocities a t  any possible configuration. 

~ 
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For the sake of clarity, we will use the coordinates q E J t o  denote 
configurations, and the coordinates, p = ( p 1 , p 2 ) ~  E P to denote 
phases: thus, pl is identified with q in all future formulae. 

A mechanical control system, is a second order system, as de- 
termined by the ordered pair, consisting of a configuration space and 
a choice of kinetic energy, 

where fs is the Lagrangian vector field specified by the kinetic energy. 

Example 1.2.1 (continued). 

The phase space over J = [a, p] is the closed vertical strip 
in IR’, P = [.,PI x IR Its boundary is formed by the two 
vertical lines through the endpoints of the configuration space 

dP = ( a  x a ) u ( p  x a) 
Suppose our one degree of freedom prismatic robot has mass 
M Then the kinetic energy IS given by 

tC(q,v) 52 p M U ,  

the Euler-Lhgrange operator qq)I ie( l  to h y i ~ l d s  
grator, 

doiiblt: iiite- 

$1 = PZ 
p 2  = A4-1.0,  

thus 

The control system (2) remains qualitatively the same as in the 
previous one degree of freedom case for Example 1.2.2 through 
Example 1.2.4 (it is now a pair of two forced double integrators) 
assuming that  the two degrees of freedom can be simultaneously and 
independently actuated. We make this assumption throughout the 
sequel, thereby eliminating the more interesting nonholonomic case 
of a robotic cart with steering wheel treated in [l, $8.51 and [17, pp. 
33-36], For example, this model applies to Moravec’s cart Pluto, but 
not to Uranus [15]. 

If the input to (2) takcs the form of a generalized I’D controller, 

where ‘p is a scalar valued map on the configuration space J, and G 
has the property that  pZG(p2)  is a positive definite function, then the 
resulting closed loop system is said to be a dzssipatzwe mechanzcal 
system. [lo, 111. A century old result of Lord Kelvin [23] states 
that  trajectories of the resulting closed loop system that  start in a 
neighborhood of a local minimum of y tend asymptoticially toward 
that  local minimum. 

Example 1.3.1 A Hook-Rayleigh System. 

The the sake of concreteness suppose that the configura- 
tion space, 3, in Example 1.2.1 is an asymmetric interval 
about the origin, [ - e ,  I], and that the origin is the desired des- 
tination point. A IIook’s law spring potential, p~ e b q T K l q ,  
(I<, is positive) encodes the “plan” since all trajectories of the 
iii.g;it.ivv gr;i<li<,itt syht<.ii i ,  

q = -grad p x(q)  = -A‘lq 

that start in 9 arrive at the origin, and no trajectories that 
start in J ever leave the set (crash into the boundary, 83) .  

To form the associated dissipative mechanical system, let 
us take a Rayleigh damping law G(p2) = K z p z . ,  (Kz is positive 
as well). Now apply the feedback law to the robot as dictated 



by the recipe in (3). The resulting closed loop is a “Hook- 
Rayleigh” dissipative mechanical system, AHR, given by 

a familiar second order linear. time invariant system. All tra- 
jectories of this second order system asymptotically approach 
the origin of phase space, just as trajectories of the planning 
system approach the desired destination in configuration space. 
Formally, this may be proved by noting that the total energy 
for AHR, 

1 1 
2 2 9 = - K l P : + - P : ,  

is non-increasing along trajectories 

The observation that  total energy decreases in dissipative me- 
chanical systems is the basis for interest in artificial potential field 
methods of robot control. 

2 Robot Navigation with Perfect Informa- 
tion 

Motivated by Lord Kelvin’s assurance that dissipative mechanical 
systems end up a t  the local minima of the potential field, a great 
deal of interest in robotics has centered around the construction of 
artificial potential field to encode navigation problems. In this sec- 
tion we will briefly review the general literature (for a less superficial 
review, see [lo]) and sketch the our own contributions in the case of 
perfect information. 

2.1 

In his original 1978 paper with Le Maitre [6], Khatib assumed that  
each obstacle is described as the  zero level surface of a known scalar 
valued analytic function, f(z, y, z )  = 0, which he used to  form a local 
inverse square potential law. This construction goes to  infinity as  the 
inverse square o f f  near the obstacle, and gets cut off a t  zero a t  some 
positive level surface, f(z, y, z )  = fo, presumably “far enough” away 
from the obstacle, as determined by the designer. A particle moving 
according to  Newton’s Laws in such a potential field would clearly 
never hit this obstacle. Khatib further observed that  the sum of the 
gradients is the gradient of the sum: thus adding up the potential 
laws for many obstacles would result in a single function under whose 
influence the particle could not hit any obstacle. 

In the decade after its introduction, the idea of using artificial po- 
tential fnnctions for robot task description and control was adopted 
or re-introduced iiidependeiitly by a growing nuniber of researchers 
[14,2,18]. Gradually, there seems to  have emerged a common aware- 
ness of several fundamental problems with the potential function 
methodology that  raised serious objections to its ultimate utility in 
robotics. First, researchers inevitably discovered through simulations 
or actual implementations that  progressive summation of additional 
obstacles inevitably lead to spurious minima and their accompany- 
ing local basins of attraction into which the robot would generally 
“stall out’’ long before acheiving the desired destination. Second, the 
infinite value of the artificial potentials required to  prevent trajec- 
tories of the ultimate mechanically controlled system from crashing 
through obstacle boundaries obviously could not be achieved in the 
physical world and there were no clear guarantees as to  when the 
saturation torque levels of the robot’s actuators would indeed suffice 
to prevent collisions. 

Previous Experience with Artificial Potentials 

2.2 Some New Concepts 

Our work addresses and overcomes the limitations of artificial po- 
tential fields described above. We discuss here the conceptual foun- 
dations of this work along with concrete illustrations through simple 
examples. 

2.2.1 Global  Mechanica l  Analog  C o m p u t e r s  

We proposed in 1985 (81 a systematic study of the properties of vec- 
tor fields on a configuration space that make them effective planning 
systems for mechanical systems on the phase space. Since regular 
gradient systems are guaranteed to  have a simple limit set consist- 
ing of isolated extrema (in contrast to  the usual complex limit sets 
of more general classes of nonlinear vector fields) [Ill they are a 
natural choice for specifying asymptotic desired behaviors such as 
“go there and stay”. Moreover, the transients of a gradient flow are 
readily shaped by adjusting the level curves of the associated cost 
function, since trajectories run orthogonally to them [5]: any be- 
havioral properties that  can be translated into the geometry of level 
curves may be planned in this fashion. We have demonstrated how 
the addition of several technical properties to  the list of conditions 
on gradient fields ensures that the generalized PD controller (3) will 
cause the same global limit behavior in the second order mechanical 
system (on a compact subset of phase space that  includes the entire 
configuration space) as in the first order gradient system 1111. The 
conceptual advance involved in this contribution (which is otherwise 
a perfectly unsurprising extension of Lord Kelvin’s century old re- 
sult on the dissipation of total energy) was a rigorous examination of 
how t o  prevent finite escape through the boundaries of the configu- 
ration space (arising, e.g., from robot joint limits, or obstacles in the 
workplace) without requiring infinite actuator forces. The problem 
is best summarized by examining the trivial one degree of freedom 
Hook-Rayleigh system, Example 1.3.1 . 

Example 1.3.1 (continued). 

The boundary of the phase space, ’P, of the Hook-Rayleigh 
System, is the union of the two parallel lines 

8P=({-.} X I R ) U ( { l ) X I R ) ,  

running vertically through each boundary point of the config- 
uration space considered as a segment in the horizontal axis of 
’P. Unfortunately, however, fa,,, is directed away from the 
interior of this infinite vertical strip of a phase space on the 
upper half of the line through the point [1,0] and the lower 
half of the line through [-t, 01. Consequently, it may be ob- 
served that the trajectory of fa,, through every initial condi- 
t,ion i n  a nrighl)orliood of Lhrsc open li;ilr liur srgiiiwt.s must 
escape from P in finite time. Thus, successful obstacle avoid- 
ance properties of the gradient “planning system” on 9 fail 
to guarantee that the dissipative mechauical system will enjoy 
the same properties. 

In fact, we may once again use the total energy to  determine the 
extent of “safety” - those intitial conditions of the dissipative me- 
chanical system that  are guaranteed to  have collision free trajectories 
- as follows. 

E x a m p l e  1.3.1 (continued). 
The total energy’funetion for AHR is 

The energy level set _= 1 is a truncated ellipse just touching 
(1 ,O)  and tangent to the vertical line 1 x R comprising the 
right hand boundary of ’P. This ellipse is truncated on the 
left hand side of the plane by the a line segment contained in 
the left hand boundary, -e x IR. Thus E’ is bounded only 
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The gradlent system 

q = -grad PA = - 7  q + < ) & l ) *  [(n + e ) Y n  - 1I2(P - Pd) 

-(‘? - ‘ l d ) ’ ( q  - l)’((n + 
- (q  - q d ) ’ ( q  + c ) 2 ( q  - l)1 

has the same invariance and convergence propertles as does 
grad ‘p H R ,  and the computational cost IS now more than an 
order of magnltude greater However, the assoclated disslpa- 
tive mechanlcal system, AAR, 

partially by a total energy surface. Trajectories originating 
in this set, L“, cannot escape through the ellipsoidal portion 
of the boundary but, as we have seen, certainly can escape 
through the left hand truncating line. 

On the other hand, the energy level set 7 E K i c 2  only 
touches the boundary of phase space on the zero .velocity axis. 
All initial conditions within this set are “safe”. 

This example suggests that  the potential fields should be so con- 
structed that  some resulting total energy surface just touch the phase 
space boundaries tangentially at points in the zero velocity subspace. 
We are led to impose further conditions on the potential function to  
guarantee that  the “safe” set includes all legal configurations in this 
fashion. 

2.2.2 Navigation Functions 

The list of technical features we rcquire of a gradient planning system 
in order for its “lift” to  the mechanical system (via feedback com- 
pensation) to  effectively carry out the prcscribcd plan on a region of 
phase space that  entirely contains the (zero velocity) configuration 
space comprises the notion of a navigation function that  we intro- 
duced to the  literature a year ago [20]. Roughly speaking, such a 
function must take its minimum uniquely on the desired destination 
set to ensure convergence from almost every initial state (formally, 
it  is polar ), and, moreover, must take its maximal value exactly 
and uniformly on the boundary of the configuration space (formally, 

i t  is admissible) t o  avoid trajectories which ”crash through” out of 
the legal space as in Example 1.3.1 , above. The following example 
provides simple instance of a navigation function on the one degree 
of freedom configuration space introduced in Example 1.2.1 . 

Example 2.2.1 An Admissible Potenttal. 

Now reconsider the problem in Example 1.3.1 . We would 
like to retain the IIook’s Law spring, ’ p f ~  since it forces all tra- 
jectories to converge toward the desired position, 0 E J, and 
remain there. However, we would like to avoid crashing into 
the boundary points, 83 = {--E, 1). These “bad” points may 
be readily represented as the zero level set of two additional 
appropriately chosen scalar valued functions, say 

A 
PL(q) lq + €1’ ; DR(Q)  = 1‘2 - 11’ - 

Dividing the “good” function by the product of the “had” func- 
tions + = ‘ ~ H / P L P R  results in a new scalar valued function 
that “encodes” our goals by assigning smallest (zero) cost to 
the good configuration and the largest (infinite) cost to the 
bad configurations. It is easy to show that @ has only one 
minimum. Moreover, both of the boundary configurations are 
assigned the same largest cost value. Unfortunately, @ is not 
bounded on 9, and must be rejected as physically unrealizable. 

A 

Now consider the map, 

A X  
U(.) = - 

X + X ’  

which “squashes” the iiifinit.r Ii:ilfint,erv:il [0, CO) to (.lie boiinded 
interval [U, 11 for all positive scalars h > 0. Composing p with 
U (taking X = 1 in this case) results in a new cost function, 

that attains its lowest value (zero) on the good configuration, 
0, and its highest value (one) on the bad configurations, 8 3 .  
Since U is monotone, the second derivative of PA has the same 
sign sign as that of @ at any critical point, thus ‘ p ~  has only 
one minimum since @ enjoys that property: PA is a navigation 
function on 3. 

offers the significant improvement over AHL that every initial 
zero velocity state, (pl,O) E P converges to the desired equi- 
librium state, (qd, 0) E P with the guarantee of never crashing 
into the boundary lines aP. Of course, this property holds 
true for many more initial conditions as well - namely, all of 
those in the energy set 

t’ = P E  P : P A ( P 1 )  + ZP; 5 1 i l }  

The question immediately arises whether such desirable features 
may be achieved in general. For example, it  is hopeless to  attempt 
global asymptotic stability of a single destination point via a smooth 
memoryless time invariant controller (in all but uninterestingly sim- 
ple problems like the example above) for fundamental topological 
reasons [9]. Are there similar topological obstructions to  a naviga- 
tion function? Fortunately, we were able to  modify a construction 
introduced by Smale three decades ago in his proof of the Poincark 
Homeomorphism Conjecture [22] in order to demonstrate the fact 
(surprising to  us) that  smooth navigation functions exist on any com- 
pact connected smooth manifold with boundary (121. Thus, in any 
Problem involving motion of a mechanical system through a clat- 
tered space (with perfect information and no requirement of physical 
contact) if the problem may be solved at  all, we are guaranteed that  
it may be solved by a navigation function. There remains the engi- 
neering problem of how to construct such functions 

2.2.3 Changes of Coordinates 

The importance of coordinate changes and their invariants is by now 
a well known theme in control theory. Roughly speaking, these no- 
tions formalize the manner in which two apparently different prob- 
lems are actually the same. Their most fa.miliar instance is undoubt- 
edly encountered in the category of linear ma.ps on linear vector 
spaces whose invariants (under changes of basis) determine closed 
loop stability. Of course, many other instances may be found in 
the control literature and, more recently, the utility of coordinate 
changes in robotics applications has been proposed independently 
by Brockett [3] as well. 

The relevant invariant in navigation problems is the topology of 
the underlying configuration space 191. In this regard, the signifi- 
cant virtue of the navigation function is that its desirable properties 
are invariant under diffeomorphism [12]. Thus, instead of building a 
navigation function for rarli particular problem, wc are encouraged 
to  devise “model problcnis”, coustruct thc appropriate model navi- 
gation functions, and then “deform” them into the particular details 
of a specified problem. This notion pervades the remainder of the 
paper. 

Example 2.2.2 Admissibility of a Hook’s Law Spring by Change of 
Coordinates. 

Any closed real interval is an affine coordinate change away 
from any other. For example, the configuration space, 3 = 
[ -c ,  11, of Example 1.3.1 may be identified with a “model 
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space”, D1 
coordinates 

[-I, I], the closed “1-disk” via the change of 

It’ : ’I - 2f7 - (1 + <). (4 )  

Now observe that our Hook’s Law spring, p ~ ,  from Exam- 
ple 1.3.1 , is admissible on the model interval, D’, even though 
it cloc-rr not. rnjoy (.lint. propc.rt.y o n  tSir pnrt,iriilnr irit,rrval in  
question, 3. However, the adniissibiliby is preserved by coin- 
position with h l .  That is to say the composition function, 

is admissible on J ,  since the “height” of any configuration 
q E 3 is determined by the “height” assigned to its identified 
image value hl(q) E D1. In particular, since 8.7 is identified 
with 8D1, the admissibility property of (OH is preserved. 

Of course, the more features of the problem we insist on identi- 
fying via coordinate changes, the more complicated the construction 
of the new coordinate system becomes. If we merely desire the iden- 
tification of the interval’s end points then the composition of a linear 
scaling and affine translation will do as the previous example shows. 
Stronger identifications require less rigid transformation classes and 
more care. 

E x a m p l e  2.2.2 (coiitiiinrd). 

Since hl takes the midpoint of J to the origin of D’, 
has a minimum at the midpoint of 3. We require, however, 
that our potential field have a minimum at the origin of 3, 
hence, we must construct a diffeomorphism taking the end- 
points and the origin of 3 to the endpoints and origin, respec- 
tively, of D1. 

Define an “analytic switch”, 

which uses the “squashing”’ function introduced in Exam- 
ple 2.2.1 to vanish at the origin and attain unity at the bound- 
ary of 3. The function 

(6) 
A 

h(q)  = oihi + (1 - g i ) ~  

takes the boundary of J to the boundary of the model, D1, and 
also takes the origin to the origin. Since h is the convex com- 
bination of two monotone iiicreaying functions it is not hard to 
sw griipliicdly, iuid iiiny I ) c  rwdily S I I O W I I  :ilg~~l~riiir;iIly that, h 
is itself monotone increasing for sufficiently large values of A .  
Thus, h is a change of coordinates that preserves the bound- 
ary and origin. We have already argued that admissibility is 
preserved by h. Moreover, since 0 is the unique minumum of 
p~ on D’, it is intuitively clear that pHoh has its unique min- 
imum at 0 on 3. A little more thought will quickly convince 
the reader that p~ o h  is a navigation function for the origin 
of J .  

Comparing Example 2.2.1 with Example 2.2.2 it is not clear 
that the second construction is any simpler. However, as  the de- 
tailed geometric features of the actual problem become increasingly 
complicated, the general techniques of Section 2.3.1 fail: spurious 
minima cannot be avoided by the simple multiplication and division 
procedures adopted there. Thus, we are led to  generalize the ideas of 
Example 2.2.2 , above, in order to  increase the “range of geometric 
expressiveness” of our methodology. 

2.3 Some New Tools 

In this section we present some constructive results. I t  will be ob- 
versed that  the construction of Section 2.3.1 together with the recipe 
of (3) provides an immediate feedback controller for the type of nav- 
igation problem introduced in Example 1.2.2 . These, together with 
the construction of Section 2.3.2, solve the navigation problem in- 
troduced in Example 1.2.3 and Example 1.2.4 (assuming further 
processing results in a description of the configuration space). While 

the concepts introduced in Section 2.2 above demonstrate that  Ex- 
ample 1.2.5 is amenable to  the same machinery, we have not yet 
attempted a constructive soliition to this domain. 

2.3.1 

Recall from Example 1.2.2 that  a “Euclidean sphere world” is a com- 
pact connected subset of ER whose boundary is the disjoint union 
of a finite number, say M + 1, of ( n  - 1)-spheres. We suppose that  
perfect information about this space has been furnished in the form 
of M + 1 center points {qj}zo and radii {p ; }Eo  for each of the 
bounding spheres. There are two new ideas in our artificial potential 
function construction. First, we avoid spurious minima by multi- 
plying the constituent functions together rather than summing them 
up. Namely, the “bad” set of obstacle boundaries to  be avoided is 
encoded by the product function, p : M + [0, m) is, 

Naviga t ion  Funct ions  o n  Eucl idean Sphere Worlds 

where 
A A PO = ~ ~ - 1 1 4 1 1 ~  ; Pj  = I1~-q j I I z -p j  j = 1 . . . M  

are the outer boundary and inner obstacle functions, respectively. 
The good sr t ,  the drsirctl ~ l~~s l ina t ion ,  is rcprcscmlctl by an ordi- 
nary Hook’s Law potential, r = llq - qdll”’, ralsed to an even power 
and the rough syntax “go to -y = 0 a.nd do not go to p = 0” is 
encoded by the intuitively obvious product 

A 

- A 7  
= 8’ 

Of course, 8 is unacceptable since it is unbounded. The second new 
idea a t  work is to  produce a bounded potential and gradient by a 
smooth “squashing” function, 

A X  
u ( z )  = - 

l t x ’  
Note that  the composition 

008 = 7 
r + P  

is everywhere smooth and bounded, and attains its maximal height 
of unity only on the boundary components of the configuration space. 
For technical reasons we find it necessmy to  take the kth root of this 
ratio with the following result. 

T h e o r e m  1 ( [12]) If the conjguration space, 3, is a Euclidean 
sphere world then for any finite number of obstacles, and for any 
destination point in the interior of 3, 

(7) 

has no degenerate critical points and attains the its maximal value of 
unity on the boundary, 8.7. Moreover, there exists a positive integer 
N such that for every k 2 N ,  ‘p has one and only one minimum on 
3. 

The function, N ,  on which the theorem depends is given explicitly 
in [E]. 

2.3.2 

The Euclidcan sphere world, of course, rorrcsponds to a rather s in-  
plistic vicw of frcrspaw. ~ort~nnatr ly,  thr navigation propc*rt,ic.s arc 
invariant diffeomorphism, as discussed i n  Section 2.2. This suggests 
that  we might consider the Euclidean sphere world as a a “model 
space” used to  induce navigation functions on more interesting “real 
spaces” in its analytic diffeomorphism class. The problem of con- 
structing a navigation function on a member of this class reduces to  
the construction of an analytic diffeomorphism from this space onto 
its model. 

Naviga t ion  Funct ions  Induced  by Diffeomorphism 
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Our constructive results t o  date encompass the class of “star 
worlds.” A star shaped set is a diffeomorph of a Euclidean n-disk, 
’D” possessed of a distinguished interior center p o d  from which 
all rays intersect its boundary in a unique point. A star world is 
a compact connected subset of E” whose boundary is the disjoint 
union of a finite number of star shaped set boundaries. We now sup- 
pose the availability of an implicit representation for each boundary 
component, {p,}g,, where p, E C u [ 3 , R ]  and 

M 

8 3  E U P;’[Ol, 
,=(I 

as well as the obstacle center points, {q , }Zo.  Further geometric in- 
formation required in the construction to follow is detailed in the 
chief reference for this work [19]. A suitable Euclidean sphere world 
model, M ,  is explicitly constructed from this data. That is, we deter- 
mine (p , ,~ , ) ,  the center and radius of a model j t h  sphere, according 
t o  the center and minimum “radius” (the minimal distance from q3 
t o  the j th  obstacle) of the j t h  star shaped obstacle. This in turn de- 
termines the model space “obstacle functions”, {a} as well as the 
navigation function on M ,  Q, as described above. 

A transformation, h : M -+ 3, may now be constructed in terms 
of the given star world and the derived model sphere world geometri- 
cal parameters as follows. Denote the “ j t h  omitted product”, 
as $,. The “ j th  analytic switch”, 0, E CW[3,R], 

(where X is a positive constant) attains the value one on the j t h  
boundary and the value zero on every other boundary component of 
3. The “ j th  star set deforming factor”, U, E Cw[F,R] ,  

scales the ray starting at the center point of the j t h  obstacle, qJ, 
through its unique intersection with that obstacle’s boundary in such 
a way that  q is mapped to  the corresponding point on the j t h  model 
obstacle - a suitable sphere. The overall effect is that  the compli- 
cated star shaped obstacle is is “deformed along the rays” originating 
a t  its center point onto the corresponding sphere in model space. 

We are now ready t o  define our general construction, patterned 
on the simple example of Example 2.2.2 . The star world trans- 
formatzon, h ~ ,  is a member of the om-paramrter family of analytir 
maps from an open neighborhood, c E”, containing 3, into E”, 
defined by 

A M  

3=0 
h A ( r l )  = zflj(9, A)  vj(rl) ’ ( 4  - e )  + PJ ]+nd(q, A)  [ (‘2 - rid) + Pd 1 7  

(8 )  
where U, is the j t h  analytic switch, 0 d  is defined by 

(9) 

and v, is the j i h  star set deforming factor. 

The “switches”, make h look like the j t h  deforming factor in the 
vicinity of the j th  obstacle, and like the identity map away from all 
the obstacle boundaries. With some further geometric computation 
we are able t o  prove the following. 

Theorem 2 ( [19] ) For any valid star world, 3, there exists a suit- 
able model sphere world M ,  and a positzve constant A, such that if 
X 2 A, then 

is nil analytic difli.oirio~l)llisli~. 

Thus, if cp is a navigation function on M ,  the constriiction of h\ 
automatically induces a navigation function on 3 via composition, 
@ = cp o h ~ ,  according to  Proposition ??. 

/LA :J-i M ,  

A 

This family of transformations, mapping any star world onto the 
corresponding sphere world, induces navigation functions on a much 
larger class than the original sphere worlds, thus advancing our pro- 
gram of research toward the goal of developing “geometric expres- 
siveness” rich enough for navigation amidst real world obstacles. A 
paper presently in preparation describes how the construction pre- 
sented here may be extended to  handle arbitrarily close approxima- 
tions to  any situation of the kind encountered in Example 1.2.4 . 

3 Conclusion 

This paper reviews our work o date in exact rob _ _  navigation assum- 
ing perfect information. We provide explicit recipes for constructing 
control laws guaranteed to  bring a mobile robot to  a desired desti- 
nation without hitting any obstacles (assuming a path exists). The 
classes of environments for which a recipe is provided here include all 
of the sample hierarchy introduced in Section 1.2 up to  (arbitrarily 
close approximations to) the sphere robot in the blob world of Ex- 
ample 1.2.4 . We have already shown that every navigation problem 
is amenable to  solution by our methods, thus constructions are worth 
attempting in more complicates cases, for instance the blob robot in 
a blob world of Example 1.2.5 . 

Ultimately, we see the most exciting use of the results presented 
here in a planned series of extensions to  the case of partial uncertainty 
as exemplified by the fantasy application of Section 1.1. Our reliance 
upon generalized PD controllers (3) represents not so much a fixed 
faith in their performance but rather the choice of a simple vehicle for 
eliciting those properties of task descriptions that are simultaneously 
effective with respect to  controller design as well. The task-encoding 
formalism presented here has the advantage of reflecting any uncer- 
tainty (i.e., imperfectly known configuration space boundaries ) into 
the ultimate closed loop dynamics via the lifted configuration space 
vector field. Thus parametrized models of task uncertainty immedi- 
ately generate clearly posed parameter adaptation problems. 

One difficulty in pursuring this program of research is that any 
interesting parametrization of task uncertainty will not result in a 
linear-in-parameters adaptation problem and we will be forccd to 
abandon thc traditiondl tools of liiichi atlaptivc systems thcoiy [lF] 
i n  favor of radically new adaptive laws. Preliminary results of this 
nature will be presented shortly [7] indicating how to successfully 
adapt the power parameter, k, rcqnired by the navigation function 
in Theorem 1 while still avoiding collisions thiough the configiiiation 
space boundaries. 

Yet an even more fundamental problem concerns the nature of the 
parametrized family itself the parametrization should be “effective” 
with respect to  the robot’s perceptual appratus. Lurking a t  the heart 
of this still fuzzy notion is a theory of continuous geometric reasoning 
that would translate new sensory data  into updated parameter values 
in a rational manner. 
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